
Collibra Data Intelligence Cloud

Collibra Data Quality
& Observability

Version 2023.02

i

Collibra Collibra Data Quality & Observability guide

Release date: February 5, 2023 / Revision date: Thu Feb 02, 2023

You can find the most up-to-date technical documentation on our documentation site at

https://productresources.collibra.com/doc/collibra/latest/Content/DataQuality/to_data-
quality.htm

Contents

ii

Contents ii

Introducing Collibra Data Quality v

Getting Started vii

Release Notes ix

Builds lxxxii

APIs xc

Collibra DQ Installation xciii

Collibra DQ Connections cciv

Collibra DQ Features cclxxvi

Cross-Data Set Rules cccxii

In-Clause (Single Column) cccxii

Except (Multi-Column) cccxii

Referencing secondary data sets cccxiii

Joins cccxiii

Sample Results cccxiv

Data Type cccxx

Features ccclxxviii

Limitations ccclxxix

Steps ccclxxx

Shapes ccclxxxii

Replay ccclxxxii

Outliers ccclxxxii

Running a Full Scan ccclxxxv

Prerequisites ccclxxxv

Steps ccclxxxv

What's next? ccclxxxvi

Running a Partial Scan ccclxxxvii

Prerequisites ccclxxxvii

Steps ccclxxxvii

Time Slice ccclxxxviii

Row Filter ccclxxxix

Limit cccxc

What's next? cccxc

Scanning with SQL Query cccxci

Prerequisites cccxci

Steps cccxci

What's next? cccxcii

Collibra DQ Scorecards cccxcviii

Collibra DQ Scheduler cdvii

Collibra DQ Alerts cdxii

Collibra DQ Reports cdxxi

Collibra DQWorkflows cdli

Collibra DQ DIC Integration cdxc

Collibra DQ Catalog dxviii

Collibra DQ Solutions dxxxi

Background dxlviii

What Did We Notice? dxlix

Traditional Approach dxlix

What Did We Need? dl

iii

DQ is the difference dli

What is CDQ dlii

8 Ways to Add Value Using CDQ dlii

What Savings Does CDQ Provide? dliii

How Can CDQ Help? dliii

What makes CDQ unique? dliv

Why? dlv

Collibra DQ Benchmarks dlxxxvi

Collibra DQ APIs dxcviii

Rule types dclxxix

Simple rule dclxxx

Freeform SQL dclxxx

Simple rule dclxxxi

Example #1 dclxxxi

Example #2 dclxxxiv

Freeform SQL dclxxxviii

Individual statement dclxxxviii

Join statements dclxxxix

Rule types dcxci

Syntax dcxcii

Collibra DQ Architecture dcccxxviii

Collibra DQ Admin dcccxliv

Collibra DQ Security Configuration dccclxv

Collibra DQ Legal dcccxciii

iv

Introducing Collibra Data Quality

Automatic data quality without the need for rules. Collibra Data Quality & Observability
provides a fast and elegant way to manage your datasets by learning through observation
rather than human input.

Collibra DQ applies the latest advancements in data science and machine learning to the
problem of data quality, surfacing data issues in minutes instead of months.

v

Getting Started with Collibra DQ

A Pluggable and Complete Data Quality
Framework
If you are adding data quality to your data pipelines the below visual illustrates the number
of products and pieces you will need consider to successfully complete your overall
governance program. The Collibra DQ suite allows you to use either native Collibra DQ
components or integrate the 3rd party components of your choice. By using our best
practice guide and framework you can easily complete the DQ lifecycle.

vi

Data Pipelines that Tie into the DQ Framework
Collibra DQ offers a coding framework for developers or ETL designers that want to built
real-time data quality into their broader data pipeline. This provides the same algos and
DQ checks as the Collibra DQ UI Wizard but with direct access into your code points.
Consistency is a must to have a program you trust.

Getting Started

Standard The install script for a standard install.

All software and data resides in your VPC.

Install time: 7 minutes

Click
Here

Containerized Uses Helm Charts and K8s. For users who want WebApp and Compute
components in containers. Compute pools are supported.

All software and data resides in your VPC.

Install time: 12 minutes

Click
Here

Edge Provides a cloud application in Collibra Cloud but an Edge component on your
premise to safeguard your data.

Customer data and connection credentials residste in your VPC. Application
data is stored on Collibra Cloud.

Install time: 1 hour

Click
Here

vii

Marketplace The Google Marketplace option is a simple, 1-click image installation.
This is the quickest option for single-server install in GCP.
All software and data resides in your VPC.

Install time: 5 minutes

Click
Here

Google Cloud
Deployment Man-
ager

Hooks into GCP cloud services like GKE for ephemeral compute and
RDS for cloud database.

All software and data resides in your VPC.

Coming
soon

Marketplace The Amazon Marketplace option is a simple, 1-click image install-
ation. This is the quickest option for single-server install in AWS
Cloud.
All software and data resides in your VPC.
Install time: 5 minutes

Click
Here

CloudFormation Hooks into AWS cloud services like EKS for ephemeral compute and RDS
for cloud database.
All software and data resides in your VPC.

Install time: 12 minutes

Click
Here

Please see the Agreements for the terms and conditions on Collibra's evaluation offerings.

Tip For more information, please contact info@collibra.com

viii

ix

Release Notes

Important
Disclaimer - Failure to upgrade to the most recent release of the Collibra Service
may adversely impact the security, reliability, availability, integrity, performance or
support (including Collibra’s ability to meet its service levels) of the Service. Collibra
hereby disclaims all liability, express or implied, for any reduction in the security,
reliability, availability, integrity, performance or support of the Service to the extent
the foregoing would have been avoided had you allowed Collibra to implement the
most current release of the Service when scheduled by Collibra. Further, to the
extent your failure to upgrade the Service impacts the security, reliability,
availability, integrity or performance of the Service for other customers or users of
the Service, Collibra may suspend your access to the Service until you have
upgraded to the most recent release..

2023.01

New Features

Admin

l Admin users can now view and modify the DQ license key and license name from
the new License page.

Platform

l You can now deploy new Helm charts on new and existing releases of Collibra DQ
Cloud Native deployments without encountering character size limitations.

Chapter 2

Chapter 2

Reports

l Four new reports are now available by default:
o The Missing Jobs Report shows jobs that were expected to run but didn't run
as scheduled.

o The Hardware Usage Report shows the datasets that required the most total
cores to run and more general hardware usage statistics.

o The Observability Score Roll-Up Report shows the aggregated scores of all
AdaptiveRules (all datasets + all columns) and averages passing and breaking
for all columns over 30 days.

o The Rules Passing Fraction Roll-Up Report shows all the passing rows and
total rows scanned for user-defined rules aggregated by dimensions over the
past 30 days.

Enhancements

Rules

l The Export LinkIds button is now displayed within the Rules tab of the Findings page.
This button was previously only available under the Breaks tab on the Rule Builder
page.

o You can enable LinkIDs from the Scope workflow on the Explorer page to
export LinkIds for rule break records.

l The Copy Rules API (/v3/rules/copy) now has the following enhancements:
o Copied rules now copy to a new dataset correctly regardless of their rule type.
o Security logs for every rule copy request are now available for admin users to
review in the Audit Trail section of the Admin Console.

Explorer

l When creating a DQ Job for a table with no rows, the columns are now shown in the
Scope section.

x

https://productresources.collibra.com/docs/collibra/latest/Content/DataQuality/Reports/Missing Jobs Report.htm
https://productresources.collibra.com/docs/collibra/latest/Content/DataQuality/Reports/Hardware Usage Report.htm
https://productresources.collibra.com/docs/collibra/latest/Content/DataQuality/Reports/Observability Score Roll-Up Report .htm
https://productresources.collibra.com/docs/collibra/latest/Content/DataQuality/Reports/Rules Passing Fraction Roll-Up Report.htm

Platform

l A new property, LOCAL_REGISTRATION_ENABLED, in the owl-env.sh script and K8s
config map is now available to display or hide the registration link on the Sign in page
for local users.

o For owl-env.sh:
n The command export LOCAL_REGISTRATION_ENABLED=true allows
the registration link to display on the Sign in page.

Note Because the registration link is visible by default, this
property is also set to true by default.

n The command export LOCAL_REGISTRATION_ENABLED=false hides
the registration link from the Sign in page.

o For K8s:
n The configuration LOCAL_REGISTRATION_ENABLED:"true" allows the
registration link to display on the Sign in page.

Note Because the registration link is visible by default, this
property is also set to true by default.

n The configuration LOCAL_REGISTRATION_ENABLED:"false" hides the
registration link from the Sign in page.

Connections

l SPARK322 and SPARK320 are now shipped with a Spark JDBC connection pro-
vider for Standalone deployments.

l When you bring Collibra DQ jars into Databricks, you are now required to set the
property spark.sql.-
sources.disabledJdbcConnProviderList='basic,oracle,mssql' at either
the Spark Cluster-level or the SparkSession-level before using Collibra DQ's set of
functions for Spark profiles 3.2.1 and onwards.

Chapter 2

xi

Chapter 2

Admin

l You can now sort the Date column on the Usage page. Dates now appear in des-
cending order by default.

Fixes

Rules

l Fixed an issue that prevented the descriptions of saved rules from being edited when
the rule name contained a greater than symbol after a single quote. (ticket #100114)

l Fixed an issue with rule builder validation that caused a rule syntax exception mes-
sage to throw. (tickets #99735, 101165)

l Fixed an issue with rules with complex conditions (multiple rlike strings) for Freeform
SQL rules that resulted in an exception message. (ticket #100116)

DQ Job

l Fixed an issue where behavioral observations made for a dataset did not subtract
points from the data quality score. (ticket #98539)

Alerts

l Fixed an issue that limited the ability to edit or delete alerts with names containing
apostrophes from the UI. (ticket #98864)

Outliers

l Fixed an issue where recalibrating an outlier would bulk apply downtrain labeling to
it. (ticket #100085)

xii

Reports

l Fixed an issue where Completeness Reports were not generated when the Custom
Range filter was used. (ticket #99786)

DQ Connector

l Fixed an issue with the Collibra DQ - Collibra Data Intelligence Cloud integration that
prevented Rules and Charts from importing. (ticket #104872)

Admin

l Fixed an issue with time-based data retention when using linkId that caused too
many break records to store in the metastore. (ticket #99072, 102900)

Known Limitations

Rules

l The new Export LinkIds button generates a CSV file limited to viewing only via a
spreadsheet program, like Excel.

o A workaround is to Save/Export the CSV file from the spreadsheet program in
order to allow viewing in general text editors.

DQ Job

l Remote file jobs with headers containing white spaces fail with a requirement failed
exception message.

o A workaround is to edit the DQ Job command line in the Run CMD tab and
place single quotes around the column name in -q and double quotes around
the entire -header flag.

Chapter 2

xiii

Chapter 2

DQ Security Metrics

2022.12

New Features

Explorer

l The types of queries that can run from the View Data page are now restricted to
read-only queries only.

xiv

APIs

l You can now copy SQLG- and SQLF-type rules from an existing dataset to another
existing dataset with the /v3/rules/copy API call.

Connections

l You can now create a MongoDB connection with a CDATA driver.

Snowflake Pushdown (beta)

l You can now detect outliers when running a Pushdown job.

Enhancements

DQ Job

l All tables on the Jobs page now include pagination, dropdown filters, and the ability
to export.

Rules

l Rules associated with datasets with zero rows now execute successfully.
l Stat rule evaluation on secondary datasets is now supported for SQLF rules.

Profile

l You can now view run execution details and stale data by toggling the box chart on
the findings page.

Chapter 2

xv

Chapter 2

APIs

l The getRecords notebook API function is now updated and the getGeneric query is
renamed getDupesPreview.

l You can now obtain rules from a dataset and reassign them to another dataset with
the following Databricks notebook API functions:

o def addRules(rules: List[Rule], dataset: String): Owl
o def getRulesDfByDataset(dataset: String): DataFrame
o def getRulesByDataset(dataset: String): List[Rule]
o def getRuleNamesByDataset(dataset: String): DataFrame

Platform

l TechPreview (TP) labels are now removed from the UI.

Connections

Warning As of September 2022, Databricks JDBC driver version 2.6.27 is
packaged as part of both standalone and Kubernetes download packages. The
Databricks Simba driver (version 2.6.22) is no longer packaged for Kubernetes. As
a result of this change, the Databricks connection template has changed, and any
existing connection using the old driver (2.6.22) must be updated. For more
information on updating your drivers, refer to Standalone Upgrade.

l The Databricks SQL endpoint is now supported for JDBC connections.
l The following flag is now added to all Databricks JDBC connection parameters:
UserAgentEntry = collibra-dq

o To set the user agent for JDBC in Java, append "UserAgentEntry" and "<isv-
name+product-name>", as shown in the following example:
com.simba.spark.jdbc.DataSource ds = new com.simba.s-

park.jdbc.DataSource(); ds.setCustomProperty("User-

AgentEntry", "<isv-name+product-name>");

xvi

o To set the user agent for JDBC as part of the JDBC URI, append ";User-
AgentEntry=<isv-name+product-name>" to the connection URL that starts with
"jdbc:spark://".

l 3DES and DES encryption cipher for Kerberos authentication types are no longer
supported because of recent Red Hat OS (RHEL 8.7) cipher deprecation.

Fixes

Explorer

l Fixed an issue with the -rdEnd variable in the command line the variable in the
query to be improperly escaped. (ticket #98702)

Profile

l Fixed an issue where the confidence score (Conf) displayed values greater than the
threshold of 100. (ticket #99636)

l Fixed an issue where HTML in data fields was rendered on the Data Preview section
of the findings page. (ticket #97883)

l Fixed an issue with Data Preview that resulted in an OOM error when the data_pre-
view table contained a large number of records.

Rules

l Fixed an issue where values on the Rules tab did not correctly display in scientific
notation format. (ticket #89738)

l Fixed an issue when using a secondary dataset that prevented@dataset for primary
dataset from being supported.

Scorecards

l Profile is now removed from the DQ Scorecards submenu.

Chapter 2

xvii

Chapter 2

Security

l Fixed an issue with LDAP external groups to role mappings when there was no fully
qualified path for the LDAP group that caused malformed API calls and did not save
properly.

l Fixed an issue with the Dataset Security feature. (ticket #100317)
o When the following security settings are configured, the system fully restricts
access to the findings page for admin users:

n Dataset security is turned on.
n Default owner access is unchecked.
n Dataset belongs to no roles or no roles to which the user has access.

APIs

l Fixed an issue with the /v2/gethints endpoint that prevented the Hints table from dis-
playing correctly on the findings page. (ticket #98941)

l Fixed an issue with the getRecords and getGenerics APIs that prevented any inform-
ation from being returned. (ticket #98820)

Alerts

l Fixed an issue with the SQL on the Alert Notifications page that prevented data from
appearing in the DataTables error message.

Agent

l Fixed an issue with GKP deployments where job scans failed because the driver pod
could not create connections to the metastore. (ticket #102175)

Validate Source

l Fixed an issue where the Source to Target scorecard incorrectly displayed a mis-
match because of an unexpected column type checked during a schema order
check. (ticket #98300)

xviii

Connections

l Resolved connection issues in certain cases by upgrading the Athena driver to ver-
sion 2.0.33. (ticket #100340)

l Fixed an issue where HDFS connections could not rerun a job successfully because
certain parameters were automatically appended to the Free Form (Appended) field
of the Agent configuration. (ticket #95810)

l Fixed an issue with Dremio connection timeouts on Kubernetes deployments. (ticket
#101221)

o To prevent Dremio connection issues, set the following value in the Free Form
(Appended) field of the Agent configuration:
-conf spark.driver.extraJavaOptions=-Dcd-

jd.io.netty.tryReflectionSetAccessible=true

Known Limitations

Rules

l Freeform rules with fully qualified column names are currently unsupported when
they use the following syntax:
select <column name> FROM @<dataset name> WHERE @<dataset

name>.<column name> condition
o A workaround to this limitation is to use aliasing instead.

APIs

l When using the new /v3/rules/copy API, the copied rule automatically appends
"copied" to the rule name. After copying a rule, you may need to manually update the
rule name.

o If the copied rule is performed on a target dataset that does not conform to the
compatible columns, then you need to manually update the rule to ensure the
columns are compatible across datasets.

o Dataset Security is not enforced when using the /v3/rules/copy API.

Chapter 2

xix

Chapter 2

DQ Security Metrics

2022.11

Warning
The MS SQL driver that comes with JDK11 standalone packages does not currently
work in the JDK11 environment. MSSQL requires a separate JAR for JDK11.
Please contact your Customer Success Manager for the compatible driver.

Dremio is not currently supported for JDK11 standalone packages. If you plan to run
JDK11, add -Dcdjd.io.netty.tryReflectionSetAccessible=true to
owlmanage.sh as a JVM option for your Web and Spark instances. Please contact

xx

your Customer Success Manager for assistance.

Dremio jobs currently fail on both K8s and standalone JDK11 deployments. Add the
following config to the Free Form (Appended) field of the Agent Configuration
template: -conf spark.driver.extraJavaOptions=-
Dcdjd.io.netty.tryReflectionSetAccessible=true.

As of October 18, 2022, all images for the 2022.10 release have a Critical CVE
(CVE-2022-42889). If you picked up the 2022.10 release before October 18, 2022,
there should be no issue with your scans. If issues persist, please contact your
Customer Success Manager for a new build.

Note
After you complete an upgrade or a new installation of Collibra DQ, you are now
required to enter a license name by following either a one-time prompt on the login
page, entering the LICENSE_NAME environment variable in the environment variable
file (owl-env.sh), or by entering the global.configMap.data.license_name
Helm chart variable. Your license name is the value after YOUR NAME IS = found in
the license provision email sent to you by Collibra. Customers who do not have this
information due to being issued a license before March 2022 should input license
information following the format below.

For a single instance: <yourcompanyname>
For multiple instances: <yourcompanyname>-dev, <yourcompanyname>-test,
<yourcompanyname>-prod
No spaces or special characters are permitted except for hyphens -.

New Features

Platform

l The following pages now support the new React MUI:
o Scorecards
o List View
o Assignments
o Pulse View
o Alerts

Chapter 2

xxi

Chapter 2

Note React is turned off by default for the 2022.11 release. If you would like
to try the new React pages, you can toggle it on from the Admin Console, or
contact your Customer Success Manager for assistance.

DQ Job

l You can now terminate jobs from the Jobs page if they are in progress, incorrectly
submitted, or stuck in Staged status. When you terminate a job, two alerts are gen-
erated.

o Jobs in the Spark UI display Finished statuses, even though they are ter-
minated from the DQ UI.

Alerts

l You can now generate alerts for the following stale data stat rules:
o $daysWithoutData
o $runsWithoutData
o $daysSinceLastRun

l You can now generate alerts for jobs stuck in Staged status for more than one hour.

Admin

l You can now configure LDAP for user access in multi-tenant environments.

Connections

l You can now use key-pair authentication for Snowflake connections.
o When you append to the Connection URL string, your entry must be comma
separated.

o When you manually modify the Driver Properties field, your entry must be semi-
colon separated.

l CDATA connections are now supported in standalone deployments.
o CDATA drivers are now included in the release package.

xxii

Cloud Storage

l Azure Blob Storage is now a supported target storage system.

Snowflake Pushdown (beta)

l Schema Change monitoring from the AdaptiveRules tab is now enabled by default.
o Schema is now separated from basic profiling.

l The new DatasetDefDTO API now returns Pushdown information.
l Dataset security checks are now implemented for Pushdown jobs.

Enhancements

Explorer

l The Job Estimate dialogue now has improved guidance on executors and cores. The
Job Estimate now estimates when a max core, max executor, and max memory is
reached.

DQ Job

l Job schedule time zone is now a read-only field and can no longer be configured.
Existing scheduled jobs reflect their current settings, but all other scheduled jobs are
now based on the time zone of the DQ server (UTC). (ticket #88797, 89736, 92611,
95231)

Dupes

l A new warning message now displays when increasing the duplicate check limit
from the UI. (ticket #95604)

Chapter 2

xxiii

Chapter 2

Security

l Kubernetes service accounts associated with AWS IAM pod roles for controlling
access to AWS services for cloud native DQ deployments on AWS EKS are now sup-
ported.

l When DATASET SECURITY is enabled, DATASET ACCESS is now required to
edit, map, or retrieve datasets or business units. (ticket #92934)

Fixes

Rules

l Fixed an issue that prevented freeform rules containing double backslashes from
saving. (ticket #96636, 96640)

l Fixed an issue that caused rules containing open brackets ([) to display break
records incorrectly. (ticket #94399)

l Fixed an issue that caused rules containing regex to throw out of range exceptions.
(ticket #98435)

DQ Job

l Fixed an issue where run time was not displayed on the findings page because run_
id column type in the metastore did not include time zone. (ticket #96050)

l Fixed an issue that caused Parquet files to fail during the LOAD activity. (ticket
#96191)

o Other NFS file types, including ORC, CSV, and Avro, also run successfully.

Alerts

l Fixed an issue when saving batch names that used spaces between delimiters,
which caused an invalid error to occur. (ticket #97028)

xxiv

Validate Source

l The Add Column Names feature is now removed from the Source tab. (ticket
#96066)

o Instead, use the query to edit/limit columns or use Update Scope.
l Fixed an issue where disabling source check on a cloned dataset resulted in an
error. You can now disable source validation on cloned datasets. (ticket #97795)

Dupes

l The Advanced Filter is now hidden from the Dupes tab. (ticket #96065)

Shapes

l Fixed an issue when editing a dataset that reverted the Shape Detection setting (Off,
Auto, or Manual) applied when it was created. (ticket #95471, 95473)

Schema

l Fixed an issue with schema detection on files where schema detection was per-
formed on all columns when a subset of columns was selected. (ticket #92476)

o Use theheadercheckoff flag when it is necessary to see only when columns
are added or dropped.

l Fixed an issue where schema changes were not correctly identified and updated.
(ticket #96013)

Behavior

l Fixed an issue with behavior lookback(-bhlb) that caused Row Count changes to
be misrepresented. (ticket #94840)

Chapter 2

xxv

Chapter 2

Connections

l Azure Blob connections in standalone environments require the following jars to be
added to the $SPARK_HOME/jars folder:

o hadoop-azure-3.2.0.jar
o wildfly-openssl-1.1.3.Final.jar

API

l Fixed an issue with the DB import process to ensure JobSchedule records import
without error. (ticket #98405)

Known Limitations

DQ Job

l Job termination is not supported for jobs in Unknown status.

Validate Source

l Cloning and saving, enabling, or disabling the source tab is associated with the ori-
ginal dataset name and fails on the screen when an update is made, but does not
affect the actual job run.

Connections

l When adding driver properties using the +Add Property option for Snowflake con-
nections, semicolons are incorrectly appended to key values. Instead, use comma
format to separate key values.

xxvi

DQ Security Metrics

2022.10

New Features

Warning For the Collibra Data Quality 2022.10 release, all Docker images run on
JDK11. Standalone packages contain JDK8 and JDK11 options. If you are an
existing customer who requires JDK11, please upgrade your runtime before
upgrading to 2022.10. Most Hadoop environment versions (EMR/HDP/CDH) still
run on JDK8, so customers using these environments can upgrade with the JDK8

Chapter 2

xxvii

Chapter 2

packages. If you prefer to upgrade to JDK11, you must follow the documentation of
your respective Hadoop environment to upgrade to JDK11 before deploying the
2022.10 release.

The MS SQL driver that comes with JDK11 standalone packages does not currently
work in the JDK11 environment. MSSQL requires a separate JAR for JDK11.
Please contact your Customer Success Manager for the compatible driver.

Dremio is not currently supported for JDK11 standalone packages. If you plan to run
JDK11, add -Dcdjd.io.netty.tryReflectionSetAccessible=true to
owlmanage.sh as a JVM option for your Web and Spark instances. Please contact
your Customer Success Manager for assistance.

As of October 18, 2022, all images for the 2022.10 release have a Critical CVE
(CVE-2022-42889). If you picked up the 2022.10 release before October 18, 2022,
there should be no issue with your scans. If issues persist, please contact your
Customer Success Manager for a new build.

Rules

l You can now define a rule to detect the number of days a job runs without data by
using $daysWithoutData.

l You can now define a rule to detect the number of days a job runs with 0 rows by
using $runsWithoutData.

l You can now define a rule to detect the number of days since a job last ran by using
$daysSinceLastRun.

Profile

l You can now use a string length feature by toggling the Profile String Length check-
box when you create a data set.

o When Profile String Length is checked, the min/max length of a string column
is saved to table dataset_field

xxviii

Validate Source

l You can now write rules against a loaded source data frame when -post-
clearcache is configured in the agent.

Note The DQ UI will be converted to the React MUI framework with the 2022.11
release. Prior to the 2022.11 release, you can turn the React flag on, but note that
some features may be temporarily limited.

Enhancements

DQ Job

l Start Time and Update Time are now based on the server time zone of the DQWeb
App.

Scheduler

l The Job Schedule page now has pagination.

Scorecards

l From Pulse View, you can now view missing runs, runs with 0 rows, and runs with
failed scores.

Admin/Catalog

l Connection details are now masked when non-admin users attempt to view or
modify database connection details from the Catalog page. Only users with role_
admin or role_connection_manager have the ability to view connection details on
this page. (ticket #94430)

Chapter 2

xxix

Chapter 2

API

l The /v2/getRunIdDetailsByDataset endpoint now provides the following:
o The RunIDs for a given data set.
o All completed DQ Jobs for a given data set.

Snowflake Pushdown (beta)

l You can now detect shapes that do not conform to a data field. Pushdown jobs scan
all columns for shapes by default.

l You can now view Histogram and Data Preview details for the Profile activity.

Connections

l The Snowflake JDBC driver is now updated to 3.13.14.

Fixes

Rules

l Fixed an issue with the Rule Validator that resulted in missing table errors. The Val-
idator now correctly detects columns. (ticket #93430)

DQ Job

l Fixed an issue that caused queries with joins to fail on the load activity when Full Pro-
file Pushdown was enabled. Pushdown profiling now supports SQL joins. (ticket
#92409)

l Fixed an issue that caused jobs to fail at the load activity when using the CTE query.
Please note that CTE support is currently limited to Postgres connections. (ticket
#88287, 89150)

l Fixed an issue that caused inconsistencies between the time zones represented in
the Start Time and Update Time columns.

xxx

Agent

l Fixed the loadBalancerSourceRanges for web and spark_history services in EKS
environments. (ticket #95398)

o The helm property global.ingress.* has been removed to separate the
config for web and spark_history. Please update the property as follows:__
global.web.ingress.*``global.spark_history.ingress.*

l Added support to specify the inbound CIDRs for the Ingress using the property
.global.web.service.loadBalancerSourceRanges. (ticket #95398)

o Though Ingress is supported as part of Helm charts, we recommend attaching
your own Ingress to the deployment if you need further customization.

o This requires a new Helm chart.
l Fixed an issue that caused Livy file estimates to fail for GCS on K8s deployments.
l Fixed an issue that caused jobs to fail for GCS on K8s deployments.

Validate Source

l The Add Column Names feature is scheduled for removal with the upcoming
2022.11 release. (ticket #96066)

o This was a previous functionality before being able to limit the query directly
(srcq) and Update Scope was added.

o Use the query to edit/limit columns and also use Update Scope.
l Fixed an issue that caused the incorrect message to display for [VALUE_
THRESHOLD] when validate source was specified for a matched case. (ticket
#94435)

Dupes

l The Advanced Filter is scheduled for removal from the Dupes page with the upcom-
ing 2022.11 release. (ticket #96065)

Chapter 2

xxxi

Chapter 2

Explorer

l Fixed an issue that caused BigQuery connections to incorrectly update the library (-
lib) path when a subset of columns was selected. (ticket #96768)

Scheduler

l Fixed an issue that prevented the scheduler from running certain scheduled jobs in
multi-tenancy setups. Email server information is now captured from the correct ten-
ant. (ticket #92898)

Known Limitations

Rules

l When a data set has 0 rows returned, stat rules applied to the data set are not
executed. While a full fix is planned for a future release, this limitation is only partially
fixed as of 2022.10.

DQ Job

l CTE query support is currently limited to Postgres connections. DB2 and MSSQL are
currently unsupported.

Catalog

l When using the new bulk actions feature, updates to your job are not immediately vis-
ible in the UI. Once you apply a rule, run a DQ Job against that data set. From the
Rules tab, a row with the newly applied rule is visible.

xxxii

Snowflake Pushdown (beta)

l Freeform (SQLF) rules cannot use a data set name but instead must use @dataset
because Snowflake does not explicitly understand data set names.

l When using the SQL Query workflow, selecting a subset of columns in your SQL
query must be enclosed in double quotes to prevent the job from running infinitely
and without failing.

l Min/Max precision and scale are only calculated for double data types. All other
data types are currently out of scope.

DQ Security Metrics

Chapter 2

xxxiii

Chapter 2

2022.09

Enhancements

Rules

l The Conditions column on the Rules tab now displays SQLG and SQLF rule defin-
itions on hover.

DQ Job

l The Jobs chart now shows a dotted gray line to represent jobs in Submitted status.
l The Jobs chart now supports an hourly view option.
l When you run a Pushdown Job that has a data set that returns 0 rows, an unclear
message displays.

Schema

l From the Config tab in Explorer, a Check Header checkbox under DQ Job is now
available for when column names contain special characters. The Check Header
checkbox is checked by default.

o When checked, schema findings do not display when detected.
o When unchecked, schema findings display when detected.

Behavior

l Mean values are now rounded on the Findings page.

Explorer

l SOH delimiters for files are now supported.
l The Only checkbox on all Build Layer tabs is now removed.
l The Profile activity is now always enabled and no longer has an on/off switch.

xxxiv

Alerts

l Only one email per alert is now sent when alerts are set up for a scheduled job.
l You can now check the logs to see when an alert does not send in order to resend
the email.

Scheduler

l The findings page now displays a green indicator next to the Schedule icon when
you schedule a job to run automatically. If Scheduler is inactive, a red indicator dis-
plays.

API

l The v2/gethoot API now properly returns rule dimension information for data sets.
(ticket #89973)

Connections

l The Databricks connection template has changed, due to an upgrade of the driver.
Any existing connection that uses the old driver must be updated. Refer to the new
template. (ticket #19950)

l The drivers for Athena, BigQuery, MongoDB, GCS, Hive/Impala were also upgraded
but no connection change is required.

Spark

l The 2023.02 release uses Spark 3.2.2.

Note We recommend using Spark 3.x for standalone installs/upgrades.

Chapter 2

xxxv

Chapter 2

Fixes

Explorer

l Fixed an issue that prevented the Job Estimator from properly displaying row estim-
ates when the run date was modified during a new job run. (ticket #90860)

l Fixed an issue that prevented DQ jobs created using NFS connection types from dis-
playing under the Remote File Connections dropdown. (ticket #92479)

l Fixed an issue that caused the file type parser to throw an error message when the
default comma delimiter was not detected. The parser now detects a file's delimiter
and updates the delimiter type in the UI automatically. (ticket #89489, 92480)

Files

l The error message for Failed Merging Schema now has extra logging to clarify the
cause of failed schema merges for both Livy sessions and non-Livy paths. (ticket
#92694)

Security

l Fixed an issue with the v2/getcatalogtableshasrulesfromcxn API that triggered a 403
status code when Dataset Security was enabled. (ticket #93298, 94258)

Agent

l Fixed an issue that caused the Agent Check to no longer attempt check-ins to the
metastore on K8s deployments, which resulted in red (unhealthy) status. (ticket
#92055, 92963)

l Fixed an issue that prevented concurrent users from properly running Livy sessions.
(ticket #92963, 90432)

xxxvi

Known Limitations

Rules

l The Rule Builder page becomes unusable if the user creates, validates, saves a new
rule and then re-edits.

o The workaround for this limitation is to do a full page refresh.

l When a user attempts to validate a rule that contains a stat, an exception error is
returned.

Security

l The Assignments Queue feature is only available for local users. Support for extern-
ally connected users, such as SAML and AD connector, is not currently available.

Alerts

l When alert recipient email addresses are separated by semicolons ;, alerts emails
are not sent to the intended recipients.

o A workaround for this limitation is to separate alert recipient email addresses
with commas , instead of semicolons.

Snowflake Pushdown

l When a Job is run, which has a data set that returns 0 rows, an unclear message
displays.

l When a native rule is created that contains an embedded stat, its calculated value
will not display on the Job results page.

l Data Set security is not supported.

l Disabling autometrics will not take effect, therefore, all autometrics are executed.

Chapter 2

xxxvii

Chapter 2

l Creating a DQ job using only "SQL Query" workflow doesn't allow you to set the
rundate value.

DQ Security Metrics

xxxviii

2022.08

New Features

Rules

l You can now write SQLG-type Stat Rules on mean.

Enhancements

Connections

l You can now authenticate Oracle JDBC connections with Kerberos TGT, Keytab,
and Password. (tickets #75267, 76030)

l You can now authenticate SQL Server JDBC connections with Kerberos Keytab in
addition to basic authentication.

Rules

l Rule Summary enhancements:
o You can now select different time periods for analysis.
o You can now view charts from three different pages, including Rule Detail Sum-
mary, Rule Breaks, and Rule Dimension Summary.

Security

l Vulnerabilities identified by Jfrog
o Vulns 0, criticals 0, high severity 7
o The majority of the current mediums are due to merging the dq-streaming mod-
ule into core.

o For a visual readout, see the DQ Security Metrics section below.

Chapter 2

xxxix

Chapter 2

Agent

l You can now optionally configure individual time zones of DQ Job, Web, and Agent.
You should only use this configuration when your instance and containers run in dif-
ferent system time zones. (tickets #87024, 87155)

Behavior

l The Behavior tab now has a new column, Delta Percent Change (Δ % Change).
l You can now hover over new tooltips in the following columns:

o Baseline
o %Change
o Δ% Change
o Zscore
o Score

Outliers

l Outlier checks are now optimized to skip in certain circumstances. Outlier checks are
only skipped when the history load of a specified date column is empty.

l You can now update and modify record flags from the command line with -rc, -
rcKeys, -rcDateCol, and -rcTbin.

API

l The v2/gethoot API now properly returns rule dimension information for data sets.
l The v3/jobs/run API now has improvements to the 400 Bad Request error messages
in specific circumstances.

Reports

l The PDF option is now removed from the Data Set Findings page. To print dynamic
column tables, use CSV or Excel options instead. (ticket #89739)

xl

DQ Connector

l The version of Collibra Integration Library is now updated to 2.4.12.

Fixes

Connections

l The new GCS jars are required to use GCS spark-history-server. (ticket #90623)

DQ Job

l Fixed an issue that caused jobs using .TXT files to incorrectly render custom column
names. (ticket #81808)

o Files with .TXT extensions are now treated as delimited files. Files with .TXT
extensions that are not delimited files should use their respective file type from
the file type dropdown.

l Fixed an issue with deployments on K8s where jobs failed when the volume name
exceeded 63 characters. (ticket #85372)

Agent

l Fixed an issue that caused the v2/updateagent API to fail when numCores was
empty. (tickets #89737, 92404, 92680)

o The numCores field is no longer a required field.

Validate Source

l Fixed an issue that caused validate source jobs to fail when the pkey was mapped to
different column names. (ticket #88778)

Chapter 2

xli

Chapter 2

Rules

l When using Freeform SQL rules with wild-card operators, rules again correctly pass
validation. (ticket #89644)

l Fixed an issue with regex rules that use the characters), , , and ; in the rlike, which
caused DQ to append spaces to those characters and prevented the regex from oper-
ating correctly. (tickets #89417, 92958)

l Fixed an issue that caused rules with column values containing parentheses () to
break due to the addition of padding before and after closing parentheses. (ticket
#85176)

l Fixed an issue that caused rules with special characters such as@ to display incor-
rectly on the Rules page, Conditions tab, and when exported to Excel.

l Fixed an issue that prevented data sets with attached rules and roles from being
renamed. (tickets #85731, 92059, 94315)

Profile

l Fixed an issue where certain results in TopN Values and Data Preview displayed in
scientific notation. Scientific notation is now removed from the display. (tickets
#82163, 89738)

Explorer

l Fixed an issue that allowed CLOB data types to be visible in the Drag Columns to
Target map in the Source tab. (ticket #86902)

API

l The REST API endpoint v2/updateRoleDatasets again correctly saves roles to data
sets.

xlii

Known Limitations

Rules

l The Findings page displays results from computational stat rules on mean as a
single-quote string. For example, '573523.87' > 6763

l Column-level sorting for the Rule Summary feature is not currently available.

Admin

l When adding a Sensitive Label or a Data Category, the Edit and Update functions do
not display the selected record. To properly display the record, you must first refresh
the page before editing or updating.

Session Activity

l While the application UI is being redesigned, it is possible that when the application
times out on the legacy side of the application, you might not be able to see it on the
new React MUI side. This can happen when you have the DQ application open on
multiple tabs.

o We are not currently tracking session timeout from the legacy UI to React.

Beta features

DQ Job

l Collibra is proud to launch a brand new feature, Snowflake Pushdown. Snowflake
Pushdown allows for even faster processing and removes the need to set up a sep-
arate Spark compute platform to run Collibra Data Quality. Snowflake Pushdown is a
private beta feature only available by request. Since this is a beta feature, some lim-
itations are expected as we continue to improve its functionality. Contact your CSM
to learn more about this feature.

Chapter 2

xliii

Chapter 2

DQ Security Metrics

Warning There is a critical CVE CVE-2016-1000027 that shows up in the image
scan due to Spring version. This is a false positive and should be added to the
exception list of the customer scan tools. We don’t use
HttpInvokerServiceExporter anywhere in the application and are not impacted
by it.

l There is no fix version available for it from Spring. More details are available at Sona-
type vulnerability CVE-2016-1000027 in Spring-web project · Issue #24434 · spring-
projects/spring-framework

xliv

https://github.com/spring-projects/spring-framework/issues/24434
https://github.com/spring-projects/spring-framework/issues/24434
https://github.com/spring-projects/spring-framework/issues/24434

2022.07

Note Standalone packages for the 2022.07 release have a version naming
convention of -RC. This will revert back to the standard naming convention with the
2022.08 release, and has no impact on the safety or stability of standalone
packages. {% endhint %}

Fixes / Enhancements

l DQ Job
o Fixed an issue that prevented data from appearing in the Source tab when
Source Observation RunID was clicked from the Assignments page.

o Fixed an issue that caused Annotations with special characters to be truncated
in the Labels tab.

o Fixed an issue that caused the Column (name) column of the Rules tab to dis-
play incorrectly when Run Discovery was used.

o Fixed an issue where the Retrain button on the Record tab was disabled.
o You can again invalidate observations with single quotes ' from the Shapes
tab.

o The Hints tab now displays any available data.
o You can no longer change agents from the Scheduler modal.

l Rules
o SQLF is now supported for Generic rules.
o When running a custom rule through Rule Discovery, the column names Repo
and Column again display correctly.

l Alerts
o You can now send emails using unauthenticated SMTP servers.

l Security
o Vulnerabilities identified by Jfrog

n Vulns 0, criticals 0, high severity 7
n For a visual readout, see the DQ Security Metrics section below.

o Fixed an issue that allowed jobs to be run from the command line regardless of
connection permissions.

Chapter 2

xlv

Chapter 2

n When Connection Security is enabled, lock the SQL Editor to prevent
unauthorized access to other connections. (#87916)

o Fixed an issue that allowed View Only users to access some profile results and
export the data to a CSV file.

n Added an authorization check for data set access to the profile export fea-
ture, which allows only users with data set access to export the profile.
(#87720)

o Backslashes \ are no longer supported characters for AD usernames without
disabling XSS for the /v2/updateadsecurityconfiguration API. (#88499)

o Fixed an issue that prevented navigation back to the log in page when tenant
access was denied. (#89024)

l Profile
o From the Labels tab, backslashes are now stripped from annotations when
they are used for separation within strings.

l Admin
o From Audit Trail, when administrators modify roles mapped to data sets or data
sets mapped to roles, changes are now documented automatically, and display
original and updated values.

o The Agent Group (H/A) and its associated endpoints are now deprecated.
o From Usage, you can now access a table and tiles reflective of your monthly
usage metrics.

o Salesforce account ID can now be configured for use with Pendo logs.
o *Tech Preview* [TP] ServiceNow integration

n You can now assign incidents (validate action) to ServiceNow groups
and users with the following fields included in the same request: caller_
id, description, short_description, cmdb_ci.

l Explorer
o Fixed an issue with date range on Oracle connections, which caused end date
to change to start date when Transform was selected.

o The Job Estimate modal again displays the correct number of rows for Sybase
connections.

o Fixed an issue with Source to Target where double quotes " were removed
from the source file in database to file targets.

l Scorecards
o Enhanced the layout of the Assignment Queues page.

xlvi

l API
o v2/getallscheduledjobs is now available as an enhancement of the original,
v2getscheduledjobs.

n A UI integration is planned for a future release.
l Schedule

o Added an Active column to the scheduler export.
n The RunJob column was removed. (#88799)

l Reporting
o Fixed an issue that created misalignment of column headers in PDF exports.
(#89739)

Known Limitations

l Rules
o To use the new SQLF feature for Generic rules, you must manually update the
Generic rule type from SQLG to SQLF.

n A UI feature for this is planned for a future release.
o Stat rules such as $rowCount do not work for secondary data sets or previous
runId of the same data set via @t1 syntax.

n To work around this limitation, run a subquery to select count(*) from the
secondary data set or the previous runId.

l Explorer
o Drill-ins and jobs on Sybase connections run successfully, but connections to
Sybase with encrypted passwords are currently unsupported.

l Files
o When using CSV files, you cannot use a comma , in the name.

l Admin
o *Tech Preview* [TP] ServiceNow integration

n Special characters !@#$%^&*()in the description are not supported and
will not persist to the ServiceNow assignment queue at this time.

n Empty or invalid ServiceNow group name does not return an error in
CDQ.

n As a result, the ServiceNow assignment is generated with the
default admin account as the owner if left empty or invalid.

n You must have a valid ServiceNow group name or its related sys_
id.

Chapter 2

xlvii

Chapter 2

n The new REACT UI is not yet supported for the ServiceNow Group integ-
ration.

DQ Security Metrics

Warning There is a critical CVE CVE-2016-1000027 that shows up in the image
scan due to Spring version. This is a false positive and should be added to the
exception list of the customer scan tools. We don’t use
HttpInvokerServiceExporter anywhere in the application and are not impacted
by it.

l There is no fix version available for it from Spring. More details are available at Sona-
type vulnerability CVE-2016-1000027 in Spring-web project · Issue #24434 · spring-
projects/spring-framework {% endhint %}

xlviii

https://github.com/spring-projects/spring-framework/issues/24434
https://github.com/spring-projects/spring-framework/issues/24434
https://github.com/spring-projects/spring-framework/issues/24434

2022.06

Fixes / Enhancements

l DQ Job
o Fixed an issue with the Learning Phase in the Behavior feature. (ticket #82907)

n Once CDQ has the minimum number of completed successful scans, the
learning status now changes to PASSING or BREAKING based on the
results.

l Outliers
o Fixed an issue where file lookback did not identify expected outliers. (#87967)

l Alerts
o When configuring email alerts, SMTP Username and SMTP password fields
are still required fields. (#86033)

n Validation relaxation is planned for the 2022.07 release.
l Rules

o Fixed an issue which caused rule breaks to report the opposite of what was
defined when a Generic Rule utilizing regex/rlike was created. (#86977)

o Fixed an issue where Data Classes with Date column types selected did not
detect timestamps. (#83000)

o Fixed an issue where Data Classes using the operators <, > or = caused the
inverse rule created from this process to throw exceptions. (#83000)

o When switching a data class from a regex to expression and then editing again,
the regex checkbox is now correctly checked.

l Agent
o The Explorer page and Scheduler modal now display the same agents.
(#86175)

Chapter 2

xlix

https://collibra.zendesk.com/knowledge/articles/6572100149143/en-us?brand_id=1497556

Chapter 2

l Security
o Vulnerabilities identified by Jfrog

n Vulns 0, criticals 0, high severity 8
n For a visual readout, see the DQ Security Metrics section below.

o General advisory:
n There is a critical CVE CVE-2016-1000027 that shows up in the image
scan due to Spring version. This is a false positive and should be added
to the exception list of the customer scan tools. We don’t use HttpIn-
vokerServiceExporter anywhere in the application and are not
impacted by it.

n There is no fix version available for it from Spring. More details are
available at Sonatype vulnerability CVE-2016-1000027 in Spring-
web project · Issue #24434 · spring-projects/spring-framework

o Major vulnerabilities related to Spring, ESAPI, and Swagger have been
addressed.

o No cross DB reference is allowed in explorer while accessing SQL database
connections.

o Sensitive UI fields such as username no longer allow autocomplete.
o If configured, the ENV variable XSS_CANONICALIZE_INPUT_ENABLED should
be removed from configmap or owl-env.sh.

o When dataset security is turned on, you can now add role based authorization
for editing existing datasets. (#87720)

o You can now override the following mail settings from the App Config page
within the Configuration section of the Admin Console:

n "mail.transport.protocol" -- default = smtp
n "mail.smtp.auth" -- default = true: If true, attempt to authenticate the user
using the AUTH command

n "mail.smtp.auth.login.disable" -- default = false: If true, prevents use of
the AUTH LOGIN command

n "mail.smtp.starttls.enable" -- default = true: If true, enables the use of the
STARTTLS command (if supported by the server) to switch the con-
nection to a TLS-protected connection before issuing any login com-
mands.

n "mail.smtp.ssl.enable" -- default = false: If set to true, use SSL to connect
and use the SSL port by default. Defaults to false for the "smtp" protocol
and true for the "smtps" protocol.

l

https://github.com/spring-projects/spring-framework/issues/24434
https://github.com/spring-projects/spring-framework/issues/24434
https://github.com/spring-projects/spring-framework/issues/24434

n "mail.smtp.ehlo" -- default = true
n "mail.debug" -- default = true
n "mail.smtp.ssl.trust" -- default = : If set, and a socket factory hasn't been
specified, enables use of a MailSSLSocketFactory. If set to "*", all hosts
are trusted. If set to a whitespace separated list of hosts, those hosts are
trusted. Otherwise, trust depends on the certificate the server presents.
(#76775, 88089)

l Profile
o Mean value is now rounded appropriately within the Profile page.

n For example: The value 2.4334334343345 is now rounded to 2.434.
l Connections

o From the Athena driver, you can now use MetadataRetriev-
alMethod=Query for database queries from the Connection URL. (#86139)

o Fixed an issue where error messages on failed connections did not display
informational text. (#85527)

o Fixed an issue where NFS file connections under Remote File connections
caused jobs to fail. (#88156)

n Added File protocol for Spark load for NFS file system.
n Added nfs:// prefix wile adding a NFS connection.

n This will prepend the URI with the file:// protocol when an NFS file
connection is loaded via Spark.

l Catalog
o The Graph option is no longer available in Quick links.

l Admin
o The Pendo integration is now active by default.

n No sensitive information is collected; only high-level usage stats are col-
lected.

n All new customers starting with 2022.06 onward will receive a new
license.

n If you install a standalone environment, modify the <install-dir>/-
config/owl-env.sh file by adding your license name
export DQ_INTEGRATION_PENDO_ACCOUNTID=<your-license-

name>
n This new integration will not block or impair the functionality of the app in
any way.

Chapter 2

li

Chapter 2

n For more information on Collibra's subprocessors, please review Col-
libra's Subprocessors page.

o The Agent Group (H/A) and its associated endpoints are now deprecated.
(#83086)

o Fixed an issue where the "Add Data Category" button was missing without
required permissions. (#86625)

o When a session expires on an Admin page, you are now redirected to the login
page.

o The Admin Limits page now displays informational text indicating that only lim-
its of Tenant - Admin type are displayed on the page.

o Fixed an issue when editing an existing data category which caused the 'Add
new' modal to open instead of the 'Edit' modal. (#89617)

o From Configuration Settings, DB Limits is now called Data Retention Policy.
l Explorer

o You can now view calculated views for SAP HANA when creating a DQ Job on
the Explorer page. (#83147, 84328)

o Fixed an issue which caused the Date range condition to incorrectly display res-
ults when using an Oracle connection. (#85802)

o Fixed an issue which threw an error message when Transform was checked
with Date Range condition when using a Postgres connection. (#85802)

o Fixed an issue where an equals sign = used in a -transform expression from
Run CMD caused jobs to fail. (#71547)

o Fixed an issue where schema and table names containing underscores _ were
not accepted.

o Fixed an issue that allowed jobs to run with a row limit of less than 1.
o Fixed an issue where incorrect files loaded for preview from BLOB containers
with Livy enabled.

o CLOB data types are unsupported. (#86902)
o Improved performance and logic when drilling into a database and schema
from the Explorer page.

l API
o You can now access API quick links page from the Admin Console React page.
o When using Swagger, UI text now indicates when a field is case sensitive.

lii

https://www.collibra.com/us/en/collibra-subprocessors
https://www.collibra.com/us/en/collibra-subprocessors

l Reporting
o *Tech Preview* [TP] Rule Summary page enhancements

n You can now filter rule breaks by most frequent violations, most severe
violations, and least violations.

n You can now view interactive pie charts with rules and dimension sum-
maries.

l UI
o The styling of the expandable legacy navigation pane and the react menu are
now updated.

l Legal
o Added a disclaimer to the DQ login page with a link to the Collibra Evaluation
Agreement.

Known Limitations

l Validate Source
o When comparing JDBC (target) to remote files such as S3 (source), there is a
known Spark bug for "Recursive view detected".

n This validate source combination is not possible in 2022.06 using Spark
3.2.

o When using Bigquery as the source, the -libsrc needs to be manually modified
to include the core (Spark Bigquery connector) directory.

n For example, /home/centos/owl/drivers/bigquery**/core**
l Profile

o Spark does not currently support varchar data types. All varchar data types are
converted to String. Other unsupported data types may also be converted incor-
rectly.

l Security
o Permissions on the Export task have not yet been addressed when dataset
security is turned on and you add a role based authorization for editing existing
datasets. (#87720)

Chapter 2

liii

Chapter 2

DQ Security Metrics

Warning There is a critical CVE CVE-2016-1000027 that shows up in the image
scan due to Spring version. This is a false positive and should be added to the
exception list of the customer scan tools. We don’t use
HttpInvokerServiceExporter anywhere in the application and are not impacted
by it. There is no fix version available for it from Spring. More details are available at
Sonatype vulnerability CVE-2016-1000027 in Spring-web project · Issue #24434 ·
spring-projects/spring-framework

liv

https://github.com/spring-projects/spring-framework/issues/24434
https://github.com/spring-projects/spring-framework/issues/24434

Collibra DQ release archive

2022.05

Fixes / Enhancements

l DQ Job
o You can no longer update the dataset name (-ds) from the command line.

n A helpful error message now appears if changes are made to -ds.
o Stop Job action is no longer enabled for K8s.
o Fixed an issue for Dremio jobs where jobs hang when editing or cloning an
existing dataset.

l Outliers
o Added "username" to outlier boundary table to track who creates the boundary.

n The Outlier boundary again saves correctly after the addition of a user-
name.

o Fixed an issue that caused jobs to fail when Day from By dropdown was selec-
ted.

l Rules
o Rule Preview drill-in capabilities are now improved:

n You can now configure Preview Limits based on the individual rule.
n Freeform and Simple rules are currently supported for the Preview
Limit feature.

n You can now set any positive number as the Rules Preview Limit.
n When you update a Preview Limit value, you must re-run to apply
the updated limit value.

n On the DQ Job page, the details of an individual rule now displays a
paginated sub-table of all the break records.

n When a rule is labeled as BREAKING for rule types other than Freeform
and SQL, UI text now displays, "Data preview records are only available
for Freeform and Simple rules."

o You can now hover over stat rules to see their conditions.
o Data Concepts is renamed Data Categories.

Chapter 2

lv

Chapter 2

o Semantics is renamed Data Classes.
o When a Data Class is assigned to a dataset via Profile controls, a rule is now
created.

l Security
o Vulnerabilities identified by Jfrog

n Vulns 0, criticals 0, high severity 9
n For a visual readout, see the DQ Security Metrics section below.

o The OS vulnerabilities from the images of Collibra DQ 2022.04 have been
resolved by using the base image of RHEL8 to build the images for Collibra DQ
2022.05. The following OS utilities will not be available in the 2022.05 release
images:

n Unified, OpenSSL crypto/stack
n Full YUM stack
n OS tools, including tar, gzip, and vi

o AD users can again use auth/signin REST API.
o The Highcharts CVSS2: 9.3/CVSS3: 9.8 vulnerability is resolved.
o The LOGJAM (CVE-2015-400) SSL/TLS vulnerability is resolved.
o The SpringShell (CVE-2022-22965) vulnerability is resolved.
o TLS < 1.2 is no longer supported.
o When Azure AD SSO sends a groups.link assertion, the application now tries
to resolve the groups via the link.

n You can now activate this setting by using the property, SAML_GROUP_
LINK_PROP.

l Profile
o You can now edit or delete semantics by clicking anywhere in the semantics
cell of the Profile column table.

o You can now save annotations with special characters.
n Special characters that are not currently supported include percent sign

%, backslash \, and caret ^.
o Fixed an issue where columns of broken rules were not highlighted.

l Connections
o You can now view a list of all packaged and optionally packaged drivers on our
new Builds page.

o The Databricks JDBC driver is now available.
o You can now add Databricks datasets using the Databricks Simba driver.

lvi

https://dq-docs.collibra.com/connecting-to-dbs-in-owl-web/supported-drivers/connectivity-to-databricks/databricks-via-jdbc

l Catalog
o Fixed an issue where the deletion of a dataset caused orphaned links to data-
sets in other areas of Collibra DQ.

l Admin
o *Tech Preview* [TP] You can now use the ServiceNow integration through a
proxy server from the Assignment Queues screen.

o You can now access the new Usage page to view monthly historical usage stat-
istics.

o AD users with Admin privileges can now add Business Units.
o AD users with Admin privileges can now manage local users.
o The Agent Groups (H/A) feature is marked for deprecation and will be removed
from the app in the 2022.06 release.

l Explorer
o You can again edit schema and table name from the Catalog page.
o You can now navigate to a specific behavior tab directly from the Assignments
page.

o Fixed an issue when viewing Schemas in View Data wizard.
l Scorecard

o Single-space `` , underscore _, and period . are now supported characters
when saving Scorecard name.

l API
o Improved API calls for the UserManagement Save function.

l Reporting
o *Tech Preview* [TP] Rule Summary page enhancements

n You can now filter rule breaks by a specified date range and view charts
for Most Used Rule Types, Dataset with Most Rule, and Top Rules Run.

Known Limitations

Warning Delta Files

A bug was introduced as a result of removing CVEs in 2022.05. If you use Delta files
-delta it is not advised to upgrade until an update is available.

Chapter 2

lvii

Chapter 2

l Explorer
o Except for underscore _, special characters are not currently supported in
schema or table names.

l Admin
o *Tech Preview* [TP] ServiceNow integration

n Only the local Docker container proxy has been tested and verified.
n The Test Connection button's validating credentials capabilities is cur-
rently limited if the ServiceNow URL is valid.

n The Validate All Rules function currently results in a failure.
n You cannot edit an active ServiceNow assignment.

n Invalidate/Validate or Resolve actions result in a failure.
n You can assign a ServiceNow ticket with an embedded URL when
escaped with double quotes.

n No assignment is sent without this process.
l Multi-Tenant

o Tenant names should be lower case. Use lower case characters, when cre-
ating a tenant from the multi tenant admin page. The current limitation is
around the schema that is generated

l Reporting
o *Tech Preview* Rule Summary page enhancements

n Sorting any column returns an error.
n User must use date picker as manual date entry is not honored.
n The start and end date are out of order when navigating to the page.
n The last page on the paginated list does not change when date criteria is
updated.

2022.04

Install

Note For standalone installations, within the setup.sh script find/replace the
variable for spark_package.
Change spark-3.0.1-bin-hadoop3.2.tgz to spark-3.1.2-bin-hadoop3.2.tgz

lviii

spark_package=${SPARK_PACKAGE:-"spark-3.0.1-bin-hadoop3.2.tgz"}

replace with

spark_package=${SPARK_PACKAGE:-"spark-3.1.2-bin-hadoop3.2.tgz"}

Fixes / Enhancements

l DQ Job
o Entering negative values for the downscore is no longer supported and will now
produce an error message.

o You can now invalidate schema with special characters.
o Spark table names of historical dataset loaded and other spark tables are now
available on Jobs Log table.

o Long type values larger than Integer.Max no longer breaks the Profile.
o View Findings now displays user's full name, if applicable, in Validate Modal.
Assignment queue page also displays the full name of user, if applicable.

l Alerts
o You can once again use the Cancel action button on the Alerts page.
o You can now set up alerts to reach multiple email recipients.
o If email_server table is not yet configured, a helpful message will now display
in the Description column in the job log directing you to register an email Server
under Admin - Alerts. The job will still run successfully.

l Rules
o You can now modify Rules definitions from the primary DQ Job dashboard
without loading the Rules page.

o Mean value check once again triggers correctly for Integer and Long columns.
n This fix triggers the mean value check for Integer and Long columns and
shows an infinity percentage change in behavior for a period, depending
on -bhlb. After this period, it should disappear.

o For Native SQL rules, jobs now behave the same whether or not a semicolon
";" is included in the SQL query.

o You can now use a hyphen "-" in a dataset name.
n Acceptable special characters now include a hyphen "-", period ".", and
underscore "_".

Chapter 2

lix

Chapter 2

o Added a tooltip that displays which condition is being checked in a DQ Job
when using a Stat rule when you hover your cursor over a condition in the
Condition column.

o Improved the exception message for when there are no values for a specific
column while using a Stat rule.

o The WebUI passing boundaries range has been updated to ().
o For Freeform rules, IS Null and IS NOT NULL no longer return invalid results in
the Validation tab.

o Added a pop-up success message for when the correct syntax rule passes for
Freeform rules with secondary datasets after the Validate button is clicked.

l Security
o Vulnerabilities identified by Jfrog

n Vulns 2, criticals 2, high vulnerabilities
n For a visual readout, see the DQ Security Metrics section below.

o Authorization restriction is now enforced for the following endpoints:
n /v2/deletefiledir
n /v2/getRunIdsByDataset
n /v2/putDatasetWeight
n /v2/checkListofFilesPath
n /v2/getlistagents
n /v2/checkDriver
n /v2/getconnectionssensitive
n /v2/getemailgroups
n /v2/getemailserver
n /v2/addemailgroup
n /v2/validateEmailAddress
n /v2/getlistoffiles
n /v2/getlistoffilespath
n /v2/getlistoffiles
n /v2/getDriverDir
n /v2/getlistrolesbydataset
n /v2/getlistrolesbydistnctdatasets
n /v2/getlistrolesbyfunctiontypename
n /v2/getlistusersbyauthority
n /v2/getlocalDBRoles
n /v2/getsecuritysettingsbytype

lx

n /v2/getowlcheckinventory
n /v2/getconnectionspwdmgrsensitive
n /v2/getsecuritysettingsbycoltype
n /v2/getdbuserlist
n /v2/getdbuserdetailsbyuser
n /v2/getexternaladgroupstointernalroles
n /v2/getlistdatasets
n /v2/getlistdatasetsbyrole
n /v2/getaudittrailitems
n /v2/get-all-audit
n /v2/get-datasets-audit-trail-items
n /v2/get-all-dataset-audit
n /v2/getactivityaudit
n /v2/getallactivityaudit
n /v2/getlocaldbrolesbyuser
n /v2/getdatasetaclsecurity
n /v2/getexternaladgrouplist
n /v2/getexternaladuserlist
n /v2//external-service-configuration

o Local user accounts now have an account lockout feature implemented with
the following restrictions:

n A user's account will be locked if a password is entered incorrectly more
than 10 times (configurable via app config).

n The locked account can only be unlocked by Admin user in user man-
agement screen.

n If an Admin is locked, another Admin can unlock their account.
n If all the Admins are locked, enable the account via DB (ubdate users
table "accountNonLocked" colun to "1").

n User cannot use forgot password to reset password while the account is
locked.

o CORS restriction is now enforced for SAML and multi-tenancy.
n This breaks SAML unless the IDP is configured as a trusted origin in DQ,
so the following property must be added to environment variables in
order for DQ and SAML to work: CORS_ALLOWED_ORIGINS=\({IDP-
BASE-URL},\)

Chapter 2

lxi

Chapter 2

n Replace $ with the value of the actual IDP URL (For example:
https://ping.auth.com)

n Replace $ with the value of the actual DQ Base URL (For example:
https://dq-env.com)

o SAML login no longer automatically triggers on the login page during an exist-
ing session when accessing DQ base URL. For SAML login, you should
instead use /saml/login.

n API requests (v2/v3) return proper JSON response in case of failures.
n auth/signin API is updated to provide JWT token for MT & local users.

l Profile
o Mean value once again displays in the Volume column.
o When connecting to MSSQL server on Windows from a Linux DQ environment,
the connection no longer fails.

n We recommend (not required) a TLS connection for MSSQL connections
from a DQ Linux environment with a properly signed certificate setup on
MSSQL server to connect only via TLS.

o You can now edit annotations in the Labels tab.
l S3

o Added an enhancement for -addlib flag.
l Connections

o Added new Jconn4 driver for encrypted connections.
o Tech Preview - You can now save a local (NFS) file directory as a connection
type.

o See our newest Supported Connections page for a definitive guide to driver
support.

o BigQuery is now certified for production, but removed from packaged install for
K8s docker.

l Explorer
o When toggling between fullfile and Union LookBack options, -fullfile and -
fllb flags can no longer be generated together in the DQ Job command line.

o Data Preview for Temp files loading in Explorer now correctly shows the order
of columns of the original Temp file.

o You can now drill in and search files within the connection.
o You can now browse multiple local (NFS) file connections.

lxii

l Scorecard
o You can now create scorecards with special characters "^[A-Za-z0-9]+$" in
their names.

l Dupes
o Added linkID column for exact match in both UI and REST API. linkID can now
be either included or excluded from Dupes for exact match.

o linkID is now shown at the aggregate level for Exact Match.
n We recommend using this feature from a primary key perspective for its
first iteration.

n The aggregate function used is min().
n For example: if you have 6 occurrences, you will get 1 example
linkID, the min.

l API
o Updated the /v2/getlistdataschemapreviewdbtablebycols API call method from
GET to POST to support the long query (-q) or very large columns table.

o Added a new SAML load balancer so the syestem picks the appropriate
schema and SAML server URL for Swagger.

Known Limitations

l Profile
o Special characters are not currently supported in annotations in the Label tab.

l Scorecard
o Space " ", underscore "_", and period "." are not yet supported for scorecard
edit.

2022.03

Fixes / Enhancements

l DQ Job
o The -validatevaluesshowmissingkeys options now allows the extrapolation of
missing keys between target and source.

o Newly created jobs will no longer be marked incorrectly with enclosing double
quotes.

Chapter 2

lxiii

Chapter 2

o File names with spaces are now handled with double quotes within the applic-
ation.

l Alerts
o Email notifications now have Collibra branding and terminology.
o Fixed Cancel Action for Delete functionality on Alert page.

l Outliers
o Fixed the issue where Numerical Outlier drill in graph wasn't displaying when
perChange is NaN.

l Rules
o Added additional HealthCare Data Classes to Rule Library.
o Fixed input validation rule of POST - /v3/rules/ endpoints. The following val-
idation rules have been applied to RuleDTO.ruleName field:

n Maximum size is 100.
n Must comply with the following regular expression: ^[a-zA-Z0-9_]+$

o The rules on the Hoot page now show the correct exception data when expan-
ded if there are two or more rules with exceptions attached to the dataset.

l Security
o Vulnerabilities identified by Jfrog

n Vulns 0, critical, 6 high vulnerabilities
o Password length has increased to a maximum of 72 characters.
o Forgot password screen will now always show success message in UI regard-
less of success or failure.

o Fixed an issue of a throwing error message when adding/editing user roles.
o Added error checks if the password manager script throws any errors.
o Added the helper text "Enforce user roles to run the job" to DQ Job Security
row.

o User password field removed while updating user in user management screen.

n Admin can only set password for another user wile creating new user, but
not while updating/modifying them.

n To change a password, users can now use either the profile page or the
self-service (Forgot password) feature.

o XSS security
n Fixed the vulnerability on scorecard, jobs, rules and catalog pages.
n Fixed the vulnerability via remote connection.

lxiv

o Mitigated the endpoint "/v2/getrawpreview" vulnerable to Local File inclusion
attack.

o DQ HTTP session cookie is now secured by default when HTTPS is enabled.

{% hint style="info" %} Rule Discovery Terminology Alignment

Data Concepts => Data Categories

Semantics => Data Classes {% endhint %}

l Profile
o Precision and Scale metrics are correct when using multi executors.

l Admin
o Edge download page within Admin Console (for Cloud customers).

l Validate Source
o *Tech Preview* [TP] Update Source Scope.

n Added "Update Source Scope" in the Query section of the Source tab.
l Connection

o Added handling for errors during log cleanup process.
l API

o Improved API calls for the Save function.

Known Limitations

l Validate Source
o *Tech Preview* [TP] Update Source Scope.

n Only works for JDBC connections. Feature is hidden for remote, temp,
local files.

n Valsrc query won't be updated automatically when modifying column
mappings. Use 'Preview' button to reset the feature if column mappings
need to be changed.

2022.02

Note For new Standalone Collibra DQ installations, please double check 'Number
of Core(s)' field when setting up 'Edit Agent'.

Chapter 2

lxv

Chapter 2

{% hint style="info" %} Added UUIDs for Jobs may take additional time on initial startup
after upgrade {% endhint %}

Enhancements

l DQ Job
o Added UUIDs for jobs for better tracking between web and core
o Improved DQ Job page load performance by optimizing calls
o Fixed issue DQ jobs would fail when -rd is in "yyyy-mm-dd HH" format

l Outliers
o *Tech Preview* [TP] Outlier Calibration

n Feature flag can be set within owl-env.sh or configMap with export out-

lier_calibration_enabled=true (Default is off)
n Ability to suppress Outlier observations for a user-determined length of
time that would have otherwise surfaced as anomalies

n Once feature is enabled, accessible within Outliers tab on DQ Job page
l Alerts

o Ability to navigate to dataset specific Alerts from DQ Job page
o Ability to test SMTP alert configurations when adding an email relay
o Fixed issue where 'Reply Email' field did not properly accept user input value

n Please note there are no (Collibra imposed) domain restrictions on Reply
Email field

l Security
o Stricter password policy is enforced on all user/tenant management
screens/APIs.

n The restriction is as follows: Minimum length of 8 characters
n Maximum length of 20 characters.
n At least one upper-case letter.
n At least one numeric character.
n At least one special character (supported are !,%,&,@,#,$,^,*,?,_,~)
n User ID and password cannot be the same.
n Password cannot contain user ID.

o Change Password functionality on user profile requires a current password of
the user.

o Mitigated 64 critical, 15 high, and 12 medium vulnerabilities identified by JFrog

lxvi

#tech-preview-tp-outlier-calibration

o Upgrade Log4J to 2.17.1
n Please follow *Note to Standalone Collibra DQ Customer Upgrades*: We
have upgraded to Log4J 2.17, please refer to Standalone Upgrade for
additional steps

o Added connection security checks to users to prevent running jobs and query
the tables that are not authorized per connection. This is applicable when DB
Connection Security is enabled in the Admin Console under General.

o Implemented stricter session management
o Implemented CORS restriction to mitigate potential CSRF vulnerability

n Enforced strict CORS policy by not allowing any domain. In order to allow
other domains and tweak this behavior, we have exposed the following
properties as environment variables in owl-env:

n CORS_ALLOWED_ORIGINS=http://facebook.com,http://google.com
n CORS_ALLOWED_METHODS-
S=GET,POST,OPTIONS,DELETE,PUT,PATCH

n CORS_ALLOWED_HEADERS=X-Requested-With,Origin,Content-
Type,Accept,Authorization

n CORS_EXPOSE_HEADERS=
n CORS_ALLOW_CREDENTIALS=false
n CORS_MAX_AGE=0

l *Tech Preview* [TP] DQ Connector
o Fixed issue where tenant specified on DQ Connector configuration (issuer of
the jwt token field within DGC Edge Management page) was not properly
accepted; only rules that existed with 'public' schema were brought over; now
the DQ Connector will accept the proper values

l Agent
o Upon potential deletion of an agent, added server side validation to indicate
number of scheduled jobs so that users can understand if jobs fail going for-
ward

l Rules
o Enhanced stability on Parallel Rule execution to ensure all rules load by revert-
ing back to fixed thread counts

o Display exceptions upon rule execution failure to improve rule management
experience

o Improvements to user experience in Rule Library tab (within Rules page) includ-
ing filters and column alignment

Chapter 2

lxvii

Chapter 2

o Quick Rule dropdown within the Rules page will save with default severity of 1
point and a threshold of 1 percent

o Enhanced validation for rules generated in Profile tab
o Fixed issue where removing semantic tag may not have removed cor-
responding auto-generated rule

o Rule name character limit of 100
o Rule Builder page now returns error messages where the dataset contained 0
records

l Catalog
o Renaming Dataset from Catalog page keeps associated rules

n Clone only creates the dataset shell (with DQ job run configs, no addi-
tional rules, etc.) will be copied

o Bulk actions support for Data Concepts
o Fixed issue where child of business unit could be assigned as parent
o Fixed issue where clearing individual filters were not functioning

l Validate Source
o *Tech Preview* [TP] New collapsible section for Query in Source tab; enables
users to use custom srcq, similar to query on section on Home tab so that
users do not need to edit -srcq in cmd line editor on Run tab

o Introducing new observation types via -valscrshowmissingkey flag
n Key not in source
n Key not in target

o Source Name should be fetched as part of get-
catalogandconnsrcnamebydataset API call for a given dataset

o Fixed issue which prevented Hive from working as Target
l Export / Import

o Fixed issue that import could not accommodate more than one table insert
o Fixed bug where certain values were inadvertently inserted into RegEx rules
upon Export

o New endpoints added for Export and Import API
l Connection

o Fixed Out Of Memory issue with Dremio
n Explicitly added limit clause in the preview query within Update Scope
n Dremio driver requires double quotes in Schema, Table, and Column
names e.g. "SchemaName"."TableName"

o Fixed Oracle TIMESTAMPLTZ conversion error

lxviii

l Explorer
o Fixed issue where 'Analyze Table' option did not populate for Hive
o Fixed the static date values showing up in Managed Template and Run Check
while running the job via v2/runtemplate API call from swagger UI

l Files
o File names with spaces are now handled with double quotes t
o Implemented Supported File Type Check at time of uploading the Temp Files
via Explorer

n Default supported file types are “csv,json,parquet,avro,delta".
n In order to add/update the supported file types and ensure validation, a
new environment variable needs to be added in owl-env.sh as below:
export ALLOWED_UPLOAD_FILE_TYPES-

S="csv,json,parquet,avro,delta"
n Tip: For remote files with delimiter, please use the csv dropdown options
for files with .txt extension

o *Tech Preview* [TP] Users have ability to assign an agent when using temp file
and local file Explorer paths without manually appending -master to agent or
job (previous known limitation)

o LIMIT values are now properly accepted on the Scope & Range query panel
l Dupes

o Fixed issue where column selections were not retained from the original DQ
Job with Dupes ON for future runs

Known Limitations

l Rules
o Cannot currently create rule with API /v3/rules; will be fixed in future release

n Please use /v2/createrule API
l Profile

o Stat Rules
n Tool tips will only generate when Max Precision and Max Scale are
greater than 0

l DQ Job
o /v2/runtemplate API still creates 'zombie' job

n Please use /v3/jobs/run

Chapter 2

lxix

Chapter 2

l LinkID
o LinkID column selection is case sensitive; breaks may not appear if case does
not match

l Outliers
o Outlier Calibrate

n Outliers cannot retrain on-demand; to suppress existing Outliers, must
rerun the DQ Job for those date(s)

n In-app labels do not exist for Outliers which have been subject to past,
current, or future calibration; references only exist within the outlier_
boundary table in the metastore

[Informational Only] New Tables Introduced To Metastore In 2022.02

l outlier_boundary

[Informational Only] Changes To Metastore Made In 2022.02

ALTER TABLE validate_source_metadata ADD COLUMN IF NOT EXISTS
validate_values_show_missing_keys boolean DEFAULT false
ALTER TABLE opt_source ADD COLUMN IF NOT EXISTS validate_val-
ues_show_missing_keys boolean DEFAULT false

ALTER TABLE opt_source ADD COLUMN IF NOT EXISTS filter_cols
character varying[]

ALTER TABLE user_profile ADD COLUMN IF NOT EXISTS external_
user_id VARCHAR

ALTER TABLE owlcheck_q ADD COLUMN IF NOT EXISTS agent_job_uuid
UUID
ALTER TABLE job_log ADD COLUMN IF NOT EXISTS job_uuid UUID
ALTER TABLE platform_logs ADD COLUMN IF NOT EXISTS job_uuid
UUID
ALTER TABLE platform_logs DROP CONSTRAINT IF EXISTS platform_
logs_job_uuid_ux
ALTER TABLE platform_logs ADD CONSTRAINT platform_logs_job_
uuid_ux UNIQUE (job_uuid)
ALTER TABLE opt_owl ADD COLUMN IF NOT EXISTS job_uuid UUID

lxx

2022.01

Enhancements

l DQ Job
o Fixed issue where backrun "-br" flag was inadvertently added on future runs
(error contained in 2021.12) if the initial DQ Job setup Explorer selected back-
run

o Improved validation to not allow for slashes in dataset name
l Validate Source

o Fixed potential DQ Job failure with Source turned on for some legacy install-
ations when upgrading from older versions to 2021.11 and newer

l Explorer
o DB_VIEWS_ON can be added with TRUE or FALSE values by adding new App
Config (Add Custom within Admin -> Configuration)

o -Addlib flag now working across JDBC connections
o Update Scope now supports rdEnd

l Rules
o When creating rules, run-time limit for each rule (in minutes) can be set on the
Rule page UI and on the V3 API (by setting runTimeLimit property). The
default is 30 minutes if not explicitly set. This 30 minute limit sets the overall
timeout limit for all rules in a particular job. For example, if there are 10 rules
with 9 rules with 30 min limit and 1 rule as 90 min limit, then the DQ Job will
wait up to 90 min for all 10 rules to finish. This is because all rules must finish
before the Rule stage in DQ Job to finish and move to the next stage. We do
not support async stages where one long running rule is running while the job
itself moves on to the next stage.

o Added ability to specify score of 0 to a rule
o Improvement to Stat Rules to fail without exception when result is not within
range

l Profile
o Fixed ability to remove a business unit from a dataset
o Fixed issue where data concepts were not correctly displaying on a dataset's
Profile page

o Fixed sensitive labels not being assigned from Discovery

Chapter 2

lxxi

Chapter 2

o Treat certain doubles, floats, decimal types as Decimal format that preserves
length and prevents Java from truncating to E11 format

o Removed commas when displaying date columns
l Security

o SAML Login fix for IDPs that use POST binding as default
l S3

o Enhanced support where "." in column headers were causing large jobs to not
complete

n Underscores now replace periods and large jobs should no longer hang
l Connections

o Updated default Snowflake template connection properties
n Corrected 'db' parameter placeholder on connection string versus former
'databaseName'

o Added Connectivity to BigQuery troubleshooting information

Known Limitations

l Local files using NO_AGENT require a valid $SPARK_HOME on the machine where
the web server is running.

l Supported data types
o CLOB datatypes are unsupported

l Explorer
o -Addlib not yet supported for Remote Files e.g. S3

[Informational Only] Changes To Metastore Made In 2022.01

ALTER TABLE owl_rule ADD COLUMN IF NOT EXISTS run_time_limit
DOUBLE PRECISION NOT NULL DEFAULT 30.0;
ALTER TABLE owl_rule ADD COLUMN IF NOT EXISTS scoring_scheme
INT4 NOT NULL DEFAULT 0;

ALTER TABLE job_log ALTER COLUMN stage TYPE character varying;
-- stage set to varchar because RULE logs rule_nm into stage
ALTER TABLE job_log ALTER COLUMN log_desc TYPE character vary-
ing;
ALTER TABLE job_log ALTER COLUMN log_hint TYPE character
varying;

lxxii

2021.12

Note to Standalone Collibra DQ Customer Upgrades: We have upgraded to
Log4J 2.17, please refer to Standalone Upgrade for additional steps

Enhancements

l Rules
o Semantic and data concept management: Run Discovery feature

n Run Discovery feature can be accessed from Catalog by selecting 'Data
Concept' option from Actions or clicking the 'Run Discovery' button on the
Rules tab of the DQ Job page. This will run a DQ Scan to detect for the
semantics assigned to the selected data concept

n Algorithm now selects best match if column matches 2 or more data
classes based on %match and name distance

o *Tech Preview* [TP] Configurable rule break preview limit
n Global default is 6 max rows per rule
n Any change from 6 must be specified with previewLimit (API /v2/creat-
erule) or in the Preview Limit field (UI)

n Maximum of 50 from UI
o Introducing additional Stat Rules including minPrecision, maxPrecision,
minScale, maxScale

l Behavior
o Min and max value checks are now triggered for all numeric columns when
selected, even if column contains zeroes in lookback period

o AR column view graph now shows theMean value for current day (runId). No
re-run of DQ Job is necessary. The displayed Mean makes it clear that the %
change is the % change from the mean, not runId - 1 day.

o Findings in behaviors that were directly correlated to a row count shift as the
root cause have been optimized, such that a major deviation in row count will
no longer down-score related fields in the dataset to reduce noise

l Catalog
o Catalog now features intelligent ranking based on Recency, Most Scanned,
User

Chapter 2

lxxiii

Chapter 2

l Outliers
o Outliers (advanced) allows for gaps in dates when establishing lookback
period, which is established by history with row count > x (specified by user)

o Fixed issue where outlier data preview graphics were not displayed
o Fixed issue where outlier results did not honor the initial scope where clause, in
particular for Remote Files (S3)

l Connections
o BigQuery: Enhanced support for cataloging host name

l Pulse View
o Pulse view can filter Connections and Users
o Pulse view can serve as proxy verification on whether scheduled jobs were suc-
cessfully completed

l Profile
o Viewable precision and scale statistics for double, float, and decimal data
types

l Shapes
o Fixed issue where data shape preview not available when same shape is detec-
ted on the same row for different columns

l Files
o *Tech Preview* [TP] Users have ability to assign an agent when using temp file
and local file Explorer paths

n Known limitation: -master must be freeform appended to the agent or to
each job

o Support for multicharacter delimiters
o Improved delimiter support to distinguish string commas versus actual CSV
commas to align data to respective columns

l Agent
o Fixed issue where certain completed jobs could not be re-run on the DQ Jobs
page. In other words, NO_AGENT was the only available option in the Agent
dropdown. Now, users can select valid agents in the dropdown and this will per-
sist for future scheduled jobs

l Schedule
o Implemented validation to enforce user to choose days when picking schedule
to avoid Java error messages

lxxiv

l Explorer
o Fixed issue where '&' was not properly supported when adding additional para-
meters

l API
o JSESSIONID session time is configurable
o Bearer token and JSESSIONID authentication paths are properly forked

l Pattern
o Patterns activity now shows Count (number of times the current dataset has
the Pattern breaks). This Count is interpreted the same way as Outlier activity
Count

2021.11

Enhancements

l Rules
o *Tech Preview* [TP] Rule Discovery

n The application now supports dynamic semantics checks. This allows
you to create custom semantics that can be checked for when running a
DQ check on a data set. Previously the application checked against a pre-
defined set of semantics. You also have access to controls to organize
and apply these semantics checks. The following is a list of changes:

n There is a new data concepts management page. You can access
it from Catalog or Admin Console. You can assign multiple
semantics to a data concept.

n When running a DQ check, you can select a data concept. The
semantics assigned to this data concept will be checked against
each column of dataset.

n You have a list of predefined semantics that are not editable. You
also have the ability to create/edit/delete custom semantics.

n Repo on rules page has been added to Rules Library where
semantics will be viewable.

l Resource Limits
o You can edit the Performance Settings to supply limits to executors, cores,
memory and cells so that a user can be warned if submitting a job that requires

Chapter 2

lxxv

Chapter 2

a lot of resources and admins can control maximum resources submitted.

Enhancements

l Explorer
o *Tech Preview* [TP] Dynamic query reload allows you to view JOIN query
columns in other activities.

n User can update and reload the schema table with the custom query in
the scope section by clicking the [Update Scope] button. It will enable
using the new columns from the custom query in all activities (Profile, Out-
lier, Dupes, Patterns, Source)

n Since the first tab is for compositing the query, updating fields will change
the user's custom query. Therefore, all areas are locked except the
"query" field in the first tab to keep the query unchanged after updating
the scope table

o Support for some special characters in table name.
o Fixed the ability to add additional libs that were previously not being properly
saved on subsequent runs. Under DQ Job tag, please utilize -fllb boolean
(union lookback) and libsrc input box for lib directory path (will materialize as -
addlib).

l Connections
o *Tech Preview* [TP] BigQuery Views and Joins
o Please add the following to the BigQuery connection property

viewsEnabled=true

l API
o You can perform multiple imports without conflicts.
o You can have an incremental import such as updating matching records / insert
new / leave existing. There is no requirement to delete tables first before run-
ning import.

l Profile
o Fixed backrun timebin to work with weeks and quarters instead of days.

lxxvi

l Outliers
o Split historical load to avoid historical query rounding up.
o *Tech Preview* [TP] Outliers (advanced).

l Source
o Fixed an issue where settings were not sticky for subsequent runs.

l Security
o SAML Enhancements

n New configuration settings are available when the Load Balancer is set
for SSL Termination.

n You can now set theMulti-tenancy support through SAML RelayState to
route SSO to the proper tenant.

Patches

l 2021.11.1 Explorer
o Allow ampersand in metastore host name for additional parameters
o In below example, support for ampersand needed for required SSL flags

metastore01.us-east1-b.c.customer-dq-prod.in-
ternal:5432/dev?sslmode=required¤tSchema=public

Known Limitations

l Rules
o Semantics and data concepts:

n Not supported in pushdown mode
n Exporting RegEx semantics not currently supported

o While it is possible to create joins and cross-dataset rules using Freeform SQL,
it is best practice to create a view and handle the join prior to running the DQ
Job.

l Behavior
o Schema is not eligible for invalidate

l Files
o Local files using UPLOAD_PATH, UPLOAD_FILE_PATH, and temp files are
only eligible to be deployed using the default NO_AGENT option. These are

Chapter 2

lxxvii

../../../../../../../../Content/DataQuality/DQSecurity/SAML Authentication.htm

Chapter 2

only intended for quick tests and not intended for production-scale use. Best
practice is to use a remote file system connection (S3, Google storage or
ADLS).

o Delimiter support for special characters is limited. Supported file delimiters are
comma, pipe, tab, semicolon, double quote and single quote. Custom delim-
iters will work for many characters, but not all combinations.

o Temp files and NO_AGENT should have -master local[*] or -master
spark://:7077 defined in freeform append of the agent options

l DQ Job
o When submitting jobs via API from a different machine with a different
timezone, timezone discrepancies are not accounted for automatically. Best
practice is to align each component to use UTC.

o Jobs submitted via API with a run date that include HH:MM in the -rd (run date)
will submit to the job queue and leave a remnant ‘STAGED’ job

l Connections
o Postgres limits max connections per spark job. The default is 100. Please refer
to Postgres official documentation how to increase max_connection and
shared_buffers.

n https://www.postgresql.org/docs/9.6/runtime-config-connection.html
o BigQuery

n Updating scope to include joins in BigQuery can only be materialized
when tables are part of the same dataset collection

n Should you receive an error for pre-existing BigQuery jobs, please add -
dssafeoff to the cmd line or select ‘Allow Overwrite’ to enable this from
Edit mode in the Explorer

l Alerts
o After an upgrade to 2021.11, you may need to set the environment variable
ALERT_SCHEDULE_ENABLED=true in owl-env.sh and restart owl-web to
enable email alerts to work again.

lxxviii

https://www.postgresql.org/docs/9.6/runtime-config-connection.html

2021.10

Enhancements

l DQ Job
o Refactored DQ Job Score to Gauge Chart

l Explorer
o Fixed issue where permissions are checked on datasets that do not yet exist

l Connections
o Sybase 'Test / Preview' now available
o Updated web model of saving additional connection properties
o Fixed scenario where editing connection yields null instead of empty for mul-
tiple values

l Rules
o Placeholder new searchable Rule Summary Page for Rule statistics / insights

l Alerts
o Updated Alert Mailer to TLS 1.2 to resolve Third Party Error exception
o Fixed issue where alerts are deleted even when clicking cancel button

l Behavior
o Fixed issue where user must refresh to have invalidated item removed from UI

l Search
o Fixed search on Audit Datasets and Dataset Management page

l Scorecards
o Date ranges are now customizable

l Validate Source
o Added feature that provides 'trim' option on String columns when running
source-target validation, extra spaces in the cell are trimmed on both ends (left
and right)

l Dupes
o Resolved issue with white spaces in column headers blocking duplicate detec-
tion

l Security
o Added configuration for setting the SAML_ENTITY_BASEURL, which sets the
Consumer service url for the SP Metadata

Chapter 2

lxxix

Chapter 2

l Shapes
o Fixed issue where custom values override even after toggling Shapes back to
auto or off

l Console
o Fixed uncaught TypeError on login screen
o Fixed GET timeout error on registration page

l Export/Import API
o Users will be able to run the export/import API calls to conduct multiple pro-
motions on the repo, schedule, and rule tables.

Patches

l 2021.10.1 Import / Export API without constraint conflicts
o Import must match exactly to the format of our export in order to parse out
columns and values to perform an update when existing records are already
there

owl_rule
owl_check_repo
job_schedule
rule_repo

Known Limitations

l File sizes
o Individual files greater than 5gb will experience performance degradation in
Explorer for Standalone installs. Best practice is to save in smaller chunks and
use bypass schema in the Explorer if needed.

o Individual files greater than 25gb will experience performance degradation in
Core for Standalone installs.

l Files
o Explorer / browser will generally have difficulty supporting > 250 columns in
files

l Profiling
o Pushdown profiling on Bigquery, Redshift, Athena and Presto is available for
specific datatypes.

lxxx

o Backrun option and flag will persist beyond the first run (-br). Please remove
this flag if you do not want to backrun again.

l Explorer
o QUARTER and WEEK are not supported time bins in this release.
o On non-csv files, Explorer will not automatically infer file types. Users must
change file type to the required value and click Step 2 "Load File". Nothing will
change in Step 1 "File Information". A future enhancement will be added to
automatically check filetypes by reading the first file

o Dataset names should not contain special characters
l Rules

o Out of the box semantic rules cannot be edited (STATECHECK,
GENDERCHECK, etc). Users can still apply their own global rules which can
be customized.

o LinkId does not support alias columns that are not part of the -LinkId definition
l Connections

o Connection names should not contain spaces
l Validate Source

o Complex Validate Source queries can only be edited from the CMD line or
JSON directly before hitting Run.

l Security
o Active Directory in Azure SQL can connect via LDAP (basic auth) or Kerberos.

l S3 / GS / ADLS
o Remote storage connections should be defined using the root bucket only.

l Estimate Job is only available for files when Livy is being used.
l Stop Job on jobs page is limited and does not work for all installation types.
l Bigquery connector does not work with views

Chapter 2

lxxxi

lxxxii

Builds
Builds follow a naming convention to indicate which Optional Drivers drivers are
packaged.

Note The optional drivers only impact container versions of Collibra Data
Quality and does not impact Standalone installation packages.

Available Containers
2023.01
Collibra Data Quality & Observability

l 2023.01-LM-2067
l 2023.01-ABDGCSILM-2066
l 2023.01-ABDGCSHILM-2065
l 2023.01-2068

Spark

l 3.2.2-2023.01-LM-2067
l 3.2.2-2023.01-ABDGCSILM-2066
l 3.2.2-2023.01-ABDGCSHILM-2065
l 3.2.2-2023.01-2068

2022.12
Collibra Data Quality & Observability

l 2022.12-LM-1960
l 2022.12-ABDGCSILM-1959
l 2022.12-ABDGCSHILM-1958
l 2022.12-1964

Spark

Chapter 3

Chapter 3

l 3.2.2-2022.12-LM-1960
l 3.2.2-2022.12-ABDGCSILM-1959
l 3.2.2-2022.12-ABDGCSHILM-1958
l 3.2.2-2022.12-1964

2022.11
Collibra Data Quality & Observability

l 2022.11-LM-1739
l 2022.11-ABDGCSILM-1738
l 2022.11-ABDGCSHILM-1737
l 2022.11-1736

Spark

l 3.2.2-2022.11-LM-1739
l 3.2.2-2022.11-ABDGCSILM-1738
l 3.2.2-2022.11-ABDGCSHILM-1737
l 3.2.2-2022.11-1736

2022.10
Collibra Data Quality & Observability

l 2022.10-ADGCSILM-1568
l 2022.10-ABDGCSILM-1569
l 2022.10-ABDGCSHILM-1570
l 2022.10-1572

Spark

l 3.2.2-2022.10-ADGCSILM-1568
l 3.2.2-2022.10-ABDGCSILM-1569
l 3.2.2-2022.10-ABDGCSHILM-1570
l 3.2.2-2022.10-1572

2022.09
Collibra Data Quality & Observability

l 2022.09-ADGCSILM-1386
l 2022.09-ABDGCSILM-1387

lxxxiii

l 2022.09-ABDGCSHILM-1388
l 2022.09-1390

Spark

l 3.2.2-2022.09-ADGCSILM-1386
l 3.2.2-2022.09-ABDGCSILM-1387
l 3.2.2-2022.09-ABDGCSHILM-1388
l 3.2.2-2022.09-1390

2022.08
Collibra Data Quality & Observability

l 2022.08-L-1132
l 2022.08-AHM-1133
l 2022.08-H-1134
l 2022.08-HM-1135
l 2022.08-D-1136
l 2022.08-AL-1137
l 2022.08-AD-1138
l 2022.08-ABGCSHMS-1139
l 2022.08-AGCSHLM-1140
l 2022.08-M-1141
l 2022.08-GCSL-1142
l 2022.08-ADH-1143

Spark

l 3.2.0-2022.08-L-1132
l 3.2.0-2022.08-AHM-1133
l 3.2.0-2022.08-H-1134
l 3.2.0-2022.08-HM-1135
l 3.2.0-2022.08-D-1136
l 3.2.0-2022.08-AL-1137
l 3.2.0-2022.08-AD-1138
l 3.2.0-2022.08-ABGCSHMS-1139
l 3.2.0-2022.08-AGCSHLM-1140
l 3.2.0-2022.08-M-1141
l 3.2.0-2022.08-GCSL-1142
l 3.2.0-2022.08-ADH-1143

Chapter 3

lxxxiv

Chapter 3

2022.07
Collibra Data Quality & Observability

l 2022.07-L-939
l 2022.07-AHM-940
l 2022.07-H-941
l 2022.07-HM-942
l 2022.07-D-943
l 2022.07-AL-944
l 2022.07-AD-945
l 2022.07-ABGCSHMS-947
l 2022.07-M-946

Spark

l 3.2.0-2022.07-L-939
l 3.2.0-2022.07-AHM-940
l 3.2.0-2022.07-H-946
l 3.2.0-2022.07-HM-942
l 3.2.0-2022.07-D-943
l 3.2.0-2022.07-AL-944
l 3.2.0-2022.07-AD-945
l 3.2.0-2022.07-ABGCSHMS-947
l 3.2.0-2022.07-M-946

2022.06
Collibra Data Quality & Observability

l 2022.06-L-819
l 2022.06-AHM-820
l 2022.06-H-821
l 2022.06-HM-822
l 2022.06-D-823
l 2022.06-AL-824
l 2022.06-AD-825
l 2022.06-ABGCSHMS-826
l 2022.06-M-830

Spark

lxxxv

l 3.2.0-2022.06-L-819
l 3.2.0-2022.06-AHM-820
l 3.2.0-2022.06-H-821
l 3.2.0-2022.06-HM-822
l 3.2.0-2022.06-D-823
l 3.2.0-2022.06-AL-824
l 3.2.0-2022.06-AD-825
l 3.2.0-2022.06-ABGCSHMS-826
l 3.2.0-2022.06-M-830

2022.05
Collibra Data Quality & Observability

l 2022.05-L-714
l 2022.05-AL-715
l 2022.05-H-716
l 2022.05-AHM-717
l 2022.05-ABGCSHMS-719
l 2022.05-D-721
l 2022.05-AD-723
l 2022.05-BDG-751
l 2022.05.2-L-737
l 2022.05.2-AHM-738
l 2022.05.2-HM-739
l 2022.05.2-H-740

Spark

l 3.2.0-2022.05-L-714
l 3.2.0-2022.05-AL-715
l 3.2.0-2022.05-H-716
l 3.2.0-2022.05-AHM-717
l 3.2.0-2022.05-ABGCSHMS-719
l 3.2.0-2022.05-D-721
l 3.2.0-2022.05-AD-723
l 3.2.0-2022.05-BDG-751
l 3.2.0-2022.05.2-L-737
l 3.2.0-2022.05.2-AHM-738

Chapter 3

lxxxvi

Chapter 3

l 3.2.0-2022.05.2-HM-739
l 3.2.0-2022.05.2-H-740

2022.04
Collibra Data Quality & Observability

l 2022.04-L-303
l 2022.04-AL-302
l 2022.04-296
l 2022.04-A-295
l 2022.04-ALL-294 2
l 2022.04-ABHGCSGCRS-291

Spark

l 3.2.0-2022.04-L-303
l 3.2.0-2022.04-AL-302
l 3.2.0-2022.04-296
l 3.2.0-2022.04-A-295
l 3.2.0-2022.04-ALL-294
l 3.2.0-2022.04-ABHGCSGCRS-291

Note The default build is considered the Secure Build with no optional drivers
included and no critical vulnerabilities.

Config Map Example
These are the configs to change the versions. For a complete list of versions for Collibra
DQ and Spark, refer to the Available Containers section above.

--set global.version.owl=2022.05-720 --set glob-
al.version.spark=3.2.0-2022.05-720

Pull Examples
docker pull https://gcr.io/owl-hadoop-cdh/owl-agent:2022.05-L-714

lxxxvii

https://gcr.io/owl-hadoop-cdh/owl-agent:2022.05-L-714

docker pull https://gcr.io/owl-hadoop-cdh/owl-livy:3.2.0-2022.05-L-714

docker pull https://gcr.io/owl-hadoop-cdh/owl-web:2022.05-L-714

docker pull https://gcr.io/owl-hadoop-cdh/spark:3.2.0-2022.05-L-714

Description
Example: 2022.05-L-714

2022-05: Release number (Year and Month)

L: Optional Livy package included 714 - A unique number appended to each build

Default Drivers
Always Packaged

l SQL Server
l Oracle
l Snowflake
l Redshift
l S3
l ADLS
l Postgres
l Mysql
l Teredata
l Sybase
l Db2
l Dremio

Optional Drivers
Please select drivers

l ABGCSHLMS (Drivers Initial in alphabetical order):
o A : Athena
o B : BigQuery

Chapter 3

lxxxviii

https://gcr.io/owl-hadoop-cdh/owl-livy:3.2.0-2022.05-L-714
https://gcr.io/owl-hadoop-cdh/owl-web:2022.05-L-714
https://gcr.io/owl-hadoop-cdh/spark:3.2.0-2022.05-L-714
https://gcr.io/owl-hadoop-cdh/owl-agent:2022.05-L-714

Chapter 3

o D = Databricks
o GCS : Google Cloud Storage Connector
o H : Hive
o L : Livy
o M : MongoDB
o S : Solr

lxxxix

xc

APIs

Rest
Please see the REST APIs section for more details.

Chapter 4

Chapter 4

import requests
import json

Variables
owl = 'https://<ip_address>' #Edit
user = '<user>' #Edit
password = '<password>' #Edit
tenant = 'public' #Edit
dataset = '<your_dataset_name>' #Edit
runDate = '2021-08-08' #Edit
agentName = 'your_agent_name' #Edit

Authenticate
url = owl+'/auth/signin'
payload = json.dumps({"username": user, "password": password,
"iss": tenant })
headers = {'Content-Type': 'application/json'}
response = requests.request("POST", url, headers=headers, data-
a=payload, verify=False)
owl_header = {'Authorization': 'Bearer ' + response.json()
['token']}

Run
response = requests.post(url = owl + '/v3/-
job-
s/run-
?agentName='+agentName+'&dataset='+dataset+'&runDate='+runDate,
headers=owl_header, verify=False)
jobId = str(response.json()['jobId'])

Wait
time.sleep(100)

Results
response = requests.get(url = owl + '/v3/-
jobs/'+jobId+'/findings', headers=owl_header, verify=False)

Notebook
Please see the Databricks example for more information

xci

val dataset = "cdq_notebook"
var date = "2018-01-11"

// Options
val opt = new OwlOptions()
opt.dataset = dataset
opt.runId = date
opt.host = pgHost
opt.port = pgPort
opt.pgUser = pgUser
opt.pgPassword = pgPass

// Pre Routine
val cdq = com.owl.core.util.OwlUtils.OwlContext(df, opt)
.register(opt)

// Scan
cdq.owlCheck()
val results = cdq.hoot()

Chapter 4

xcii

xciii

Collibra DQ Installation

Chapter 5

Chapter 5

Standalone
When large scale and high concurrency checks are not required, DQ can be installed and
operated entirely on a single host. In this mode, DQ will leverage a Spark Standalone
pseudo cluster where the master and workers run and use resources from the same
server. DQ also requires a Postgres database for storage and Java 8 for running the DQ
web application. It is possible to install each of the Spark, Postgres, and Java 8
components separately and install DQ on top of existing components. However, we offer a
full installation package that installs these components in off-line mode and install DQ in
one server.

xciv

Standalone Install

1. Setup Tutorial Assumptions

We assume that a server running Centos 7 or RHEL 7 is set up and ready to install Collibra
DQ in the home directory (base path: OWL_BASE) under the subdirectory owl(install path:
$OWL_BASE/owl). There is no requirement for Collibra DQ to be installed in the home
directory, but the DQ Full Installation script may lead to permission-denied issues during
local Postgres server installation if paths other than the home directory are used. If these
issues occur, please adjust your directory permission to allow the installation script a write
access to the Postgres data folder.

This tutorial assumes that you are installing Collibra DQ on a brand new compute instance
on Google Cloud Platform. Google Cloud SDK setup with proper user permission is
assumed. This is optional, as you are free to create Full Standalone Installation setup on
any cloud service provider or on-premise.

Please refer to the GOAL section for the intended outcome of each step and modify
accordingly.

Note The full install package supports Centos 7 and RHEL 7. If another OS flavor is
required, please follow the basic install process.

Create new GCP Compute Instance named "install"
gcloud compute instances create install \
 --image=centos-7-v20210701 \
 --image-project=centos-cloud \
 --machine-type=e2-standard-4

SSH into the instance as user "centos"
gcloud compute ssh --zone "us-central1-a" --project "gcp-
example-project" "centos@full-standalone-installation"

GOAL

1. Create a new compute instance on a cloud provider (if applicable).
2. Access the server where DQ will be installed.

Chapter 5

xcv

Chapter 5

2. Download DQ Full Package

Download full package tarball using the signed link to the full package tarball provided by
the DQ Team. Replace <signed-link-to-full-package> with the link provided.

Go to the OWL_BASE (home directory of the user is most com-
mon)
This example uses /home/owldq installing as the user owldq

cd /home/owldq

Download & untar
curl -o dq-full-package.tar.gz "<signed-link-to-full-package>"
tar -xvf dq-full-package.tar.gz

Clean-up unnecessary tarball (optional)
rm dq-full-package.tar.gz

GOAL

1. Download the full package tarball and place it in the $OWL_BASE (home directory).
Download via curl or upload directly via FTP. The tarball name is assumed to be
dq-full-package.tar.gzfor the sake of simplicity.

2. Untardq-full-package.tar.gz to OWL_BASE.

3. Install DQ + Postgres + Spark

First set some variables for OWL_BASE (where to install DQ. In this tutorial, you are already
in the directory that you want to install), OWL_METASTORE_USER (the Postgres username
used by DQWeb Application to access Postgres storage), and OWL_METASTORE_PASS
(the Postgres password used by DQWeb Application to access Postgres storage).

base path that you want owl installed. No trailing

export OWL_BASE=$(pwd)
export OWL_METASTORE_USER=postgres
minimum complexity recommended (18 length, upper, lower, num-
ber, symbol)
example below
export OWL_METASTORE_PASS=H55Mt5EbXh1a%$aiX6

xcvi

dq-package-full.tar.gz that you untarred contains installation packages for Java 8 or
Java 11, Postgres 11, and Spark. There is no need to download these components. These
off-line installation components are located in $(pwd)/package/install-packages .

One of the files extracted from the tarball is setup.sh. This script installs DQ and the
required components. If a component already exist (for example, Java 8 is already
installed and $JAVA_HOME is set), then that component is not installed (i.e. Java 8
installation is skipped).

To control which components are installed, use the -options=...parameter. The
argument provided should be a comma-delimited list of components to install (valid inputs:
spark, postgres, owlweb, and owlagent. -
options=postgres,spark,owlweb,owlagentmeans "install Postgres, Spark pseudo
cluster, Owl Web Application, and Owl Agent". Note that Java is not part of the options.
Java 8 or Java 11 installation is automatically checked and installed/skipped depending on
availability.

At a minimum, you must specify -options=spark,owlweb,owlagent if you
independently installed Postgres or use an external Postgres connection (as shown in
Step #3, if you choose that installation route).

The following installs PostgresDB locally as part of Col-
libra DQ install

./setup.sh \
 -owlbase=$OWL_BASE \
 -user=$OWL_METASTORE_USER \
 -pgpassword=$OWL_METASTORE_PASS \
 -options=postgres,spark,owlweb,owlagent

Note If you are prompted to install Java 8 or Java 11 because you do not have one
of them installed, accept to install from a local package.

You are prompted to select a location to install Postgres, as shown below:

Chapter 5

xcvii

Chapter 5

Postgres DB needs to be intialized. Default location = <OWL_
BASE>/postgres/data
to change path please enter a FULL valid path for Postgres and
hit <enter>
DB Path [<OWL_BASE>/owl/postgres/data] =

If the data files for the Postgres database need to be hosted at a specific location, provide
it during this prompt. Ensure the directory is writable. Otherwise, press <Enter> to install
the data files into $OWL_BASE/owl/postgres/data. The default suggested path does
not have permission issues if you use OWL_BASE as the home directory.

If no exceptions occur and the installation is successful, then the process completes with
the following output:

installing owlweb
starting owlweb
starting owl-web
installing agent
not starting agent
install complete
please use owl owlmanage utility to configure license key and
start owl-agent after owl-web successfully starts up

GOAL

1. Specify OWL_BASE path where DQ will be installed and specify Postgres environment
variables.

2. Install DQWeb with Postgres and Spark linked to DQ Agent (all files are in the
$OWL_BASE/owl sub-directory) using setup.sh script provided. The location of
OWL_BASE and Postgres are configurable, but we advise you take the defaults.

4. Install DQ + Spark and use existing Postgres (advanced)

Note Skip Step 3 if you opted to install Postgres and performed Step 2 instead.

We recommend Step 3 over Step 2 for advanced DQ Installer.

xcviii

If you already installed DQ in the previous step, then skip this step. This is only for those
who want to use external Postgres (e.g. use GCP Cloud SQL service as the Postgres
metadata storage). If you have an existing Postgres installation, then everything in the
previous step applies except the Postgres data path prompt and the setup.sh command.

Refer to Step 2 for details on OWL_BASE, OWL_METASTORE_USER , and OWL_METASTORE_
PASS.

The base path that you want Collibra DQ installed. No trailing

export OWL_BASE=$(pwd)
export OWL_METASTORE_USER=postgres

minimum complexity recommended (18 length, upper, lower, num-
ber, symbol)
example below
export OWL_METASTORE_PASS=H55Mt5EbXh1a%$aiX6

Run the following installation script. Note the missing "Postgres" in -options and new
parameter -pgserver. This -pgserver could point to any URL that the standalone
instance has access to.

The following does not install PostgresDB and
uses existing PostgresDB server located in localhost:5432 with
"postgres" database
./setup.sh \
 -owlbase=$OWL_BASE \
 -user=$OWL_METASTORE_USER \
 -pgpassword=$OWL_METASTORE_PASS \
 -options=spark,owlweb,owlagent \
 -pgserver="localhost:5432/postgres"

The database named postgres is used as the default DQ metadata storage. Changing
this database name is out-of-scope for Full Standalone Installation. Contact the DQ team
for assistance.

GOAL

1. Specify OWL_BASE path where DQ will be installed and specify Postgres environment
variables

Chapter 5

xcix

Chapter 5

2. Install DQWeb and Spark linked to DQ Agent (all files will be in $OWL_BASE/owl
sub-directory) using setup.sh script provided and link DQWeb to an existing Post-
gres server.

5. Verify DQ and Spark Installation

The installation process will start the DQWeb Application. This process initializes the
Postgres metadata storage schema in Postgres under the database named postgres.
This process must complete successfully before the DQ Agent can be started. Wait
approximately 1 minute for the Postgres metadata storage schema to be populated. If you
can access DQWeb using <url-to-dq-web>:9000 using a Web browser, then this
means you have successfully installed DQ.

Next, verify that the Spark Cluster has started and is available to run DQ checks using
<url-to-dq-web>:8080. Take note of the Spark Master URL starting with
spark://.... This is required during DQ Agent configuration.

c

6. Set License Key

In order for DQ to run checks on data, the DQ Agent must be configured with a license key.
Replace <license-key> with a valid license key provided by Collibra.

Note Your license key is the value following YOUR KEY IS = in the license
provision email.

cd $OWL_BASE/owl/bin
./owlmanage.sh setlic=<license-key>

expected output:
> License Accepted new date: <expiration-date>

7. Set License Name

It is required that you set a license name upon your initial deployment of Collibra DQ.

Replace <your-license-name> with a valid license name provided by Collibra.

Chapter 5

ci

Chapter 5

Note Your license name is the value following YOUR NAME IS = in the license
provision email.

vi /<install-dir>/owl/config/owl-env.sh
export LICENSE_NAME=<your-license-name>

8. Set DQ Agent Configuration

Start the DQ Agent process to enable processing of DQ checks.

1 Start the agent to create the agent.properties file.
cd $OWL_BASE/owl/bin
./owlmanage.sh start=owlagent

2 Stop the agent and add this line to agent.properties:
./owlmanage.sh stop=owlagent

3 Add this line to agent.properties:
sparksubmitmode=native
sparkhome=</your/spark/home/folder>

4 Start the agent again.
./owlmanage.sh start=owlagent

5 Verify that agent.properties contains the correct details.
cd $OWL_BASE/owl/config
cat $OWL_BASE/owl/config/agent.properties

When the script successfully runs, the $OWL_BASE/owl/config folder contains a file
called agent.properties. This file contains agent ID and the number of agents installed
in your machine. Since this is the first non-default agent installed, the expected agent ID is
2. Verify that the agent.properties file is created. Youragent.properties is
expected to have a different timestamp, but you should see agentid=2.

cii

cd $OWL_BASE/owl/config
cat agent.properties

expected output:
> #Tue Jul 13 22:26:19 UTC 2021
> agentid=2

Once the DQ Agent starts, it needs to be configured in DQWeb in order to successfully
submit jobs to the local Spark (pseudo) cluster.

The new agent is set up with the template base path /opt and install path /opt/owl. The
owlmanage.sh start=owlagent script does not respect OWL_BASE environment. You
must edit the Agent Configuration to follow the OWL_BASE.

Follow the steps in the Agent section to configure the newly created DQ Agent and edit the
following parameters in DQ Agent #2.

l Replace all occurrence of /opt/owl with your $OWL_BASE/owl/in Base Path, Col-
libra DQ Core JAR, Collibra DQ Core Logs, Collibra DQ Script, and Collibra DQ
Web Logs.

o Note that Base Path here does not refer to OWL_BASE
l Replace Default Master value with the Spark URL from Fig 3
l Replace Number of Executors(s), Executor Memory (GB), Driver Memory (GB) to
a reasonable default based on the size of your instance.

Refer to the Agent section for descriptions of the parameters.

Specify the Number of Core(s).

To limit Spark cores from being used for each job, a common configuration for the Free
Form (Appended) field is -conf spark.cores.max=8.

Set the Default Deployment Mode option to Clientfor a Spark Standalone master.

Chapter 5

ciii

Chapter 5

8. Create DB Connection for DQ Job

Follow the steps on Agent to add metastore database connection.

Note In the following examples, a DQ Job is run against local DQ Metadata
Storage.

Follow the steps on Agentsection to configure newly created DQ Agent.

Click the compass icon in the navigation pane to open the Explorer page. Click the
metastore connection, select the public schema, and select the first table in the resulting
list of tables. From the Preview and Scope page, click Build Model. When the Profile page
populates, click Save/Run.

civ

On the Run page, click Estimate Job, acknowledge the resource recommendations, and
click Run.

Click the revolving arrows icon in the left navigation panel to open the Jobs page.

Chapter 5

cv

Chapter 5

Wait 10 seconds and then click the refresh button above the Status column until the status
shows that the DQ job is Finished. We recommend refreshing several times, pausing for a
few seconds in between clicks. While a job runs, the Activity column tracks the sequence
of activities DQ performs before it completes a job. A successful job shows its status as
Finished last.

Troubleshooting + Helpful Commands

Setting permissions on your pem file for ssh access

chmod 400 ~/Downloads/ssh_pem_key

Make sure working directory has permissions

For example, if I SSH into the machine with user owldq and use my default home directory
location /home/owldq/

Ensure appropriate permissions
drwxr-xr-x

chmod -R 755 /home/owldq

cvi

Reinstall Postgres

Postgres data directly initialization failed
Postgres permission denied errors
sed: can't read /home/owldq/owl/-
postgres/data/postgresql.conf: Permission denied

sudo rm -rf /home/owldq/owl/postgres
chmod -R 755 /home/owldq

Reinstall just postgres
./setup.sh -owlbase=$OWL_BASE -user=$OWL_METASTORE_USER -pgpass-
word=$OWL_METASTORE_PASS -options=postgres

Changing Postgres password from SSH

If you need to update your postgres password, you can lever-
age SSH into the VM
Connect to your hosted instance of Postgres

sudo -i -u postgres
psql -U postgres
\password
#Enter new password: ### Enter Strong Password
#Enter it again: ### Re-enter Strong Password
\q
exit

Permissions for ssh keys when starting Spark

Spark standalone permission denied after using ./start-
all.sh

ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Chapter 5

cvii

Chapter 5

Permissions if log files are not writable

Changing permissiongs on individual log files

sudo chmod 777 /home/owldq/owl/pids/owl-agent.pid
sudo chmod 777 /home/owldq/owl/pids/owl-web.pid

Getting the hostname of the instance

Getting the hostname of the instance

hostname -f

Checking/deleting space of spark worker directory

Checking worker nodes disk space

sudo du -ah | sort -hr | head -5
sudo find /home/owldq/owl/spark/work/* -mtime +1 -type f -delete

Increase Thread pool / Thread Pool Exhausted

Adding to the owl-env.sh script

vi owl-env.sh
modify these lines

export SPRING_DATASOURCE_POOL_MAX_WAIT=500
export SPRING_DATASOURCE_POOL_MAX_SIZE=30
export SPRING_DATASOURCE_POOL_INITIAL_SIZE=5

restart web and agent

Adding to the Spark agent configurations

cviii

If you see the following message, update the agent configurations within load-spark-
env.sh:

Failed to obtain JDBC Connection; nested exception is org.a-
pache.tomcat.jdbc.pool.PoolExhaustedException: [pool-29-thread-
2] Timeout: Pool empty. Unable to fetch a connection in 0
seconds, none available[size:2; busy:1; idle:0; lastwait:200].

Adjust the following configurations to modify the connection pool available:

export SPRING_DATASOURCE_POOL_MAX_WAIT=1000
export SPRING_DATASOURCE_POOL_MAX_SIZE=30
export SPRING_DATASOURCE_POOL_INITIAL_SIZE=5

Note The load-spark-env.sh file is located in the $SPARK_HOME/bin folder.

Adding to the owl.properties file

Depending on client vs. cluster mode and cluster type, you may also need to add the
following configurations in the owl.properties file:

spring.datasource.tomcat.initial-size=5
spring.datasource.tomcat.max-active=30
spring.datasource.tomcat.max-wait=1000

Active Database Queries

select * from pg_stat_activity where state='active'

Chapter 5

cix

Chapter 5

Too many open files configuration

"Too many open files error message"
check and modify that limits.conf file
Do this on the machine where the agent is running for Spark
standalone version

ulimit -Ha
cat /etc/security/limits.conf

Edit the limits.conf file
sudo vi /etc/security/limits.conf

Increase the limit for example
Add these 3 lines
fs.file-max=500000
* soft nofile 58192
* hard nofile 100000
do not comment out the 3 lines (no '#'s in the 3 lines
above)

Redirecting Spark Scratch

Redirect Spark scratch to another location
SPARK_LOCAL_DIRS=/mnt/disks/sdb/tmp

Set Spark to delete older files
export SPARK_WORKER_OPTS="${SPARK_WORKER_OPTS} -Dspark.-
worker.cleanup.enabled=true -Dspark.worker.cleanup.interval=1800
-Dspark.worker.cleanup.appDataTtl=3600"

Or change Spark storage with an agent configuration -conf
spark.local.dir=/home/owldq/owl/owltmp

cx

Tip: Add Spark Home Environment Variables to Profile

Adding ENV variables to bash profile

Variable 'owldq' below should be updated wherever installed
e.g. centos

vi ~/.bash_profile
export SPARK_HOME=/home/owldq/owl/spark
export PATH=$SPARK_HOME/bin:$PATH

Add to owl-env.sh for standalone install

vi /home/owldq/owl/config/owl-env.sh
export SPARK_HOME=/home/owldq/owl/spark
export PATH=$SPARK_HOME/bin:$PATH

Check Processes are Running

Checking PIDS for different components

ps -aef|grep postgres
ps -aef|grep owl-web
ps -aef|grep owl-agent
ps -aef|grep spark

Chapter 5

cxi

Chapter 5

Starting Components

Restart different components

cd /home/owldq/owl/bin/
./owlmanage.sh start=postgres
./owlmanage.sh start=owlagent
./owlmanage.sh start=owlweb

cd /home/owldq/owl/spark/sbin/
./stop-all.sh
./start-all.sh

Configuration Options

Setup.sh arguments

Argument Description

-non-interactive Skips asking to accept Java license agreement.

-skipSpark Skips the extraction of Spark components.

-stop Do not automatically start all components (Owl-Web, Zeppelin, Postgres).

-port= Set DQWeb application to use the defined port.

-user= Optional parameter to set the user to run Collibra DQ. The default is the cur-
rent user.

-owlbase= Sets the base path to where you want Collibra DQinstalled.

-owlpackage= Optional parameter to set the Collibra DQ package directory. The default is
the current working directory.

-help Display this help and exit.

-options= The different Collibra DQ components to install in a comma-separated list
format. For example, -options=owlagent,owlweb,postgres,spark

cxii

Argument Description

-pgpassword= The password used to set for the Postgres metastore. For unattended installs.

-pgserver= The name of the Postgres server. For example, -pgserver=owl-postgres-
host.example.com:5432/owldb. For unattended installs.

Example:
./setup.sh -port=9000 -user=ec2-user -owlbase=/home/ec2-user -

owlpackage=/home/ec2-user/packages

l The tar ball extracted to this folder on my EC2 Instance: **** /home/ec2-user-
/packages/

l Collibra DQ is running as the **** ec2-user
l The DQWeb application runs on port 9000
l The base location for the setup.sh script to create the will be: /home/ec2-user/

Example installing just the agent (perhaps on an Edge node
of a hadoop cluster):
./setup.sh -user=ec2-user -owlbase=/home/ec2-user -

owlpackage=/home/ec2-user/package -options=owlagent

l The package extracted to this folder on my EC2 Instance: **** /home/ec2-user-
/packages/

l Owl-agent is running as the **** ec2-user
l The base location for the setup.sh script to create the Collibra DQ folder and place all
packages under Collibra DQ is: /home/ec2-user/

When installing different features, the following questions are asked:

l postgres = Postgres DBPassword needs to be supplied.
l If postgres is not being installed (such as agent install only) postgres metastore
server name needs to be supplied.

Chapter 5

cxiii

Chapter 5

Launching and Administering Collibra DQ

When the setup.sh script finishes by default software is automatically started. The
setup.sh also creates the owlmanage.sh script which allows for stopping and starting of all
owl services or some components of services. The setup script will also generate an owl-
env.sh script that will hold the main variables that are reused across components (see owl-
env.sh under the config directory).

cxiv

Collibra DQ Directory Structure after running Setup.sh

Chapter 5

cxv

Chapter 5

cxvi

Configuration of ENV settings within owl-env.sh
Contents of the Owl-env.sh script and what the script is used for.

Owl-env.sh Scripts Description

export SPARK_CONF_DIR="/home/collibra/owl/cdh-
spark-conf"

The directory on your machine where the
Spark conf directory resides.

export INSTALL_PATH="/home/collibra/owl" The installation directory of Collibra DQ.

export JAVA_HOME="/home/collibra/jdk1.8.0_131" Java Home for Collibra DQ to leverage.

export LOG_PATH="/home/collibra/owl/log" The log path.

export BASE_PATH="/home/collibra" The base location under which the Col-
libra DQ directory resides.

export SPARK_MAJOR_VERSION=2 Spark Major version. Collibra DQ only
supports 2+ version of Spark.

export OWL_LIBS="/home/collibra/owl/libs" Lib Directory to inject in spark-submit
jobs.

export USE_LIBS=0 Use the lib directory or not. 0 is the default.

A value of 0 means the lib directory is not
used.

A value of 1 means the lib directory is used.

export SPARKSUBMITEXE="spark-submit" Spark submit executable command. Col-
libra DQ using spark-submit as an
example.

Chapter 5

cxvii

Chapter 5

Owl-env.sh Scripts Description

export ext_pass_manage=0 If using a password management sys-
tem. You can enable for password to be
pulled from it.

A value of 0 disables an external pass-
word management system.
A value of 1 enables an external pass-
word management system.

export ext_pass_script="/opt/owl/bin/getpassword.sh" Leverage password script to execute a
get password script from the vault.

TIMEOUT=900 #15 minutes in seconds Owl-Web user time out limits.

PORT=9003 #owl-web port NUMBER The default port to use for owl-web.

SPRING_LOG_LEVEL=ERROR The logging level to be displayed in the
owl-web.log

SPRING_DATASOURCE_DRIVER_CLASS_NAME-
E=org.postgresql.Driver

The driver class name for postgres
metastore (used by web).

export SPRING_DATASOURCE_URL-
L=jdbc:postgresql://localhost:5432/postgres

JDBC connection string to Collibra DQ
Postgres metastore.

export SPRING_DATASOURCE_USERNAME-
E=collibra

Collibra DQ Postgres username.

export SPRING_DATASOURCE_PASSWORD-
D=3+017wfY1l1vmsvGYAyUcw5zGL

Collibra DQPostgres password.

export AUTOCLEAN=TRUE/FALSE TRUE/FALSE Enable/Disable auto-
matically delete old datasets.

export DATASETS_PER_ROW=200000 Delete datasets after this threshold is hit
(must be greater than the default to
change).

cxviii

Owl-env.sh Scripts Description

export ROW_COUNT_THRESHOLD=300000 Delete rows after this threshold is hit
(must be greater than the default to
change).

export SERVER_HTTP_ENABLED=true Enabling HTTP to owl web

export OWL_ENC=OFF #JAVA for java encryption Enable Encryption (NOTE need to add to
owl.properties also). Has to be in form
owl.enc=OFF within owl.properties file to
disable, and in this form owl.enc=JAVA
to enable. the owl.properties file is loc-
ated in the owl install path /config folder
(/opt/owl/config).

PGDBPATH=/home/collibra/owl/owl-postgres/bin/data Path for Postgres DB

export RUNS_THRESHOLD=5000 Delete runs after this threshold is hit
(must be greater than the default to
change).

export HTTP_SECONDARY_PORT=9001 Secondary HTTP port to use which is
useful when SSL is enabled.

export SERVER_PORT=9000 Same as PORT.

export SERVER_HTTPS_ENABLED=true Enabling of SSL.

export SERVER_SSL_KEY_TYPE=PKCS12 Certificate trust store.

export SERVER_SSL_KEY_PASS-
S=t2lMFWEHsQha3QaWnNaR8ALaFPH15Mh9

Certificate key password.

export SERVER_SSL_KEY_ALIAS=owl Certificate key alias.

export SERVER_REQUIRE_SSL=true Override HTTP on and force HTTPS
regardless of HTTP settings.

export MULTITENANTMODE=FALSE Flipping to TRUE will enable multi tenant
support.

Chapter 5

cxix

Chapter 5

Owl-env.sh Scripts Description

export multiTenantSchemaHub=owlhub Schema name used for multi tenancy.

export OWL_SPARKLOG_ENABLE=false Enabling deeper spark logs when
toggled to true.

export LDAP_GROUP_RESULT_DN_ATTRIBUTE The attribute to the full path of the group
object, for example,
CN=OwlAppAdmin
,OU=OwlGroups,OU=Groups,DC=owl,
DC=com.

Default is distinguishedname.

export LDAP_GROUP_RESULT_NAME_ATTRIBUTE The attribute to the simple name of the group,
for example, OwlAppAdmin.

Default is CN.

export LDAP_GROUP_RESULT_CONTAINER_BASE Property used in the scenario where the
LDAP_GROUP_RESULT_DN_
ATTRIBUTE does not return a value. In
this case, the LDAP_GROUP_RESULT_
NAME_ATTRIBUTE prepends to this
value, which creates a fully qualified
LDAP path. For example,
OU=OwlGroups
,OU=Groups,DC=owl,DC=com. Default
is <null>.

Configuration of owl.properties file

Example Description

key=XXXXXX The license key.

spring.data-
source.url=jdbc:postgresql://localhost:5432/postgres

The connection string to the Collibra
DQ metastore (used by owl-core).

cxx

Example Description

spring.datasource.password=xxxxxx The password to the Collibra DQ
metastore (used by owl-core).

spring.datasource.username=xxxxxx The username to the Collibra DQ
metastore (used by owl-core).

spring.datasource.driver-class-name-
e=com.owl.org.postgresql.Driver

Shaded Postgres driver class
name.

spring.agent.datasource.url jdb-
c:postgresql://$host:$port/owltrunk

spring.agent.datasource.username {user}

spring.agent.datasource.passwords {password}

spring.agent.datasource.driver-class-name org.postgresql.Driver

Starting Spark

Spark Standalone Mode - Spark 3.2.0 Documentation

Launch Scripts

To launch a Spark standalone cluster with the launch scripts, you should create a file
called conf/workers in your Spark directory, which must contain the hostnames of all the
machines where you intend to start Spark workers, one per line. If conf/workers does not
exist, the launch scripts defaults to a single machine (localhost), which is useful for testing.
Note, the master machine accesses each of the worker machines via ssh. By default, ssh
is run in parallel and requires password-less (using a private key) access to be setup. If
you do not have a password-less setup, you can set the environment variable SPARK_
SSH_FOREGROUND and serially provide a password for each worker.

Once you’ve set up this file, you can launch or stop your cluster with the following shell
scripts, based on Hadoop’s deploy scripts, and available in SPARK_HOME/sbin:

Chapter 5

cxxi

https://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts

Chapter 5

Shell Script Description

sbin/start-

master.sh

Starts a master instance on the machine the script is executed on.

sbin/start-

workers.sh

Starts a worker instance on each machine specified in the conf/workers

file.

sbin/start-

worker.sh

Starts a worker instance on the machine the script is executed on.

sbin/start-

all.sh

Starts both a master and a number of workers as described above.

sbin/stop-

master.sh

Stops the master that was started via the sbin/start-master.sh script.

sbin/stop-

worker.sh

Stops all worker instances on the machine the script is executed on.

sbin/stop-

workers.sh

Stops all worker instances on the machines specified in the conf/workers

file.

sbin/stop-

all.sh

Stops both the master and the workers as described above.

Note These scripts must be executed on the machine you want to run the Spark
master on, not your local machine.

Starting Spark Standalone

cd /home/owldq/owl/spark/sbin
./start-all.sh

Stopping Spark
cd /home/owldq/owl/spark/sbin
./stop-all.sh

cxxii

Starting Spark with Separate Workers

SPARK_WORKER_OPTS=" -Dspark.worker.cleanup.enabled=true -Dspark.-
worker.cleanup.interval=1799 -Dspark.-
worker.cleanup.appDataTtl=3600"

1 start master
/home/owldq/owl/spark/sbin/start-master.sh

2 start workers
SPARK_WORKER_INSTANCES=3;/home/owldq/owl/spark/sbin/start-
slave.sh spark://$(hostname):7077 -c 5 -m 20g

Standalone Install (Script)

Requirements

Resource Notes Provided by

OS Red Hat 7 or Centos 7 Customer

Memory 16 GB Ram

Cores 8

Storage 50 GB Disk

Permission sudo

Install Script Download using the curl command below Collibra

Access the machine through either a cloud shell or SSH. The snippet below is an example
SSH command.

ssh -i <your_key> <user>@<public-ipv4-ip-address>

ssh -i ~/.ssh/abc.pem centos@22.000.111.3333

Chapter 5

cxxiii

Chapter 5

Your pem file should have correct permissions. Confirm you have the correct permissions
with the command: sudo chmod 400 <your_key>

Steps

After you enter your SSH into the Centos or Redhat VM, run these commands from the
command line:

Step 1: Download the script

curl -o cdq_install.sh https://owl-pack-
ages.s3.amazonaws.com/MP/cdq_install.sh

Step 2: Modify script permission

sudo chmod +x cdq_install.sh

Step 3: Run the script

echo | ./cdq_install.sh

Note The most common directory to use for installation is your user directory
(/home/<user>). You do not need to create any directories because the install script
creates the correct directory structure. You should have sudo access to perform the
installation and the directory should not be a restricted system directory.

In this step, you are prompted to enter a default admin user email and password
associated with the default admin user account.

The password must adhere to the following password policy:

l A minimum of 8 characters.
l A maximum of 72 characters.

cxxiv

l At least one upper-case character.
l At least one numeric character.
l At least one supported special character (!@#%$^&*?_~).
l Cannot contain the user ID (admin).

Warning As part of Collibra's password policy, you cannot proceed with installation
until you enter a valid password.

Step 4: Click the URL
Sign in to the application with the username admin and the default admin password you
provided in the setup script.

http://<server_name/ip>:9000

Note Make sure you have access to the server and port. Adding the correct
security group or whitelisting your IP address is a common step to be able to access
an application running on a cloud server.

BYOL (Optional)

Using the same command, you can bring your own license or use a different download
link.

./cdq_install.sh "<Installer Download Link>" "<License Key>"

Confirmation (Optional)

Once the installation script is complete, check the details of the processes on the server.

ps -ef | grep -i spark
ps -ef | grep -i owl-web
ps -ef | grep -i owl-agent
ps -ef | grep -i postgres

Chapter 5

cxxv

Chapter 5

When all of the processes are up and running, sign in to your standalone instance of
Collibra Data Quality & Observability.

Configure your Agent and Adding Connections as normal.

Troubleshooting

Common error messages
If you receive an error with the message, "Application already running on port 8080," enter
the following command:

sudo netstat -plten |grep java

You can then use a kill command to kill the process.

kill -9 <appId>

Note If you receive a "permission denied" error message, make sure that you are
using sudo.

Getting Started with AWS

Prerequisites

To get started, you need a Collibra Data Quality account.

Connecting to Collibra Data Quality

1. To connect to your environment, enter your URL.

Example: https://<your_host_name>:9000

2. Enter "admin" as your Username and your unique Instance ID as your Password.

cxxvi

Note Username: admin Password: CDQ<your_instance_id>

3. From the home page, click the Explorer tab.

4. From Explorer, select a connection from the Connections dropdown to access your
data set.

Chapter 5

cxxvii

Chapter 5

What's next?

l Visit the Explorer (no-code) for more information on quickly connecting to your data
sets.

l Visit Collibra Data Quality's Youtube channel for more tutorials.
l Register for Collibra Data Quality's Product Showcase to learn more about Collibra
Data Quality.

Standalone Install (AWS CloudFormation)
This section describes how to install and configure Collibra Data Quality using the AWS
CloudFormation stack.

Prerequisites

To install Collibra Data Quality using the AWS CloudFormation stack, you need an AWS
user account with permissions to provision AWS resources.

Steps

1. Login to your AWS account and navigate to CloudFormation from the search bar.

cxxviii

https://www.youtube.com/playlist?list=PLD2xg51w57tPl6q9NKwz90iuznQJamaB3
https://citizens.collibra.com/agenda/session/508634

2. In CloudFormation, click the Create stack button and provide the S3 location for the
template.

https://owl-packages.s3.amazonaws.com/MP/CDQ_AWSCF_TEMPLATE_
RHEL.YAML

3. Click Next.

4. Follow the prompts and select the appropriate instance type, VPC, subnet, and key
values based on your AWS account. Rest accepts everything by default.

Chapter 5

cxxix

Chapter 5

5. Click Next.

Note This process takes 10-15 minutes to spin up the EC2 instance and deploy
Collibra DQ.

6. In the Events tab, you can monitor status of your stack.

7. Once your stack is created, click the Outputs tab to access the CDQ Login URL.

cxxx

8. In the Value column, click the CDQ Login URL.

Note Your CDQ instance comes with sample data and prewired DB connections.

9. To uninstall and release the resource, delete the stack.

Standalone Install (Google Cloud Platform)
This section provides information on how to deploy Collibra Data Quality on Google Cloud
Platform.

Prerequisites

You have:

l A Google user account.
l A project for Google Cloud Platform to deploy Collibra Data Quality.
l Deployment Manager permissions provisioned by an admin.

Steps

1. Step 1: Create a new Collibra Data Quality deployment
2. Step 2: Launch a new Collibra Data Quality deployment

Step 1: Create a new Collibra Data Quality deployment

1. Sign in to your Google Cloud Marketplace account and choose your working project
for Collibra Data Quality deployment.

Chapter 5

cxxxi

Chapter 5

2. In the search bar, search for Collibra and press enter.
>> The search results appear.

3. Select Collibra CDQ.
>> The Collibra CDQ product page opens.

4. Select Launch.
>> The New Collibra CDQ deployment page opens.

5. On the New Collibra CDQ deployment page, specify the following information:

cxxxii

Chapter 5

cxxxiii

Chapter 5

Field Description

Deployment name The name of your Collibra Data Quality deployment.

Zone Select the zone closest to your region.

Series The default is E2.

Machine type The default is e2-standard-16 (16 vCPU, 64 GB memory).

Boot disk type The default is Standard Persistent Disk.

Boot disk size in GB The default is 100.

6. Read and accept the Terms of Service.

7. Select Deploy.
>> The Deployment Manager page opens.

Note GCP also sends you a confirmation email containing a direct link to the
Deployment Manager Page.

Step 2: Launch a new Collibra Data Quality deployment

1. From the Deployment Manager, select the site address to sign in to your Collibra
Data Quality instance.

cxxxiv

2. Sign in to your instance using the following one-time username and password: admin /

admin123 >> The Collibra Data Quality landing page opens.

Note You must change your password after successfully signing in for the first
time. Select the avatar in the upper right of your screen and select the Change
Password tab and follow the prompts to change your password.

Chapter 5

cxxxv

Chapter 5

Troubleshooting your deployment
After a successful deployment of Collibra Data Quality on GCP, it is possible that you
receive an error message when you select your site address. If this happens, you can:

l Check your network access and verify that you have the appropriate network tags.
l Check that the firewall entry is properly defined for your install.
l Check the URL and remove the s from https. Also remove the second trailing forward
slash / after :9000. Correct: http://<your.instance>:9000/

Deleting your deployment
To delete your deployment, go to the Deployment Manager. Select Delete at the top of
the screen and then from the dialog box, choose to either

l Delete your deployment and all of its resources.
l Delete your deployment but keep its resources.

cxxxvi

When you select a deletion method, your deployment is permanently removed from the list
of deployments on the Deployment Manager page.

What's next?

l Visit the Explorer (no-code) for more information on quickly connecting to your data
sets.

l Visit Collibra Data Quality's Youtube channel for more tutorials.

Standalone Upgrade

Note Before proceeding with any upgrades, please remember to backup your DQ
Metastore.

Warning Please remember that rolling back Collibra DQ to a prior version is not
supported. Please contact Collibra Support with any questions.

Chapter 5

cxxxvii

https://www.youtube.com/playlist?list=PLD2xg51w57tPl6q9NKwz90iuznQJamaB3

Chapter 5

Download DQ Upgrade Package

Note Beginning December 2021, all Collibra DQ customers upgrading or patching
will receive the Full package (vs. the Base package) and should follow the same
upgrade steps as below.

Download tarball using the signed link to the full package tarball provided by Collibra.
Replace <signed-link-to-full-package> with the link provided.

Go to the OWL_BASE (home directory of the user is most com-
mon)
This example we will use /home/owldq installing as the user
owldq

cd /home/owldq

Download & untar
curl -o dq-full-package.tar.gz "<signed-link-to-full-package>"
tar -xvf dq-full-package.tar.gz

Clean-up unnecessary tarball (optional)
rm dq-full-package.tar.gz

Upgrade Steps

1. Copy the contents of the provided package e.g. owl-<newversion>-<SPARK301>-
package-full.tar.gz to the system being upgraded (extract contents).

o Best practice: Untar the contents into a uniquely named folder, for example,
2022-10-dq-upgrade.

2. Stop the Collibra DQ Web process with the following commands:
a. dc /owlhome/owl/bin

b. ./owlmanage.sh stop=owlweb

3. Stop the Collibra DQ Agent process with the following commands:
a. cd /owlhome/owl/bin

b. ./owlmanage.sh stop=owlagent

4. Move the old jars from owl/bin with the following commands:
a. mv owl-webapp-<oldversion>-<spark301>.jar /tmp

b. mv owl-agent-<oldversion>-<spark301>.jar /tmp

cxxxviii

c. mv owl-core-<oldversion>-<spark301>.jar /tmp

5. Copy the new jars into the owl/bin folder from the extracted package with the fol-
lowing commands:
a. mv owl-webapp-<newversion>-<spark301>.jar

/home/owldq/owl/bin

b. mv owl-agent-<newversion>-<spark301>.jar /home/owldq/owl/bin

c. mv owl-core-<newversion>-<spark301>.jar /home/owldq/owl/bin

6. Start the Collibra DQ Web application with the following command:
o ./owlmanage.sh start=owlweb

7. Start the Collibra DQ Agent with the following command:
o ./owlmanage.sh start=owlagent

8. Validate the number of active services with the following command:

o ps -ef | grep owl

Additional Notes / Steps Due To Log4J (December 2021)

Additional Step 1: Place Log4j-1.2-api-2.17.1.jar (as of
2022.02) into /<install-home>/owl/spark/jars.

Note Was Log4j-1.2-api-2.17.0.jar in 2021.12 and 2022.01.

Who: All Collibra DQ customers, particularly those leveraging CLI mode.

1. Navigate to the same folder where the Collibra provided upgrade package was
extracted.

2. Navigate to <location of 2022-02-dq-upgrade>/packages/install-packages.
3. Extract the needed log4j-1.2-api-2.17.1.jar via the command:tar -xvf spark-

extras.tar.gz spark-extras/log4j-1.2-api-2.17.1.jar.
4. Move the log4j-1.2-api-2.17.1.jar file into /<install-path>/spark/jars folder.

FAQ

Q: (When) do I need to move Log4j-1.2-api-2.17.1.jar before or after swapping the main
Collibra DQ jars?

l A: The sequence does not matter.

Chapter 5

cxxxix

Chapter 5

Q: (What) if I don't follow these additional upgrade steps?

l A: If your SPARK_SUBMIT_MODE within owl-env.sh is set to SPARK_SUBMIT_MODE-
E=native, Collibra DQ will function properly without the above additional upgrade
step, with the exception of CLI mode.

Additional Step 2: Remove a legacy properties file.
Who: Only Collibra DQ customers upgrading Agents installed on Cloudera CDP
Hadoop Edge Nodes.

1. Navigate to /<agenthome>/owl/config/.
2. Remove the log4j-cluster.properties file.

FAQ

Q: (When) do I need to remove log4j-cluster.properties before or after swapping the main
Collibra DQ jars?

l A: Remove the file before restarting owl-agent. Otherwise, stop owl-agent again,
remove the file, then restart owl-agent.

Q: (What) if I don't follow these additional steps?

l A:If you use agents on Hadoop edge nodes, you will receive errors when running DQ
Jobs as a result of engaging a method that no longer exists.

Q: What should I do if I am not a vendor-supported Cloudera CDP version?

l A: Our testing and guidance mainly applies to vendor-supported (non-EOL)
Cloudera CDP versions. Other Hadoop variants may handle logging differently and
may require the legacy properties file. In short, feel free to first upgrade without this
step, then remove the log4j-cluster.properties file if DQ Jobs are running into issues.

Upgrading data source drivers

When new data source drivers are available, they are listed in the Release Notes or
recommended to you directly by Collibra. Determine which drivers need to be updated and
follow these steps:

cxl

1. Confirm with Collibra Support which drivers need to be updated.

2. From the previously extracted tarball provided to you by Collibra, locate the
drivers.tar.gz file and extract the contents into a new directory called "drivers".

3. Replace the drivers:

o Replace OWL_BASE/owl/drivers/<old-driver> with the new drivers extracted
from the tarball OWL_BASE/owl/drivers/<new-driver>.
For example, if you replace an old Databricks driver with a new one, the file
path might look like OWL_BASE/owl/drivers/databricks.

Standalone Sizing

Small Tier - 16 Core, 128G RAM (r5.4xlarge / E16s v3)

Component RAM Cores

Web 2g 2

Postgres 2g 2

Spark 100g 10

Overhead 10g 2

Medium Tier - 32 Core, 256G RAM (r5.8xlarge / E32s v3)

Component RAM Cores

Web 2g 2

Postgres 2g 2

Spark 250g 26

Overhead 10g 2

Chapter 5

cxli

Chapter 5

Large Tier - 64 Core, 512G RAM (r5.16xlarge / E64s v3)

Component RAM Cores

Web 4g 3

Postgres 4g 3

Spark 486g 54

Overhead 18g 4

Estimates

Sizing should allow headroom and based on peak concurrency and peak volume
requirements. If concurrency is not a requirement, you just need to size for peak volume
(largest tables). Best practice to efficiently scan is to scope the job by selecting critical
columns. See Performance Tuning for more information.

Bytes per Cell Rows Columns Gigabytes Gigabytes for Spark (3x)

16 1,000,000.00 25 0.4 1.2

16 10,000,000.00 25 4 12

16 100,000,000.00 25 40 120

16 1,000,000.00 50 0.8 2.4

16 10,000,000.00 50 8 24

16 100,000,000.00 50 80 240

16 1,000,000.00 100 1.6 4.8

16 10,000,000.00 100 16 48

16 1,000,000,000.00 100 1600 4800

16 100,000,000.00 100 160 480

cxlii

Bytes per Cell Rows Columns Gigabytes Gigabytes for Spark (3x)

16 1,000,000.00 200 3.2 9.6

16 10,000,000.00 200 32 96

16 100,000,000.00 200 320 960

16 1,000,000,000.00 200 3200 9600

Cluster

If your program requires more horsepower or (spark) workers than the example tiers
above which is fairly common in Fortune 500 companies then you should consider the
horizontal and ephemeral scale of a cluster. Common examples are Amazon EMR,
Cloudera CDP, etc. Collibra DQ is built to scale up horizontally and can scale to hundreds
of nodes.

Hadoop
For large scale processing and concurrency, a single vertically scaled Spark server is not
enough. To address large scale processing, DQ has the ability to push compute to an
external Hadoop cluster. This page describes the process by which the DQ Agent can be
configured to push DQ jobs to Hadoop.

Chapter 5

cxliii

Chapter 5

Hadoop Install

Note In some cases, the required Hadoop client configuration requires the DQ
Agent to run on an Hadoop Edge node within the cluster. This can happen because
native dependency packages are required, network isolation from subnet that is
hosting DQ server, complex security configuration, ect. In these circumstances,
simply deploy the DQ Agent on a cluster Edge Node that contains the required
configurations and packages. In this setup, the DQ Agent will use the existing
Hadoop configuration and packages to run DQ checks on the Hadoop cluster.

cxliv

Hadoop Config Setup

Hadoop configuration can be incredibly complex. There can be hundreds of "knobs"
across dozens of different components. However, DQ's goal is to simply leverage Hadoop
to allocate compute resources in order to execute DQ checks (Spark jobs). This means
that the only client side configurations required are:

l Security protocol definition
l Yarn Resource Manager endpoints
l Storage service (HDFS or Cloud storage).

Once the Hadoop client configuration is defined, it is only a matter of pointing the DQ
Agent at the folder that contains the client configuration files. The DQ Agent is then able to
use the Hadoop client configuration to submit jobs to the specified Hadoop cluster.

Note DQ jobs running on Hadoop are Spark jobs. DQ will use the storage platform
defined in the "fs.defaultFS" setting to distribute all of the required Spark libraries
and specified dependency packages like drivers files. This allows DQ to use a
version of Spark that is different than the one provided by the cluster. If it is a
requirement to use the Spark version provided by the target Hadoop cluster, obtain
and use a copy of the yarn-site.xml and core-site.xml from the cluster.

Create Config Folder

cd $OWL_HOME
mkdir -p config/hadoop
echo "export HADOOP_CONF_DIR=$OWL_HOME/config/hadoop" >> con-
fig/owl-env.sh
bin/owlmanage.sh restart=owlagent

Minimum Config (Kerberos Disabled, TLS Disabled)

This configuration would typical only be applicable in Cloud Hadoop scenarios
(EMR/Dataproc/HDI). Cloud Hadoop clusters are ephemeral and do not store any data as
the data is stored in and is secured by Cloud Storage.

Chapter 5

cxlv

Chapter 5

export RESOURCE_MANAGER=<yarn-resoruce-manager-host>
export NAME_NODE=<namenode>

echo "
<configuration>
 <property>
 <name>hadoop.security.authentication</name>
 <value>simple</value>
 </property>
 <property>
 <name>hadoop.rpc.protection</name>
 <value>authentication</value>
 </property>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://$NAME_NODE:8020</value>
 </property>
</configuration>
" >> $OWL_HOME/config/hadoop/core-site.xml

echo "
<configuration>
 <property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>$RESOURCE_MANAGER:8030</value>
 </property>
 <property>
 <name>yarn.resourcemanager.address</name>
 <value>$RESOURCE_MANAGER:8032</value>
 </property>
 <property>
 <name>yarn.resourcemanager.webapp.address</name>
 <value>$RESOURCE_MANAGER:8088</value>
 </property>
</configuration>
" >> $OWL_HOME/config/hadoop/yarn-site.xml

Note When deploying a Cloud Service Hadoop cluster from any of the major Cloud
platforms, it is possible to use Cloud Storage rather than HDFS for dependency
package staging and distribution. To achieve this, create a new storage bucket and
ensure that both the Hadoop cluster and the instance running DQ Agent have
access to it. This is usually accomplished using a Role that is attached to the
infrastructure. For example, AWS Instance Role with bucket access policies. Then,
set "fs.defaultFS" in core-site.xml to the bucket path instead of HDFS.

cxlvi

Once the Hadoop client configuration has been created, navigate to Agent Management
console from the Admin Console and configure the agent to use Yarn (Hadoop resource
scheduler) as the Default Master and set the Default Deployment Mode to "Cluster".

Kerberos Secured with Resource Manager TLS enabled

Typically, Hadoop cluster that are deployed on-premises are multi-tenant and not
ephemeral. This means they must be secured using Kerberos. In addition, all endpoints
with HTTP endpoints will have TLS enabled. In addition HDFS may be configured for a
more secure communication using additional RPC encryption.

Chapter 5

cxlvii

Chapter 5

export RESOURCE_MANAGER=<yarn-resoruce-manager-host>
export NAME_NODE=<namenode>
export KERBEROS_DOMAIN=<kerberos-domain-on-cluster>
export HDFS_RPC_PROTECTION=<authentication || privacy || integ-
rity>

echo "
<configuration>
 <property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value>
 </property>
 <property>
 <name>hadoop.rpc.protection</name>
 <value>$HDFS_RPC_PROTECTION</value>
 </property>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://$NAME_NODE:8020</value>
 </property>
</configuration>
" >> $OWL_HOME/config/hadoop/core-site.xml

echo "
<configuration>
 <property>
 <name>hadoop.security.authentication</name>
 <value>HDFS/_HOST@$KERBEROS_DOMAIN</value>
 </property>
</configuration>
" >> $OWL_HOME/config/hadoop/hdfs-site.xml

echo "
<configuration>
 <property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>$RESOURCE_MANAGER:8030</value>
 </property>
 <property>
 <name>yarn.resourcemanager.address</name>
 <value>$RESOURCE_MANAGER:8032</value>
 </property>
 <property>
 <name>yarn.resourcemanager.webapp.https.address</name>
 <value>$RESOURCE_MANAGER:8090</value>
 </property>
</configuration>
" >> $OWL_HOME/config/hadoop/yarn-site.xml

cxlviii

When the target Hadoop cluster is secured by Kerberos, DQ checks require a Kerberos
credential. This typically means that the DQ Agent will need to be configured to include a
Kerberos keytab with each DQ check. Access the DQ Agent configuration page from the
Admin Console and configure the "Freeform Append" setting with the -sparkprinc <spark-
submit-principal> -sparkkeytab <path-to-keytab>.

EMR / Dataproc / HDI
Running Apache Spark on Kubernetes differs from running this on virtual machine-based
Hadoop clusters, which is the current mechanism provided by the existing CloudProc
Dataproc service or competitive offerings like Amazon Web Services (AWS) Elastic
MapReduce (EMR) and Microsoft's Azure HDInsight (HDI).

Each cloud provider will have unique steps and configuration options. More detail on
enabling agents for this deployment option be found in the Hadoop Integration section.

A detailed guide for EMR is provided below.

Collibra Data Quality & Observability on EMR Architecture

Collibra DQ is able to use EMR as the compute space for data quality jobs (Owlchecks).
While it is possible to simply operate a long running EMR cluster, EMR's intended
operation model is ephemeral infrastructure. Using EMR as an ephemeral compute space

Chapter 5

cxlix

https://docs.owl-analytics.com/installation/hadoop-integration

Chapter 5

is the most cost effective approach both in terms of operational effort and infrastructure
costs. Collibra DQ makes it possible to seamlessly leverage EMR in this operating model.
When there is not an EMR cluster available, Collibra DQ users are still able to browse
datasets and DQ results in Web. However, if a user attempts to deploy an Owlcheck, they
will simply see a red light icon next to the target agent. If the user still wants to request an
Owlcheck, it will simply wait in queue until the target agent comes back online the next
time an EMR cluster is available.

cl

Prepare for Deployment

Note Before enabling Collibra DQto use EMR as the compute space, make sure
that Owl Web and the Owl Metastore are already deployed (https://docs.owl-
analytics.com/installation/full-install).

1. Create a "bootstrap bucket" location in S3 where Collibra DQ binaries and bootstrap
script (install-agent-emr.sh) will be staged. The EMR cluster instances will need to
include an attached Role that has access to this location in order to bootstrap the
cluster. This location should not contain any data or any kind of sensitive materials
and thus should not require any special permissions. It just needs to be accessible
by EMR clusters for bootstrap purposes.

2. Create or modify an instance Profile Role that will be attached to EMR clusters so
that it enables read access to the bootstrap bucket location. This Role is separate
from the EMR service role that EMR will use to deploy the infrastructure.

3. Stage the bootstrap script and the Collibra DQ binary package in the bootstrap loc-
ation created above.

4. Make sure that the VPC where the Collibra DQ Metastore is deployed is accessible
from the VPC where EMR clusters will be deployed.

5. Make sure that Security Groups applied to the Collibra DQ Metastore are configured
to allow access from EMRmaster and worker Security Groups.

6. Decide whether to use EMR 5.x or EMR 6.x. This is important because EMR 6 intro-
duces Spark 3 and Scala 2.12. If EMR 6 is chosen, make sure Collibra DQ binaries
were compiled for Spark 3 and Scala 2.12.

7. (OPTIONAL) Create and store a private key to access EMR instances.

Deploy EMR Cluster

There are several ways to deploy EMR, however, for dev-ops purposes, the simplest path
is usually to use the AWS CLI utility. The example below will deploy and EMR cluster
bootstrapped with Collibra DQ binaries and a functioning agent to deploy Owlchecks.

Note When defining the Bootstrap Location argument, do not include "s3://". For
example: If Bootstrap Location is s3://bucket/prefix then BOOTSTRAP_
LOCATION="bucket/prefix".

Chapter 5

cli

https://docs.owl-analytics.com/installation/full-install
https://docs.owl-analytics.com/installation/full-install

Chapter 5

aws emr create-cluster \
--auto-scaling-role EMR_AutoScaling_DefaultRole \
--applications Name=Hadoop Name=Spark Name=Hive Name=Tez \
--name owl-emr \
--release-label emr-6.2.0 \
--region ${EMR_REGION} \
--ebs-root-volume-size 10 \
--scale-down-behavior TERMINATE_AT_TASK_COMPLETION \
--enable-debugging \
--bootstrap-actions \
"[{\"Path\":\"s3://${BOOTSTRAP_LOCATION}/install-agent-emr.sh\",
\
\"Args\":[\
\"${OWL_VERSION}\", \
\"${OWL_AGENT_ID}\", \
\"${METASTORE_HOST}:${METASTORE_PORT}/${METASTORE_DB}?-
currentSchema=owlhub\", \
\"${METASTORE_USER}\", \
\"${METASTORE_PASSWORD}\", \
\"${BOOTSTRAP_LOCATION}\", \
\"${LICENSE_KEY}\", \
\"native\"], \"Name\":\"install-owl-agent\"}]" \
--ec2-attributes "{ \
\"KeyName\":\"${EMR_INSTANCE_PRIVATE_KEY_NAME}\", \
\"InstanceProfile\":\"${BOOTSTRAP_ACCESS_ROLE}\", \
\"SubnetId\":\"${EMR_SUBNET}\", \
\"EmrManagedSlaveSecurityGroup\":\"${EMR_WORKER_SECURITY_
GROUP}\", \
\"EmrManagedMasterSecurityGroup\":\"${EMR_WORKER_SECURITY_
GROUP}\" \
}" \
--service-role ${EMR_SERVICE_ROLE} \
--log-uri s3n://${EMR_LOG_LOCATION} \
--instance-groups "[\
{\"In-
stanceCoun-
t\":1,\"InstanceGroupType\":\"MASTER\",\"InstanceType\":\"${EMR_
MASTER_INSTANCE_TYPE}\",\"Name\":\"Master - 1\"}, \
{\"In-
stanceCoun-
t\":3,\"InstanceGroupType\":\"CORE\",\"InstanceType\":\"${EMR_
CORE_INSTANCE_TYPE}\",\"Name\":\"Core - 2\"} \
]"

Configure Agent

Once the EMR cluster and Owl Agent is deployed, it needs to be configured in Owl Web.

clii

1. Log into Owl Web, click the gear icon in the Navigation Pane and select "Admin Con-
sole".

2. In the Admin Console, click on the "Remote Agent" tile.
3. The newly created agent should have a green light icon.

4. Click the Pen/Pencil icon to the far right to configure the agent's settings. Make sure
that Deploy Mode is set to "Cluster" and Default Master is set to "yarn".

5. Click the chain link icon to the far right to configure what datasources the agent is
able to deploy Owlchecks for.

Chapter 5

cliii

Chapter 5

Any datasources that are not listed in the right hand pane will not be visible to this agent.

Run Owlchecks

Everything is now ready for users to use EMR to run Owlchecks on data. Review Explorer
documentation for detailed instructions.

Explorer (no-code)

Cloud native

Introduction to cloud native architecture
According to the Cloud Native Computing Foundation (“CNCF”) Charter:

Cloud native technologies empower organizations to build and run scalable applications in
modern, dynamic environments such as public, private, and hybrid clouds. Containers,
service meshes, microservices, immutable infrastructure, and declarative APIs exemplify
this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and
observable. Combined with robust automation, they allow engineers to make high-impact
changes frequently and predictably with minimal toil.

cliv

Collibra Data Quality wholeheartedly embraces these principles in its design and
deployment. The diagram below depicts Collibra Data Quality & Observability's cloud
native deployment architecture:

In this "form factor", you can deploy Collibra DQ in any public or private cloud while
maintaining a consistent experience, performance, and management runbook.

Collibra DQ microservices

To achieve cloud native architecture, Collibra DQ is decomposed into several
components, each of which is deployed as a microservice in a container.

Chapter 5

clv

Chapter 5

l Owl Web - The main point of entry and interaction between Collibra DQ and end
users or integrated applications. Owl Web provides both a rich, interactive user
experience and a robust set of APIs for automated integration.

l Owl Agent - You can think of the Agent as the "foreman" of Collibra DQ. When a
user or application requests a data quality check through Owl Web, Owl Agent will
marshal compute resources to perform the work. Owl Agent does not actually do any
of the data quality work. Instead, it translates the request submitted by Owl Web into
a technical descriptor of the work that needs to be done and then launches the
requested DQ job.

l Owl Metastore - This is where Collibra DQ stores all the metadata, statistics, and res-
ults of DQ jobs. It is also then main point of communication between Owl Web and
Owl Agent. The metastore also contains the results of DQ jobs performed by tran-
sient containers (workers) in the compute space.

l History Server - Collibra DQ relies on Apache Spark to actually scan data and per-
form the bulk of data quality activities. To facilitate troubleshooting and performance
tuning of DQ jobs, Collibra DQ uses an instance of Spark History Server to enable
easy access to Spark logs.

l Spark - Apache Spark is the distributed compute framework that powers the Collibra
DQ data quality engine. Spark enables DQ jobs to rise to the task of data quality on
Terabyte scale datasets. Spark containers are completely ephemeral and only live
for as long as necessary to complete a given DQ job.

Containerization

The binaries and instruction sets described in each of the Collibra DQ microservices are
encompassed within Docker container images. Each of the images is versioned and
maintained in a secured cloud container registry repository. To initiate a Collibra DQ cloud
native deployment, you must first obtain credentials to either pull the containers directly or
download them to a private container registry.

Warning Support for Collibra DQ cloud native deployment is limited to deployments
using the containers provided from the Collibra container registry.

Reach out to your customer contact for access to pull the Collibra containers.

clvi

Kubernetes

Kubernetes is a distributed container scheduler and has become synonymous with cloud
native architecture. While Docker containers provide the logic and runtime at the
application layer, most applications still require network, storage, and orchestration
between multiple hosts in order to function. Kubernetes provides all of these facilities while
abstracting away all of the complexity of the various technologies that power the public or
private cloud hosting the application.

Note For complete details on how to install Collibra DQ on Kubernetes with Docker
containers, see Cloud native install.

Note Collibra DQ supports Kubernetes versions v1.21 - v1.24.

Collibra DQ Helm chart

While Kubernetes currently provides the clearest path to gaining the benefits of a cloud
native architecture, it is also one of the more complex technologies in existence. This has
less to do with Kubernetes itself and more with the complexity of the constituent
technologies it is trying to abstract. Technologies like attached distributed storage and
software defined networks are entire areas of specialization that require extensive
expertise to navigate. Well implemented Kubernetes platforms hide all of this complexity
and make it possible for anyone to leverage these powerful concepts. However, a robust
application like Collibra DQ requires many descriptors (K8s manifests) to deploy its
various components and all of the required supporting resources like network and storage.

This is where Helm comes in. Helm is a client side utility (since v3) that automatically
generates all the descriptors needed to deploy a cloud native application. Helm receives
instructions in the form of a Helm chart that includes templated and parameterized
versions of Kubernetes manifests. Along with the Helm chart, you can also pass
arguments like names of artifacts, connection details, enable and disable commands, and
so on. Helm resolves the user defined parameters within the manifests and submits them
to Kubernetes for deployment. This enables you to deploy the application without

Chapter 5

clvii

Chapter 5

necessarily having a detailed understanding of the networking, storage or compute that
underpins the application.

For example, the command below deploys Collibra DQ with all of the components
depicted in the Introduction to cloud native architecture into Google Kubernetes Engine
with Google Cloud Storage (GCS) as the storage location for Spark logs. The only
prerequisite is that the image pull secret, representing credentials to access the container
registry, and secret containing the credentials for a service account with access to GCS
are already deployed to the namespace.

helm upgrade --install --namespace <namespace> \
--set global.version.owl=<owl-version> \
--set global.version.spark=<owl-spark-version> \
--set global.configMap.data.license_key=<owl-license-key> \
--set global.spark_history.enabled=true \
--set global.spark_history.logDirectory=gs://logs/spark-history/
\
--set global.cloudStorage.gcs.enableGCS=true \
<deployment-name> \
/path/to/chart/owldq

Note The full universe of possible customizations is quite extensive and provides a
great deal of flexibility in order to be applicable in a wide variety of platforms.
However, when deploying on a known platform (EKS, GKE, AKS), the number of
required inputs is quite limited. In common cases, you run a single CLI command
including basic parameters like disable history server, configure the storage bucket
for logs, specify the image repository, and so on.

Cloud native requirements

Minimum requirements

You need a machine with the following files and packages to run the installation. You can
run these from a laptop or separate VM and they do not need to be issued on the
Kubernetes cluster itself.

clviii

Note For complete details on how to install Collibra DQ on Kubernetes with Docker
containers, see Cloud native install.

Prerequisites

l Kubernetes cluster -- EKS, GKE, AKS, Openshift, Rancher
l Helm(v3)
l kubectl
l Cloud command line SDK, such as gcloud CLI, AWS CLI or similar
l External Postgres DB version 11.9 and above, storage size 100GB, cores 4 to 8
memory to 4 to 8 GB

l Private container registry -- to store images
l LoadBalancer -- IngressController -- Ingress
l Egress networking access
l Helm chart
l Images, image access key
l Minimum pod requirement -- 2 cores, 2GB RAM

Files

l The helm chart.
l JKS files with secrets created in kubectl:

o owldq-ssl-secret
o owldq-pull-secret*

l A spark-gcs-secret you create from your service account file or token.

Note * Available upon request from Collibra.

Application system requirements

Component Processor Memory Storage

Collibra DQWeb 1 core 2 GB 10 MB PVC

Owl Agent 1 core 1 GB 100 MB PVC

Chapter 5

clix

https://helm.sh/
https://kubernetes.io/docs/tasks/tools/

Chapter 5

Component Processor Memory Storage

Owl Metastore 1 core 2 GB 10 GB PVC

Spark* 2 cores 2 GB -

Note * This is the minimum quantity of resources required to run an a Spark job in
Kubernetes. This amount of resources would only provide the ability to scan a few
megabytes of data with no more than a single job running at a given time. Proper
sizing of the compute space must take into account the largest dataset that may be
scanned, as well as the desired concurrency.

Network service considerations

Owl Web is the only required component that needs to be directly accessed from outside
of Kubernetes. History Server is the only other component that can be accessed directly by
users, however, it is optional.

If the target Kubernetes platform supports a LoadBalancer service type, you can configure
the Helm chart to directly deploy the externally accessible endpoint.

Note For testing purposes, you can also configure the Helm chart to deploy a
NodePort service type.

For the Ingress service type, deploy OwlDQ without an externally accessible service and
then attach the Ingress service separately. This applies when you use a third-party Ingress
controller such as NGINX, Contour, etc.

Note The Helm chart is able to deploy an Ingress on GKE and EKS platforms,
however, there is a wide variety of possible Ingress configurations that have not
been tested.

Obtaining credentials

Kubernetes stores credentials in the form of secrets. Secrets are base64 encoded files
that you can mount into application containers and that application components can

clx

reference at runtime. You use pull secrets to access secured container registries to obtain
application containers.

Note Although it is not recommended, you should only access the Collibra image
registry for the initial download and validation of Docker images. After this, images
should be uploaded and stored on your private registry, which allows you to control
when the images are updated, as well as eliminate any operational dependencies
on Collibra's repository.

SSL certificates

To enable SSL for secure access to Owl Web, a keystore that contains a signed certificate,
keychain, and private key is required. This keystore must be available in the target
namespace before you deploy Collibra DQ.

Note By default, Collibra DQ looks for a secret called owldq-ssl-secret to find
the keystore.

Note Although it is possible to deploy with SSL disabled, is not recommended.

Cloud storage credentials

If you enable History Server, a distributed filesystem is required. Currently, Collibra DQ
supports S3 and GCS for Spark history log storage.

Note Azure Blob and HDFS on the near term roadmap.

Target storage system Credentials requirements

S3 An IAM Role with access to the target bucket needs to be
attached to the Kubernetes nodes of the namespace where
Collibra DQ is being deployed.

Chapter 5

clxi

Chapter 5

Target storage system Credentials requirements

GCS You must create a secret from the JSON key file of a service
account with access to the log bucket. The secret must be
available in the namespace before you deploy Collibra DQ.
By default, Collibra DQ looks for a secret called spark-

gcs-secret, if GCS is enabled for Spark history logs. You

can change this via a helm chart argument.

Container pull secret

Collibra Data Quality & Observability containers are stored in a secured repository in
Google Container Registry. For Collibra DQ to successfully pull the containers when
deployed, a pull secret with access to the container registry must be available in the target
namespace.

Note By default, Collibra DQ looks for a pull secret named owldq-pull-secret.
You can change this via a helm chart argument.

Spark service account

To enable Owl Agent and the Spark driver to create and destroy compute containers, you
must have a service account with a role that allows get/list/create/delete operations on
pods/services/secrets/configMaps in the target namespace. By default, Collibra DQ
attempts to create the required service account and the required RoleBinding to the default
Edit role. Edit is a role that is generally available in a Kubernetes cluster. If the Edit role is
not available, you can manually create it.

Accessing the platform

To deploy anything to a Kubernetes cluster, the first step is to install the required client
utilities and configure access:

l kubectl: The main method of communication with a Kubernetes cluster. All con-
figuration or introspection tasks will be preformed using kubectl.

l helm v3: Used to deploy the OwlDQ helm chart without hand coding manifests.

clxii

After you install the utilities, the next step is to configure a kube-context that points to and
authenticates to the target platform. On cloud platforms like GKE and EKS, this process is
completely automated through their respective CLI utilities.

aws eks --region <region-code> update-kubeconfig --name
<cluster_name>

gcloud container clusters get-credentials <cluster-name>

In private clouds, this process will vary from organization to organization, however, the
platform infrastructure team should be able to provide the target kube-context entry.

Preparing secrets

Once access to the target platform is confirmed, you can begin the preparation of the
namespace. Typically the namespace that Collibra DQ is going to be deployed into is pre-
allocated by the platform team.

kubectl create namespace <namespace>

Note There is a lot more that can go into namespace creation such as resource
quota allocation, but that is generally a task for the platform team.

Create an SSL keystore secret

Note For complete details on how to install Collibra DQ on Kubernetes with Docker
containers, see Cloud native install.

Chapter 5

clxiii

Chapter 5

Create a container pull secret

Note For complete details on how to install Collibra DQ on Kubernetes with Docker
containers, see Cloud native install.

JSON key file credential

kubectl create secret docker-registry owldq-pull-secret \
--docker-server=<owldq-registry-server> \
--docker-username=_json_key \
--docker-email=<service-account-email> \
--docker-password="$(cat /path/to/key.json)" \
--namespace <namespace>

Short lived access token

kubectl create secret docker-registry owldq-pull-secret \
--docker-server=<owldq-registry-server> \
--docker-username=oauth3accesstoken \
--docker-email=<service-account-email> \
--docker-password="<access-token-text>" \
--namespace <namespace>

Warning GCP Oauth tokens are usually only good for 1 hour. This type of
credential is excellent if the goal is to pull containers into a private registry. It can be
used as the pull secret to access containers directly, however, the secret would
have to be recreated with a fresh token before restarting any of the Colbra DQ
components.

Create a GCS credential secret

kubectl create secret generic spark-gcs-secret \
--from-file /path/to/keystore.jks \
--namespace <namespace>

clxiv

Warning The file name that you use in the --from-file argument should be
spark-gcs-secret. If the file name is anything else, you must include an additional
argument specifying the gcs secret name in the Helm command.

Note For complete details on how to install Collibra DQ on Kubernetes with Docker
containers, see Cloud native install.

Cloud native install

Install Collibra DQ on Kubernetes with Docker Containers

Collibra DQ provides the following Core Docker containers:

l Owl-Agent: Launches the Apache Spark Jobs
l Owl-Web: The Collibra DQ web application itself
l Apache Spark: The runtime analytics engine
l Postgres (persistent volume needed): The Collibra DQ metastore
l Apache Livy:

o Session Manager: How Collibra DQ can browse the HDFS, S3, GCS, or Azure
Data Lake (ADL)

o Interacts with Object Stores, similar to JDBC sources Explorer (estimate Jobs,
get days with data, Filtergrams, etc.)

Prerequisites

l Kubernetes cluster -- EKS, GKE, AKS, Openshift, Rancher
l Helm(v3)
l kubectl
l Cloud command line SDK, such as gcloud CLI, AWS CLI or similar
l External Postgres DB version 11.9 and above, storage size 100GB, cores 4 to 8
memory to 4 to 8 GB

l Private container registry -- to store images
l LoadBalancer -- IngressController -- Ingress
l Egress networking access
l Helm chart

Chapter 5

clxv

https://helm.sh/
https://kubernetes.io/docs/tasks/tools/

Chapter 5

l Images, image access key
l Minimum pod requirement -- 2 cores, 2GB RAM

Steps

To install Collibra DQ on Kubernetes with Docker containers, follow these steps.

Sign in to the Kubernetes cluster

1. Sign in to the Kubernetes cluster from a Linux compatible terminal.
2. Create a namespace in the cluster using the following code snippet:

kubectl create namespace <owldq>

Pull images from the Collibra registry

Collibra DQ containers are located in the Docker Hub registry. Collibra provides a repo-
key to access Collibra images in a .json file, which can be stored locally and used to login.

1. Download the Docker .json repo-key.
2. Run the following command:

docker login -u _json_key -p "$(cat repo-key.json)"
https://gcr.io

Note Image names with their versions are provided by Collibra.

3. To pull the images, run the following Docker pull commands:

docker pull gcr.io/owl-hadoop-cdh/owl-agent:2021.09
docker pull gcr.io/owl-hadoop-cdh/owl-web:2021.09
docker pull gcr.io/owl-hadoop-cdh/spark:3.0.1-2021.09
docker pull gcr.io/owl-hadoop-cdh/owl-livy:3.0.1-2021.09

clxvi

Push images into your private registry

1. Sign in to your private Docker container registry.
2. Tag and push the images from Collibra to your private registry, by using the following

commands:

docker tag gcr.io/owl-hadoop-cdh/owl-web:2021.10.3
<registryURL>/owl-web:2021.10.3
docker push <registryURL>/owl-web:2021.10.3

Example:
docker tag [OPTIONS] IMAGE [:TAG][REGISTRYHOST/][USERNAME/]NAME[:TAG]

docker tag push NAME[:TAG]

Create an SSL keystore secret

kubectl create secret generic owldq-ssl-secret \
--from-file /path/to/keystore.jks \
--namespace <namespace>

Warning The file name that you use in the --from-file argument should be
keystore.jks. If the file name is anything else, you must include an additional
argument specifying the keystore file name in the Helm command.

Create a pull secret

Note Although it is not recommended, you should only access the Collibra image
registry for the initial download and validation of Docker images. After this, images
should be uploaded and stored on your private registry, which allows you to control
when the images are updated, as well as eliminate any operational dependencies
on Collibra's repository.

1. To create a pull secret, use the following code snippet:

Chapter 5

clxvii

Chapter 5

kubectl create secret docker-registry owldq-pull-secret
--docker-server=https://gcr.io
--docker-username=_json_key
--docker-email=<email of customer>
--docker-password="$(cat repo-key.json)"
--namespace <owldq>

Note If your private registry is used for images and if they are accessible from
within the Kubernetes cluster, this secret need not be created. If credentials are
required to access your private registry, create this secret by modifying the docker-
server URL and docker-password.

Helm chart

For more detailed information about the Helm Chart, see Cloud native.

1. Unzip and store the helm charts given by Collibra on a Linux compatible deployment
location.

Note Once you have your Collibra DQ license, you will receive an email from
Collibra that includes the Helm Charts as zip files.

There should be two folders and two files:

l drwxrwxr-x -- templates
l drwxrwxr-x -- charts
l -rw-rw-r-- Chart.yaml
l -rw-rw-r-- values.yaml

There are two ways of passing parameters. While deploying, parameter values can be
passed:

2. Using the values.yaml file or,
3. Using the helm set commands.

Note The set commands take precedence over the values.yaml file.

clxviii

../../../../../../../../Content/DataQuality/Installation/CloudNativeDeployment/Cloud native.htm

Deploy Collibra Data Quality & Observability

Once you have created a namespace and added all of the required secrets, you can begin
the deployment of Collibra DQ.

Minimal install

Install Web, Agent, and metastore. Collibra DQ is inaccessible until you manually add an
Ingress or another type of externally accessible service.

Warning All of the following examples will pull containers directly from the Collibra
DQ secured container registry. In most cases, InfoSec policies require that
containers are sourced from a private container repository controlled by the local
Cloud Ops team. Make sure to to add --set
global.image.repo=</url/of/private-repo> so that you use only approved
containers.

Chapter 5

clxix

Chapter 5

Note The metastore container must start first as the other containers use it to write
data. On your initial deployment, the other containers might start before the
metastore and fail.

helm upgrade --install --namespace <namespace> \
--set global.version.owl=<owl-version> \
--set global.version.spark=<owl-spark-version> \
--set global.configMap.data.license_key=<owl-license-key> \
--set global.configMap.data.license_name=<your-license-name> \
--set global.web.admin.email=${email} \
--set global.web.admin.password=${password} \
--set global.web.service.type=ClusterIP \
--set global.image.repo=<pathTolmageRepo> \
<deployment-name> \
/path to the helm chart root folder>

Value Description

<namespace> Enter the namespace that you created in the Sign in to the Kubernetes
cluster step.

<owl-version> Enter the version from the web image suffix. For example, 2023.02 from
the image, owl-web:2023.02.

<spark-version Enter the Spark version from the Spark image suffix. For example, 3.2.2-
2023.02 from the image, spark:3.2.2-2023.02.

<owl-license-key> Enter the license key provided to you by Collibra.

<your-license-name> Enter the license name provided to you by Collibra.

${email} Enter the default admin user email associated with the admin account.

clxx

Value Description

${password} Enter the default admin user password for the admin account.

The password must adhere to the following password policy:

l A minimum of 8 characters.
l A maximum of 72 characters.
l At least one upper-case character.
l At least one numeric character.
l At least one supported special character (!@#%$^&*?_~).
l Cannot contain the user ID (admin).

Note If a password that does not meet the password policy is entered,
the install process proceeds as though the password is accepted, but the
admin user becomes locked out. If this occurs, rerun the Helm command
with a password that meets the password policy and restart the web pod.

<pathTolmageRepo> This is your private registry key, where the Collibra images are available.
When this is not provided, you will pull the images from the Collibra
image registry, for which you should create a pull secret with the repo
key provided by Collibra. See Create a pull secret for more details.

<deployment-name> Any name of your choice for this deployment.

Externally accessible service

Perform the Minimal install and add a preconfigured NodePort or LoadBalancer service to
provide access to the Web.

Warning A LoadBalancer service type requires that the Kubernetes platform is
integrated with a Software Defined Network solution. This will generally be true for
the Kubernetes services offered by major cloud vendors. Private cloud platforms
more commonly use Ingress controllers. Check with the infrastructure team before
attempting to use LoadBalancer service type.

Chapter 5

clxxi

Chapter 5

helm upgrade --install --namespace <namespace> \
--set global.version.owl=<owl-version> \
--set global.version.spark=<owl-spark-version> \
--set global.configMap.data.license_key=<owl-license-key> \
--set global.configMap.data.license_name=<your-license-name> \
--set global.web.admin.email=${email} \
--set global.web.admin.password=${password} \
--set global.web.service.type=<NodePort || LoadBalancer> \
<deployment-name> \
/path/to/chart/owldq

Externally accessible with SSL enabled

Perform the install with external service but with SSL enabled.

Note Ensure you have already deployed a keystore containing a key to the target
namespace with a secret name that matches the
global.web.tls.key.secretName argument (owldq-ssl-secret by default). Also,
ensure that the secret's key name matches the
global.web.tls.key.store.name argument (dqkeystore.jks by default).

helm upgrade --install --namespace <namespace> \
--set global.version.owl=<owl-version> \
--set global.version.spark=<owl-spark-version> \
--set global.configMap.data.license_key=<owl-license-key> \
--set global.configMap.data.license_name=<your-license-name> \
--set global.web.admin.email=${email} \
--set global.web.admin.password=${password} \
--set global.web.service.type=<NodePort || LoadBalancer> \
--set global.web.tls.enabled=true \
--set global.web.tls.key.secretName=owldq-ssl-secret \
--set global.web.tls.key.alias=<key-alias> \
--set global.web.tls.key.type=<JKS || PKCS12> \
--set global.web.tls.key.pass=<keystore-pass> \
--set global.web.tls.key.store.name=keystore.jks \
<deployment-name> \
/path/to/chart/owldq

clxxii

Externally accessible and History Server for GCS Log Storage

Perform the install with external service and Spark History Server enabled. In the following
example, the target log storage system is GCS.

Note For Collibra DQ to be able to write Spark logs to GCS, create a secret from
the JSON key file of a service account that has access to the log bucket. For more
detailed information, see Cloud storage credentials.

helm upgrade --install --namespace <namespace> \
--set global.version.owl=<owl-version> \
--set global.version.spark=<owl-spark-version> \
--set global.configMap.data.license_key=<owl-license-key> \
--set global.configMap.data.license_name=<your-license-name> \
--set global.web.admin.email=${email} \
--set global.web.admin.password=${password} \
--set global.web.service.type=<NodePort || LoadBalancer> \
--set global.spark_history.enabled=true \
--set global.spark_history.logDirectory=gs://logs/spark-history/
\
--set global.spark_history.service.type=<NodePort || LoadBal-
ancer> \
--set global.cloudStorage.gcs.enableGCS=true \
<deployment-name> \
/path/to/chart/owldq

Externally Accessible and History Server for S3 Log Storage

Perform the install with external service and Spark History Server enabled. In this
example, the target log storage system is S3.

Note For Collibra DQ to be able to write Spark logs to S3, makes sure that an
Instance Profile IAM Role with access to the log bucket is attached to all nodes
serving the target namespace. For more detailed information, see Cloud storage
credentials.

Chapter 5

clxxiii

Chapter 5

helm upgrade --install --namespace <namespace> \
--set global.version.owl=<owl-version> \
--set global.version.spark=<owl-spark-version> \
--set global.configMap.data.license_key=<owl-license-key> \
--set global.configMap.data.license_name=<your-license-name> \
--set global.web.admin.email=${email} \
--set global.web.admin.password=${password} \
--set global.web.service.type=<NodePort || LoadBalancer> \
--set global.spark_history.enabled=true \
--set global.spark_history.logDirectory=s3a://logs/spark-
history/ \
--set global.spark_history.service.type=<NodePort || LoadBal-
ancer> \
--set global.cloudStorage.s3.enableS3=true \
<deployment-name> \
/path/to/chart/owldq

Externally accessible with external metastore

Perform the install with external service and an external metastore, for example AWS
RDS, Google Cloud SQL, or just PostgresSQL on its own instance.

Warning Collibra DQ currently supports PostgreSQL 9.6 and newer.

helm upgrade --install --namespace <namespace> \
--set global.version.owl=<owl-version> \
--set global.version.spark=<owl-spark-version> \
--set global.configMap.data.license_key=<owl-license-key> \
--set global.configMap.data.license_name=<your-license-name> \
--set global.web.admin.email=${email} \
--set global.web.admin.password=${password} \
--set global.web.service.type=<NodePort || LoadBalancer> \
--set global.metastore.enabled=false
--set global.configMap.data.metastore_url-
l=jdbc:postgresql://<host>:<port>/<database>
--set global.configMap.data.metastore_user=<user> \
--set global.configMap.data.metastore_pass=<password> \
<deployment-name> \
/path/to/chart/owldq

clxxiv

Using custom JDBC data source drivers

This section shows how to set up the persistent external volume on an existing cloud
native deployment of Collibra DQ to support the use of custom JDBC data source drivers.

Steps

1. Create a Persistent Volume (PV) and a Persistent Volume Claim (PVC) in the same
Kubernetes cluster namespace where your cloud native deployment of Collibra DQ
is running with ReadWriteMany access mode, as shown in the following example:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteMany
 nfs:
 server: nfs-server.nfs.svc.cluster.local
 path: "/"

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-pvc
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: ""
 resources:
 requests:
 storage: 10Gi

Tip You can choose any storage class that supports ReadWriteMany access
mode only.

2. Patch the existing DQWeb and Agent StatefulSets with an additional Volume Mount,
as shown in the following example:

Chapter 5

clxxv

Chapter 5

 spec:
 volumes:
 - name: owldq-ext-jdbc-jars
 persistentVolumeClaim:
 claimName: nfs-pvc
 ...
 ...
 containers:
 - volumeMounts:
 - name: owldq-ext-jdbc-jars
 mountPath: /opt/owl/drivers/ext

3. From the Connections page, click Add on the Generic JDBC Connection tile.
» The New JDBC Conection modal appears.

4. Enter the required information.
5. Click the folder icon in the Driver Location option.

» The Add Driver modal appears.
6. Click Choose File and select the JAR file to upload.
7. Enter a one-word directory name to store the driver, for example, ext.
8. Select /opt/owl/drivers/ext under Driver Directories to upload your driver to

that location, as shown in the image below.

9. Click Upload.
» A success message appears when your driver is successfully added

clxxvi

Note
Uploads from DQ Web only work if the PVC's storageclass supports the
fsGroup security context of Kubernetes. If the fsGroup security context is not
supported, create a temporary dummy pod running as a root user with the
PVC mounted, and copy the required JDBC jars to the mount location with 544
permissions.

10. Navigate to the Remote Agent section of the Admin Console and click the pencil
icon to edit your agent.
» The Edit Agent modal appears.

11. Add the following properties to the Free Form (Appended) option, as shown in the
following example:

Chapter 5

clxxvii

Chapter 5

-conf spark.kubernetes.driver.podTemplateFile=https://spark-
on-k8s-templates-public.s3.amazonaws.com/spark-on-k8s-tem-
plate.ym-
l,spark.kubernetes.executor.podTemplateFile=https://spark-
on-k8s-templates-public.s3.amazonaws.com/spark-on-k8s-
tem-
plate.ym-
l,s-
park.kubernetes.executor.volumes.persistentVolumeClaim.nfs-
pv.options.claimName=nfs-
pvc,s-
park.kubernetes.executor.volumes.persistentVolumeClaim.nfs-
pv.-
option-
s.s-
izeLim-
it=10Gi,-
spark.kuber-
netes.executor.volumes.persistentVolumeClaim.nfs-
pv.-
moun-
t.path-
=/o-
pt/owl/driver-
s/ex-
t,s-
park.kubernetes.executor.volumes.persistentVolumeClaim.nfs-
pv.-
moun-
t.readOnly-
=false,-
,spark.kubernetes.driver.volumes.persistentVolumeClaim.nfs-
pv.options.claimName=nfs-
pvc,s-
park.kubernetes.driver.volumes.persistentVolumeClaim.nfs-pv.-
option-
s.s-
izeLim-
it=10Gi,-
,spark.kubernetes.driver.volumes.persistentVolumeClaim.nfs-
pv.-
moun-
t.path-
=/o-
pt/owl/driver-
s/ex-
t,spark.kubernetes.driver.volumes.persistentVolumeClaim.nfs-
pv.mount.readOnly=false

clxxviii

Note
The pod templates induce security context to the Spark driver and executor
pods, which allows you to mount the PVC dynamically. You can also
download the template file and host it in your own public space.

12. Click Save.
13. Navigate to the Connections page to start using your new custom JDBC data source

driver.

Troubleshooting + Helpful Commands

This guide is to provide the most common commands to run when troubleshooting a DQ
environment that is deployed on Kubernetes. For a basic overview of Kubernetes and
other relevant knowledge.

Provide documentation on syntax and flags in the terminal

kubectl help

To see how to use Kubernetes resources

kubectl api-resources -o wide

Viewing Kubernetes Resources

Get Pods, their names & details in all Namespaces

kubectl get pods -A -o wide

Get all Namespaces in a cluster

kubectl get namespaces

Get Services in all Namespaces

kubectl get services -A -o wide

List all deployments in all namespaces:

kubectl get deployments -A -o wide

Chapter 5

clxxix

Chapter 5

Logs & Events

List Events sorted by timestamp in all namespaces

kubectl get events -A --sort-by=.metadata.creationTimestamp

Get logs from a specific pod:

kubectl logs [my-pod-name]

Resource Allocation

If the Kubernetes Metrics Server is installed,
the top command allows you to see the resource consumption
for nodes or podscode

kubectl top node
kubectl top pod

If the Kubernetes Metrics Server is NOT installed, use

kubectl describe nodes | grep Allocated -A 10

Configuration

Get current-context

kubectl config current-context

See all configs for the entire cluster

kubectl config view

clxxx

Authorization Issues

Check to see if I can read pod logs for current user & con-
text

kubectl auth can-i get pods --subresource=log

Check to see if I can do everything in my current namespace
("*" means all)

kubectl auth can-i '*' '*'

EKS / GKE / AKS
For organizations that are familiar with containers and managed Kubernetes services,
Collibra Data Quality & Observability offers a cloud native deployment option. Please refer
to the Cloud Native section for more detail.

Cloud native

Cloud native requirements

Cloud native install

Note The containers are part of a private repository which requires access. Please
contact Collibra directly for more information.

Cloud
Installation details for the Edge component for DQ Cloud.

Note DQ Cloud is in public beta, which means that it is an upcoming feature that is
made available to all customers before it is fully ready for general availability so it
can be tested and evaluated early. Please contact a Collibra representative or click
here to learn more.

Chapter 5

clxxxi

https://productresources.collibra.com/docs/collibra/latest/Content/ReleaseNotes/co_beta-features.htm
https://productresources.collibra.com/docs/collibra/latest/Content/ReleaseNotes/co_beta-features.htm

Chapter 5

Requirements

Resource Notes Provisioned by

Collibra DQ Version 2022.02+ with Edge mode enabled Collibra

Collibra Edge Site Version 2022.02+ Customer

Postgres Version 11+ Customer

Diagram

Prerequisites

VM

This is where your Edge site is installed.

l RedHat 8 or Centos 8
l SSH Access

clxxxii

https://productresources.collibra.com/docs/collibra/latest/Content/Edge/ref_edge-faq.htm

l 55 GB of free storage
l 64 GB memory
l 16 cores
l Egress (outbound) network access on port 443
l Network access to Postgres installed in step 2

Note For medium to large workloads of more than 100M rows by 100 columns, we
recommend that your VM has a minimum of 32 cores, 128 GB memory, and 500 GB
of free storage.

Edge installation requirements can be found here.

Postgres

This is where your DQ Job results are stored.

l Version 11 or later
l A minimum of 100 GB of free storage
l A minimum of 4 cores
l Network access to and from the VM where Edge is installed
l User with ownership rights over the target database

1. Obtain a Secure Collibra DQ Web URL
This is provisioned by Collibra. Along with the URL, credentials will be provided to access
your instance.

Note This offering is in public beta and only available for select Collibra customers.
Please contact a Collibra representative to learn more.

2. Install Postgres
This is provisioned by the customer. There are several way to install Postgres. You should
follow your existing company process to provision a Postgres instance (RDS, Azure SQL,
Cloud SQL, or standard install using a package manager). Please ensure version 11+.

Chapter 5

clxxxiii

https://productresources.collibra.com/docs/collibra/latest/Content/Edge/EdgeSitesInstallation/ref_edge-site-system-requirements.htm

Chapter 5

Important Remember your Postgres IP and login credentials. This is required when
deploying the Edge site.

3. Install Edge
Refer to Edge documentation for system requirements.

Navigate to the Edge Site Management panel in the Admin Console

Add an Edge Site and provide a name and description

clxxxiv

https://productresources.collibra.com/docs/collibra/latest/Content/Edge/EdgeSitesInstallation/ref_edge-site-system-requirements.htm

Using the Actions drop-down, download the Edge installer package locally

Warning Because connections must have an exact relationship between the Edge
site and the datasource hostname, do not delete your Edge Site from the Edge Site
Management page.

Upload the Edge installer package to your VM that meets the Edge system requirements
above. An example scp command is below, but you can do this several ways.

scp -i ~/Downloads/vm-key.pem ~/Downloads/<installer>.tgz user-
@<host-or-ip>:/home/user/<installer>.tgz

Chapter 5

clxxxv

Chapter 5

SSH to your VM after uploading the installer package. Untar the .tgz

tar -xvf <installer>.tgz

Install prerequisite Edge packages.

sudo yum install -y container-selinux selinux-policy-base

sudo yum install -y https://rp-
m.rancher.io/k3s/stable/common/centos/7/noarch/k3s-selinux-0.2-
1.el7_8.noarch.rpm

sudo firewall-cmd --zone=trusted --add-interface=lo --permanent

sudo firewall-cmd --zone=trusted --add-interface=cni0 --per-
manent

sudo firewall-cmd --reload

Confirm you have the right Collibra DQ version pointer e.g. 2022.02-186 from your Cloud
instance.

clxxxvi

Remember your Postgres IP and credentials from the previous step.

Install Edge w/ DQ w/ the correct parameters

sudo /home/centos/install-master.sh --storage-path /var/edge
properties.yaml -r registries.yaml --set collibra_edge.-
collibra.dq.enabled=true,collibra_edge.-
collibra.dq.targetRevision=2022.02-186,collibra_
edge.collibra.dq.sparkVersion=3.2.0,collibra_edge.-
collibra.dq.metastoreUrl=jdbc:postgresql://<your-postgres-
ip>:5432/postgres,collibra_edge.collibra.dq.metastoreUser=<your-
postgres-user>,collibra_edge.collibra.dq.metastorePass=<your-
postgres-password>

The snippet below is the same as the code block above.

The bold sections are the areas you will edit

Chapter 5

clxxxvii

Chapter 5

sudo /home/<your-directory>/install-master.sh --storage-path /var/edge properties.yaml -r
registries.yaml --set collibra_edge.collibra.dq.enabled=true,collibra_
edge.collibra.dq.targetRevision=2022.02-<version>,collibra_
edge.collibra.dq.sparkVersion=3.2.0,collibra_
edge.collibra.dq.metastoreUrl=jdbc:postgresql://<postgres-ip>:5432/postgres,collibra_
edge.collibra.dq.metastoreUser=<postgres-user>,collibra_
edge.collibra.dq.metastorePass=<postgres-password>

Check that all the processes are running / completed

sudo /usr/local/bin/kubectl get pods --all-namespaces

Your Edge site will appear as HEALTHY upon successful installation

Uninstall Edge if there were mistakes/typos in the process

sudo /usr/local/bin/uninstall-edge.sh --force

clxxxviii

Uninstalling an Edge Site using this command is OK. Do not delete an Edge Site using the
UI.

Reinstall the prerequisites if you perform the uninstall

sudo yum localinstall --skip-broken -y https://rp-
m.rancher.io/k3s/stable/common/centos/7/noarch/k3s-selinux-0.2-
1.el7_8.noarch.rpm

Warning You should not delete an Edge using the UI, to avoid orphaned
records.

4. Configure an Agent
Navigate to the Remote Agent panel in the admin console

Upon completion of the Edge installation, you'll find an agent available from each
respective Edge Site. Click the pencil icon to configure the agent.

Chapter 5

clxxxix

Chapter 5

Change the Default Deploy Mode to Cluster, the Default Masters to K8s and input defaults
for resource assignment. Also add freeform append Spark confs as shown here.

Use the spark confs in the code block below.

cxc

-conf spark.kuber-
netes.ex-
ecutor.limit.cores=1,spark.kubernetes.driver.limit.cores=1

Note The DQ Job (Spark) compute will take place locally on Edge K3s. Increase
the size of your VM to vertically scale for more resources (.e.g. 32 cores, RAM, etc.).
This is the preferred option in beta. Hadoop compute is supported if customer
chooses that path and uses their Dataproc or EMR cluster.

Note Make note of the agent name that as created. In the following step you will
create a connection and select (link) the agent to your connection.

Warning Do not delete an Agent from the UI, to avoid any orphaned records.

5. Set Job Limits
Set max cores to 1 in the job limit settings.

Refer to this link for configuring job limits.

6. Add a Connection
This is the same process of adding a connection found Adding Connectionswith one
difference. You will map the connection to your agent upon establishing a connection. This
is different than mapping a connection and an agent in the self-hosted application.

Select your target agent using the Target Agent drop-down. This drop-down will populate
with existing agents. Here is where you will select the agent name from the previous step.

Chapter 5

cxci

https://dq-docs.collibra.com/benchmarks/performance-settings#job-limits

Chapter 5

Afterwards, you do not need to assign the connection to the agent. It will be automatically
mapped.

cxcii

Note To map a connection to another agent, you need to re-save the
connection and select another agent from the drop-down list.

7. Run a DQ Job
Run a DQ Job to validate the installation. Use the Explorer to onboard a table and check
the Jobs page as normal to see the status.

Note If the DQ Job does not succeed, please check your Agent settings and
system prerequisites

Notes

Edge Capability Resource Requirements: If insufficient resources, your capabilities will not
perform properly.

Installer: Please beware, downloading new installer will invalidate previous installer.

Volume: /var/lib/rancher/k3s path must have 50gb available

Root access: root access is needed, though future revisions will follow the least privileged
user access policies.

The private beta is designed to let customers 1) complete the installation 2) confirm
successful DQ jobs can be run and 3) validate their security requirements whereby no
sensitive data is stored outside their custody.

Chapter 5

cxciii

Chapter 5

Helpful Commands

Get all pods running
sudo /usr/local/bin/kubectl get pods --all-namespaces

Get shell access to pod
sudo /usr/local/bin/kubectl exec -it <dq-web-pod> -n collibra-
edge -- bash

Get shell access to pod
sudo /usr/local/bin/kubectl exec -it collibra-edge-controller-
<pod-name> -n collibra-edge -- sh

Check network connectivity to database
curl telnet://<rds-host>:<port>

Delete jobs
sudo /usr/local/bin/kubectl delete pod <pod-name> -n collibra-
edge

FAQ

What network access is needed?

l The Edge Site and Postgres need to communicate with each other.
l Additionally, logging and heartbeat requires outbound access to several services.
Please refer to Edge documentation for specific services that are used.

How can a user check the install?

l Time: The install should complete in around ~5 minutes; if not, there is likely an
issue.

l Check that the pods
l sudo /usr/local/bin/kubectl get pods --all-namespaces

Is there a way to get more checks / more logs?

l sudo /usr/local/bin kubectl describe

How to verify successful install?

cxciv

l In your Collibra DQ instance, navigate to the Edge Site Management panel in the
Admin Console and confirm a HEALTHY status

l Support can confirm via Datadog, the edge site will send heartbeats

How to locate my Edge site in Datdog?

l Send your Edge Site ID to Support to check the health status.

Do customers have access to Datadog?

l Only Collibra has access to Datadog logging.

Can all my Collibra DQ and other capabilities run on the same Edge Site?

l There are not technical reasons preventing other capabilities and Collibra DQ from
running on the same Edge Site.

l The guidance for the beta is to have DQ Edge separate from DGC Edge capabilities
and simply use two Edge sites.

Are there any limitations with Collibra DQ Cloud in terms of features or functionality?

l While remote files are supported, local files and uploaded files are not supported due
to security restrictions

l Specific drivers are not available in the beta, though the most common data sources
are available.

What are the benefits of installing with Edge vs. a stand-alone, self-hosted
application?

l The primary benefits are managed upgrades, maintenance, and reducing the own-
ership costs of an entirely self-hosted set of components.

l In addition, this design allows customers to take advantage of containers and cloud
technologies without deep technical skillset requirements.

l This installation pattern was intentionally develop to not compromise any security
requirements and give the customer complete custody of their data.

l Lastly, this aligns the Collibra architecture standards so support and services teams
will benefit from normalized deployment models. In particular, when it comes to
installation, configuration, and troubleshooting.

Chapter 5

cxcv

Chapter 5

Agent

Diagram

The diagram above provides a high-level overview of how agents work within Collibra DQ.
Job execution is driven by DQ Jobs that are written to an agent_q table inside the DQ
Metastore (DQ-Postgres) via the Web App or REST API endpoint. Each active and
available agent queries the DQ-Postgres table every 5 seconds to execute DQ Jobs for
which the agent is responsible. For example, the EMR agent DQ-Agent3 only executes
DQ Jobs scheduled to run on EMR.

When an agent picks up a DQ Job, it launches the job either locally on the agent node itself
or on a cluster as a Spark job (if the agent is set up as an edge node of the cluster).
Depending on where the job launches, the results of the DQ Job will write back to the DQ
Metastore. The results then display in the DQWeb App, are exposed as REST API, and
become available for direct SQL query against the DQMetastore.

cxcvi

Setting up a DQ Agent with setup.sh as part of the DQ
package
Use the setup.sh script located in /opt/owl/ (or other Base Path that your installation
used). See the example in the code block below for setting up a DQ Agent with a Postgres
server running localhost on port 5432 with database postgres and Postgres
username/password combo postgres/password.

PATH TO DIR THAT CONTAINS THE INSTALL DIR
export BASE_PATH=/opt

PATH TO AGENT INSTALL DIR
export INSTALL_PATH=/opt/owl

DQ Metadata Postgres Storage settings
export METASTORE_HOST=localhost
export METASTORE_PORT=5432
export METASTORE_DB=postgres
export METASTORE_USER=postgres
export METASTORE_PASSWORD=password

cd $INSTALL_PATH

Install DQ Agent only
./setup.sh \
 -owlbase=$BASE_PATH \
 -options=owlagent \
 -pguser=$METASTORE_USER \
 -pgpassword=$METASTORE_PASSWORD \
 -pgserver=${METASTORE_HOST}:${METASTORE_PORT}/${METASTORE_
DB}

The setup script automatically generates the /opt/owl/config/owl.properties file
and encrypts the provided password.

Chapter 5

cxcvii

Chapter 5

Setting up a DQ Agent manually

Steps

1. Open a terminal session and go to the directory with the installer.
2. Run the following command to encrypt your DQ Metastore password before it is

stored in the /opt/owl/config/owl.properties file:

PATH TO AGENT INSTALL DIR
export INSTALL_PATH=/opt/owl

cd $INSTALL_PATH

#Encrypt DQ Metadata Postgres Storage password
./owlmanage.sh encrypt=password

Note owlmanage.sh generates an encrypted string for the plain text
password input. You can use the encrypted string in the
/opt/owl/config/owl.properties configuration file to avoid exposing
the DQMetadata Postgres Storage password.

3. Run the following command to open the /opt/owl/config/owl.properties con-
figuration file:

vi $INSTALL_PATH/config/owl.properties

cxcviii

4. Add the following properties to the configuration file:

spring.datasource.url=jdbc:postgresql://{DB_HOST}:{DB_PORT}/
{METASTORE_DB}
spring.datasource.username={METASTORE_USER}
spring.datasource.password={METASTORE_PASSWORD}
spring.datasource.driver-class-name-
e=com.owl.org.postgresql.Driver

spring.agent.datasource.url=jdbc:postgresql://{DB_HOST}:{DB_
PORT}/{METASTORE_DB}
spring.agent.datasource.username={METASTORE_USER}
spring.agent.datasource.password={METASTORE_PASSWORD}
spring.agent.datasource.driver-class-name-
e=org.postgresql.Driver

5. Restart the DQWeb App.

Setting up the DQ Agent from the Admin Console

Steps

1. On the Collibra DQ home page, hover your cursor over Settings and select Admin

Console.
» The Admin Console opens.

2. Click Remote Agent.
» The Agent Management page opens.

3. In the last column of the Agents table, to the right, click the pencil icon to edit your
agent.
» The Edit Agent modal appears.

4. Enter the required information.

Field Description

Agent Id The numeric identifier of your agent. For example, 6.

This filed is pre-filled and cannot be edited.

Agent Name The unique name of your agent.

This field is pre-filled and cannot be edited.

Chapter 5

cxcix

Chapter 5

Field Description

Agent Display
Name

The descriptive name of your agent that displays anywhere agent information is
present in the DQWeb App. You can customize the Agent Display Name to make it
easier to identify your agent.

Tip There are no character restrictions for the Agent Display Name field,
but it is best practice to use only alphanumeric characters, hyphens, and
underscores.

Is Local Select for Hadoop deployments only.

Is Livy Deprecated. Not used.

Livy Host The location where your Livy agent is hosted. This field is only applicable
when Livy is in use.

Base Path The installation folder path for DQ. All other paths in the DQ Agent are relative to
this installation path.

This is the location that is set as OWL_BASE in Full Standalone Setup and other

installation setups followed by owl/ folder. For example, if the setup command is

export OWL_BASE=/home/centos then the Base Path in the Agent

configuration should be set to /home/centos/owl/.

Default: /opt/owl/.

Collibra DQ
Core JAR

The file path to DQ Core jar file.

Default <Base Path>/owl/bin/.

Collibra DQ
Core Logs

The folder path where DQ Core logs are stored. Logs from DQ Jobs are stored in
this folder.

Default: <Base Path>/owl/log.

Collibra DQ
Script

The file path to DQ execution script owlcheck.sh. This script is used to run DQ

Job via command line without using agent. Usingowlcheck.shfor running DQ

Jobs is superseded by DQ Agent execution model. Default: <Base

Path>/owl/bin/owlcheck.

cc

Field Description

Collibra DQ
Web Logs

The folder path where DQWeb logs are stored. Logs from the DQWeb App are
stored in this folder.

Default: <Base Path>/owl/log.

Default
Queue

The default resource queue for YARN.

Deploy
Deployment
Mode

The Spark deployment mode that takes one of Client or Cluster.

Default
Master

The Spark Master URL copied from the Spark cluster verification screen.
For example, spark://....

Dynamic
Spark
Allocation

Deprecated. Not used.

Spark Conf
Key

Deprecated. Not used.

Spark Conf
Value

Deprecated. Not used.

Number of
Executor(s)

The default number of executors allocated per DQ Job when using this
Agent to run DQ Scans. The default is 1.

Executor
Memory (GB)

The default RAM per executors allocated per DQ Job when using this
Agent to run DQ Scans. The default is 1 gigabyte.

Number of
Core(s)

The default number of cores per executors allocated per DQ Job when
using this Agent to run DQ Scans. The default is 1.

Driver
Memory (GB)

The default driver RAM allocated per DQ Job when using this Agent to run
DQ Scans. The default is 1 gigabyte.

Free Form
(Appended)

Other spark-submit parameters to append to each DQ Job when using

this Agent to run DQ Scans.

Chapter 5

cci

Chapter 5

5. Click Save.

Linking data sources to the DQ Agent from the Admin
Console
When you add new Data Sources, the DQ Agent requires permission to run DQ Jobs with
them.

Steps

1. On the Collibra DQ home page, hover your cursor over Settings and select Admin

Console.
» The Admin Console opens.

2. Click Remote Agent.
» The Agent Management page opens.

3. In the last column of the Agents table, to the right, click the chain link icon to link your
agent to data source connections.
» The Agent to Connection Management wizard appears.

Note The left panel contains a list of available connections that are not yet
linked to the DQ Agent and do not yet have permission to run DQ Jobs. The
right panel contains a list of connections that are linked to the DQ Agent and
have permission to run DQ Jobs.

ccii

4. Click a connection in the left panel to link connections one at a time or click the
double arrow icon to link all available connections at the same time.

5. Click Update.

Tip You can unlink connections with the same methods listed above, but click the
connections listed in the right panel instead of the left. Successfully unlinked
connections appear in the left panel.

Adding a connection to a DQ Agent

Chapter 5

cciii

cciv

Collibra DQ Connections

Chapter 6

Chapter 6

Supported Connections
This page is a list of supported data source connection types. A supported data source is a
data source that is shipped with the images or standalone bundles, and thus, eligible for
support from the Collibra DQ team.

Note Any data source that is compatible with the Java version and server to which
you are connected can be used. However, if an issue occurs with an unsupported
data source, we cannot guarantee support.

Production
The following is a list of drivers certified for production use.

ccv

Connections - Currently Supported

Co-
nn-
ect-
ion

C-
er-
tif-
ie-
d

T-
e-
s-
t-
e-
d

P-
ac-
ka-
ge-
d

O-
pti-
on-
all-
y
P-
ac-
ka-
ge-
d

Pu-
sh-
do-
wn

E-
st-
i-
m-
at-
e
jo-
b

Fil-
ter-
gr-
a-
m

A-
n-
al-
y-
z-
e
D-
at-
a

S-
ch-
ed-
ul-
e

S-
p-
a-
r-
k
A-
g-
e-
n-
t

Y-
a-
r-
n
A-
g-
e-
n-
t

P-
a-
r-
al-
le-
l
J-
D-
B-
C

S-
e-
s-
si-
o-
n
S-
ta-
te

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d
M-
an-
ag-
er

K-
er-
b-
er-
os
K-
ey-
ta-
b

K-
er-
b-
er-
os
T-
G-
T

St-
an-
dal-
on-
e
(n-
on-
Liv-
y)

JD-
K8
Dri-
ver
Co-
mp-
atib-
ility

JD-
K11
Dri-
ver
Co-
mp-
atib-
ility

At-
he-
na Y-

es
Y-
e-
s

No Ye-
s

Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

At-
he-
na
C-
DA-
TA

Y-
es

Y-
e-
s

Ye-
s

No No Y-
es

Ye-
s Y-

e-
s

N-
o Y-

e-
s

N-
o

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Bi-
gQ-
ue-
ry

Y-
es

Y-
e-
s

No Ye-
s

Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Chapter 6

ccvi

Chapter 6

Co-
nn-
ect-
ion

C-
er-
tif-
ie-
d

T-
e-
s-
t-
e-
d

P-
ac-
ka-
ge-
d

O-
pti-
on-
all-
y
P-
ac-
ka-
ge-
d

Pu-
sh-
do-
wn

E-
st-
i-
m-
at-
e
jo-
b

Fil-
ter-
gr-
a-
m

A-
n-
al-
y-
z-
e
D-
at-
a

S-
ch-
ed-
ul-
e

S-
p-
a-
r-
k
A-
g-
e-
n-
t

Y-
a-
r-
n
A-
g-
e-
n-
t

P-
a-
r-
al-
le-
l
J-
D-
B-
C

S-
e-
s-
si-
o-
n
S-
ta-
te

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d
M-
an-
ag-
er

K-
er-
b-
er-
os
K-
ey-
ta-
b

K-
er-
b-
er-
os
T-
G-
T

St-
an-
dal-
on-
e
(n-
on-
Liv-
y)

JD-
K8
Dri-
ver
Co-
mp-
atib-
ility

JD-
K11
Dri-
ver
Co-
mp-
atib-
ility

Bi-
gQ-
ue-
ry
C-
DA-
TA

Y-
es

Y-
e-
s

Ye-
s

No No Y-
es

Ye-
s Y-

e-
s

N-
o Y-

e-
s

N-
o

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Da-
tab-
ric-
ks
JD-
BC

Y-
es

Y-
e-
s

No Ye-
s

No N-
o

No
N-
o

N-
o N-

o
N-
o

N-
o

N-
o

No No N-
o

N-
o

No Yes Yes

Da-
tab-
ric-
ks
C-
DA-
TA

Y-
es

Y-
e-
s

Ye-
s

No No Y-
es

Ye-
s Y-

e-
s

N-
o Y-

e-
s

N-
o

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

ccvii

Co-
nn-
ect-
ion

C-
er-
tif-
ie-
d

T-
e-
s-
t-
e-
d

P-
ac-
ka-
ge-
d

O-
pti-
on-
all-
y
P-
ac-
ka-
ge-
d

Pu-
sh-
do-
wn

E-
st-
i-
m-
at-
e
jo-
b

Fil-
ter-
gr-
a-
m

A-
n-
al-
y-
z-
e
D-
at-
a

S-
ch-
ed-
ul-
e

S-
p-
a-
r-
k
A-
g-
e-
n-
t

Y-
a-
r-
n
A-
g-
e-
n-
t

P-
a-
r-
al-
le-
l
J-
D-
B-
C

S-
e-
s-
si-
o-
n
S-
ta-
te

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d
M-
an-
ag-
er

K-
er-
b-
er-
os
K-
ey-
ta-
b

K-
er-
b-
er-
os
T-
G-
T

St-
an-
dal-
on-
e
(n-
on-
Liv-
y)

JD-
K8
Dri-
ver
Co-
mp-
atib-
ility

JD-
K11
Dri-
ver
Co-
mp-
atib-
ility

DB-
2

Y-
es

Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Dr-
em-
io Y-

es
Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Hi-
ve

Y-
es

Y-
e-
s

No Ye-
s

Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

Ye-
s

Ye-
s

Y-
es

Y-
es

Ye-
s

Yes Yes

Hi-
ve
C-
DA-
TA

N-
o

N-
o

Ye-
s

No No N-
o

Ye-
s N-

o

N-
o N-

o
N-
o

N-
o

N-
o

Ye-
s

No Y-
es

Y-
es

Ye-
s

Yes Yes

Chapter 6

ccviii

Chapter 6

Co-
nn-
ect-
ion

C-
er-
tif-
ie-
d

T-
e-
s-
t-
e-
d

P-
ac-
ka-
ge-
d

O-
pti-
on-
all-
y
P-
ac-
ka-
ge-
d

Pu-
sh-
do-
wn

E-
st-
i-
m-
at-
e
jo-
b

Fil-
ter-
gr-
a-
m

A-
n-
al-
y-
z-
e
D-
at-
a

S-
ch-
ed-
ul-
e

S-
p-
a-
r-
k
A-
g-
e-
n-
t

Y-
a-
r-
n
A-
g-
e-
n-
t

P-
a-
r-
al-
le-
l
J-
D-
B-
C

S-
e-
s-
si-
o-
n
S-
ta-
te

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d
M-
an-
ag-
er

K-
er-
b-
er-
os
K-
ey-
ta-
b

K-
er-
b-
er-
os
T-
G-
T

St-
an-
dal-
on-
e
(n-
on-
Liv-
y)

JD-
K8
Dri-
ver
Co-
mp-
atib-
ility

JD-
K11
Dri-
ver
Co-
mp-
atib-
ility

Im-
pal-
a Y-

es
N-
o

No Ye-
s

Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

Ye-
s

Ye-
s

Y-
es

Y-
es

Ye-
s

Yes Yes

Im-
pal-
a
C-
DA-
TA

N-
o

N-
o

Ye-
s

No No N-
o

Ye-
s N-

o

N-
o N-

o
N-
o

N-
o

N-
o

Ye-
s

No Y-
es

Y-
es

Ye-
s

Yes Yes

Mi-
cro-
sof-
t
S-
QL

Y-
es

Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes No

ccix

Co-
nn-
ect-
ion

C-
er-
tif-
ie-
d

T-
e-
s-
t-
e-
d

P-
ac-
ka-
ge-
d

O-
pti-
on-
all-
y
P-
ac-
ka-
ge-
d

Pu-
sh-
do-
wn

E-
st-
i-
m-
at-
e
jo-
b

Fil-
ter-
gr-
a-
m

A-
n-
al-
y-
z-
e
D-
at-
a

S-
ch-
ed-
ul-
e

S-
p-
a-
r-
k
A-
g-
e-
n-
t

Y-
a-
r-
n
A-
g-
e-
n-
t

P-
a-
r-
al-
le-
l
J-
D-
B-
C

S-
e-
s-
si-
o-
n
S-
ta-
te

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d
M-
an-
ag-
er

K-
er-
b-
er-
os
K-
ey-
ta-
b

K-
er-
b-
er-
os
T-
G-
T

St-
an-
dal-
on-
e
(n-
on-
Liv-
y)

JD-
K8
Dri-
ver
Co-
mp-
atib-
ility

JD-
K11
Dri-
ver
Co-
mp-
atib-
ility

M-
YS-
QL Y-

es
Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Or-
acl-
e Y-

es
Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Po-
stg-
res Y-

es
Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Pr-
est-
o Y-

es
N-
o

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Chapter 6

ccx

Chapter 6

Co-
nn-
ect-
ion

C-
er-
tif-
ie-
d

T-
e-
s-
t-
e-
d

P-
ac-
ka-
ge-
d

O-
pti-
on-
all-
y
P-
ac-
ka-
ge-
d

Pu-
sh-
do-
wn

E-
st-
i-
m-
at-
e
jo-
b

Fil-
ter-
gr-
a-
m

A-
n-
al-
y-
z-
e
D-
at-
a

S-
ch-
ed-
ul-
e

S-
p-
a-
r-
k
A-
g-
e-
n-
t

Y-
a-
r-
n
A-
g-
e-
n-
t

P-
a-
r-
al-
le-
l
J-
D-
B-
C

S-
e-
s-
si-
o-
n
S-
ta-
te

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d

K-
er-
be-
ro-
s
P-
as-
s-
w-
or-
d
M-
an-
ag-
er

K-
er-
b-
er-
os
K-
ey-
ta-
b

K-
er-
b-
er-
os
T-
G-
T

St-
an-
dal-
on-
e
(n-
on-
Liv-
y)

JD-
K8
Dri-
ver
Co-
mp-
atib-
ility

JD-
K11
Dri-
ver
Co-
mp-
atib-
ility

Re-
ds-
hift Y-

es
Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Sn-
ow-
fla-
ke

Y-
es

Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Sy-
ba-
se Y-

es
Y-
e-
s

Ye-
s

No No Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

N-
o

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

Te-
ra-
dat-
a

Y-
es

Y-
e-
s

Ye-
s

No Ye-
s

Y-
es

Ye-
s Y-

e-
s

Y-
es Y-

e-
s

Y-
e-
s

Y-
e-
s

N-
o

No No N-
o

N-
o

Ye-
s

Yes Yes

ccxi

Tip A connection listed as Tested is one for which the Collibra DQ team has an
environment and is included in regular regression testing.

Note The Dremio connection is compatible with JDK11 if you add the following to
owlmanage.sh as a JVM option for the web and Spark instance:
-Dcdjd.io.netty.tryReflectionSetAccessible=true

Remote Connections - Currently Supported

Con-
nection

Cer-
tified

Tes-
ted

Pack-
aged

Option-
ally
pack-
aged

Push-
down

Estim-
ate job

Fil-
tergram

Ana-
lyze
data

Spa-
rk
age-
nt

Yar-
n
age-
nt

Azure
Data
Lake
(Gen2)

Yes Yes

Yes No No Yes Yes

Yes Yes Yes

Google
Cloud
Storage

Yes Yes

No Yes No Yes Yes

Yes Yes Yes

HDFS

Yes Yes

Yes No No Yes Yes

Yes Yes Yes

S3

Yes Yes

Yes No No Yes Yes

Yes Yes Yes

Under Evaluation
The following is a list of drivers which are under evaluation (not certified yet for production
usage). These connections are currently ineligible for escalated support services.

Chapter 6

ccxii

Chapter 6

Connections - Tech Preview

Co-
nne-
ctio-
n

Ce-
rti-
fie-
d

T-
e-
st-
e-
d

Pa-
ck-
ag-
ed

Op-
tio-
nal
pa-
ck-
agi-
ng

Pu-
sh-
do-
wn

Es-
ti-
m-
at-
e
job

Fil-
ter-
gra-
m

A-
na-
ly-
ze
da-
ta

Sc-
he-
dul-
e

S-
p-
a-
rk
a-
g-
e-
nt

Y-
a-
r-
n
a-
g-
e-
n-
t

P-
ar-
all-
el
J-
D-
B-
C

S-
es-
si-
on
st-
at-
e

Ke-
rb-
er-
os
st-
ate

Ke-
rbe-
ros
pa-
ss-
wo-
rd
ma-
na-
ger

Ke-
rb-
er-
os
ke-
yt-
ab

Ke-
rb-
er-
os
T-
GT

Sta-
nda-
lon-
e
(no-
n-
Liv-
y)

Cas-
san-
dra

No
N-
o

No No No No No N-
o

No
N-
o

N-
o

N-
o

N-
o

No No No No No

Mo-
ngo-
DB

No
N-
o

No No No Ye-
s

No Y-
es

Ye-
s Y-

e-
s

Y-
e-
s

N-
o

N-
o

No No No No Yes

Mo-
ngo-
DB
CD-
AT-
A

Ye-
s Y-

es

Ye-
s

No No Ye-
s

Ye-
s

Y-
es

No
Y-
e-
s

N-
o

Y-
es

N-
o

No No No No Yes

SA-
P
HA-
NA

No
N-
o

No No No No No N-
o

No
N-
o

N-
o

N-
o

N-
o

No No No No No

ccxiii

Co-
nne-
ctio-
n

Ce-
rti-
fie-
d

T-
e-
st-
e-
d

Pa-
ck-
ag-
ed

Op-
tio-
nal
pa-
ck-
agi-
ng

Pu-
sh-
do-
wn

Es-
ti-
m-
at-
e
job

Fil-
ter-
gra-
m

A-
na-
ly-
ze
da-
ta

Sc-
he-
dul-
e

S-
p-
a-
rk
a-
g-
e-
nt

Y-
a-
r-
n
a-
g-
e-
n-
t

P-
ar-
all-
el
J-
D-
B-
C

S-
es-
si-
on
st-
at-
e

Ke-
rb-
er-
os
st-
ate

Ke-
rbe-
ros
pa-
ss-
wo-
rd
ma-
na-
ger

Ke-
rb-
er-
os
ke-
yt-
ab

Ke-
rb-
er-
os
T-
GT

Sta-
nda-
lon-
e
(no-
n-
Liv-
y)

Solr

No
N-
o

No No No No No N-
o

No
N-
o

N-
o

N-
o

N-
o

No No No No No

Streaming - Tech Preview

Co-
nne-
ctio-
n

C-
ert-
ifi-
ed

T-
e-
st-
e-
d

Pa-
ck-
ag-
ed

Op-
tio-
nal
pa-
ck-
agi-
ng

Pu-
sh-
do-
wn

Es-
ti-
m-
at-
e
jo-
b

Fil-
ter-
gra-
m

A-
na-
ly-
ze
da-
ta

Sc-
he-
dul-
e

S-
p-
a-
r-
k
a-
g-
e-
n-
t

Y-
a-
r-
n
a-
g-
e-
n-
t

P-
ar-
all-
el
J-
D-
B-
C

S-
es-
si-
on
st-
at-
e

Ke-
rb-
er-
os
pa-
ss-
wo-
rd

Ke-
rb-
er-
os
pa-
ss-
wo-
rd
ma-
na-
ger

Ke-
rb-
er-
os
T-
GT

CR-
DB
me-
tas-
tor-
e

Sta-
nda-
lon-
e
(no-
n-
Liv-
y)

Kaf-
ka No

N-
o

No No No No No N-
o

No
N-
o

N-
o

N-
o

N-
o

No No No No No

Chapter 6

ccxiv

Chapter 6

Files

File type Supported

CSV (and all delimiters) Yes

Parquet Yes

AVRO Yes

JSON Yes

DELTA Yes

Limitations

Authentication

l DQ Jobs that require Kerberos TGT are not yet supported on Spark Standalone or
Local deployments

o Recommended to submit jobs via Yarn or K8s

File Limitations

File Sizes

l Files with more than 250 columns supported in File Explorer, unless you have Livy
enabled.

l Files larger than 5gb are not supported in File Explorer, unless you have Livy
enabled.

l Smaller file sizes will allow for skip scanning and more efficient processing
l Advanced features like replay, scheduling, and historical lookbacks require a date
signature in the folder of file path

S3

ccxv

l Please ensure no spaces in S3 connection name
l Please remember to select 'Save Credentials' checkbox upon establishing con-
nection

l Please point to root bucket, not sub folders

Local Files

l Local files can only be run using NO_AGENT default
l This is for quick testing, smaller files, and demonstration purposes.
l Local file scanning is not intended for large scale production use.

Livy

l Livy is only supported for K8s environments

Spark Engine Support

l MapR is EOL and MapR spark engine not supported to run Collibra DQ jobs.

Databricks

Please refer to this page for more details on Databricks support

The only supported Databricks spark submit option is to use a notebook to initiate the job
(Scala and Pyspark options). This is intended for pipeline developers and users
knowledgeable with Databricks and notebooks. This form factor is ideal for incorporating
data quality within existing Spark ETL data flows. The results are still available for
business users to consume. The configuration is not intended for business users to
implement. There are three ways that Databricks users can run DQ jobs using Databricks
cluster or JDBC connection. 1. Notebook Users can directly open a notebook, upload
Collibra DQjars and run a DQ job on Databricks cluster. The full steps are explained in
below page. Collibra DQsupports this flow in production.

https://dq-docs.collibra.com/apis-1/notebook/cdq-+-databricks

2. Spark-Submit

There are two ways to run a spark submit job on Databricks's cluster. The first approach is
to run a DQ spark submit job using Databricks UI and the second approach is by invoking

Chapter 6

ccxvi

https://dq-docs.collibra.com/connecting-to-dbs-in-owl-web/supported-drivers/connectivity-to-databricks
https://dq-docs.collibra.com/connecting-to-dbs-in-owl-web/supported-drivers/connectivity-to-databricks
https://dq-docs.collibra.com/apis-1/notebook/cdq-+-databricks

Chapter 6

Databricks rest API. We have tested both approaches against different cluster versions of
DataBricks (See below table). Below is the full documentation to demonstrate these paths.
https://dq-docs.collibra.com/apis-1/notebook/cdq-+-databricks/dq-databricks-submit\

Please note that these are only examples to demonstrate how to achieve DQ spark submit
to Databricks's cluster. These paths are not supported in production and the Collibra DQ
team does not support any bug coverages or professional services or customer questions
for these flows. \

3. JDBC

Collibra DQ users can create JDBC connections in CDQ UI and connect to their
Databricks database. This is scheduled for 2022.05 release.

Warning Delta Lake and JDBC connectivity has been validated against Spark 3.01
Collibra DQ package, Databricks 7.3 LTS and SparkJDBC41.jar. This is available
as Preview. No other combinations have been certified at this time.

Warning Spark submit using the Databricks spark master url is not supported.

Connectivity to Athena
Your host can connect to Athena with either an Athena public service endpoint or an
Athena private endpoint. For more information on setting the endpoint, see Command line
options and Boto3 documentation.

JDBC URL Example

jdbc:awsathena://AwsRegion=us-east-
1;User=xxx;Password=xxx;S3OutputLocation=s3://data-

ccxvii

https://dq-docs.collibra.com/apis-1/notebook/cdq-+-databricks/dq-databricks-submit
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html

bucket;MetadataRetrievalMethod=Query

l Athena uses port 443 to connect to the host.
l Athena's streaming API uses port 444 to stream the query results. When you use a
JDBC/ODBC driver, Athena uses this port to stream the query results to the
JDBC/ODBC driver installed on the client host. Therefore, unblock this port when
you use a JDBC/ODBC driver to connect to Athena. If this port is blocked, your busi-
ness intelligence tool might time out or fail to show query results when you run a
query.

l Use the appropriate JDBC connection URLs in your business tool configuration
according to your private DNS configuration for your endpoint.

o Use the following connection string if you turned off the private DNS: jdb-
c:awsathena://vpce-.athena.us-east-1.vpce.amazonaws.com:443

o Use the following connection string if you turned on the private DNS: jdb-
c:awsathena://athena.us-east-1.amazonaws.com:443

l Be sure that the security group attached to your VPC endpoint allows traffic from the
host where you installed the JDBC/ODBC driver.

l Be sure that port 444 isn't blocked. If you use an AWS PrivateLink endpoint to con-
nect to Athena, then be sure that the security group attached to the AWS PrivateLink
endpoint is open to inbound traffic on port 444. Athena uses port 444 to stream query
results. If port 444 is blocked, then the results aren't streamed back to your client
host. In such situations, you might receive an error message similar to "[Simba]
[AthenaJDBC](100123) An error has occurred. Exception during column ini-
tialization". This can also cause the business intelligence tool to stop responding and
not display the query results.

telnet athena.us-east-1.amazonaws.com 443
telnet glue.us-east-1.amazonaws.com 443

Chapter 6

ccxviii

http://athena.us-east-1.vpce.amazonaws.com:443/
http://athena.us-east-1.amazonaws.com:443/
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoints-security-groups

Chapter 6

Minimum Permissions

ccxix

{
 "Version": "2012-10-17",
 "Statement": [

{
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "athena:StartQueryExecution",
 "s3:ListBucketMultipartUploads",
 "athena:GetQueryResultsStream",
 "glue:GetTables",
 "glue:GetPartitions",
 "athena:GetQueryResults",
 "glue:BatchGetPartition",
 "s3:ListBucket",
 "glue:GetDatabases",
 "athena:ListQueryExecutions",
 "s3:ListMultipartUploadParts",
 "glue:GetTable",
 "glue:GetDatabase",
 "athena:GetWorkGroup",
 "s3:PutObject",
 "s3:GetObject",
 "glue:GetPartition",
 "glue:GetCatalogImportStatus",
 "athena:StopQueryExecution",
 "athena:GetQueryExecution",
 "s3:GetBucketLocation",
 "athena:BatchGetQueryExecution",
 "athena:DeletePreparedStatement",
 "athena:CreatePreparedStatement"
],
 "Resource": [
 "arn:aws:athena:*:<AWSAccountID>:workgroup/prima-
ry",
 "arn:aws:s3:::<S3 bucket name>/*",
 "arn:aws:s3:::<S3 bucket name>",
 "arn:aws:glue:*:<AWSAccountID>:catalog",
 "arn:aws:glue:*:<AWSAccountID>:database/<databas-
e name>",
 "arn:aws:glue:*:<AWSAccountID>:table/<database
name>/*"
]
 }
]
}

Chapter 6

ccxx

Chapter 6

Connectivity to BigQuery

Steps for the BigQuery Connection

1. Driver: com.simba.googlebigquery.jdbc42.Driver
2. Locate your service account owl-gcp.json (your org auth key in JSON format)
3. Create a JDBC connection (for example only do not use this JDBC URL): jdb-

c:bigquery://ht-
tps://www.-
googleapis.-
com/bigquery/v2:443;Pro-
jectId=;OAuthType=0;OAuthServiceAcctEmail=<1234567890>-
compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/bq-
gcp.json;Timeout=86400

4. Requires a path to a JSON file that contains the service account for authorization.
That same file is provided to the Spark session to make a direct to storage con-
nection for maximum parallelism once Core fires up.”
a. Helpful tip: This JSON file can be uploaded to your bigquery directory using

the "add driver".

ccxxi

mailto:-compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/owl-gcp.json;Timeout=86400
mailto:-compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/owl-gcp.json;Timeout=86400
mailto:-compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/owl-gcp.json;Timeout=86400

To succeed with the connection, you must follow these steps:

1. Password for the BigQuery Connector form in Collibra DQ must be a base64
encoded string created from the json file (see step 3. above) and input as pass-
word. For example: base64 your_json.json -w 0 or cat your_json.json |

base64 -w 0

2. Check that this JAR exists and is on the path of the Collibra DQ Web UI server
(eg. <INSTALL_PATH>/owl/drivers/bigquery/core). Look at your driver directory loc-
ation which contains this BigQuery JAR: spark-bigquery_2.12-0.18.1.jar

3. Make sure these JARs present in <INSTALL_PATH>/owl/drivers/bigquery/:
****animal-sniffer-annotations-1.19.jargoogle-api-services-bigquery-v2-
rev20201030-1.30.10.jargrpc-google-cloud-bigquerystorage-v1beta1-
0.106.4.jarlistenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jarannota-
tions-4.1.1.4.jargoogle-auth-library-credentials-0.22.0.jargrpc-google-cloud-
bigquerystorage-v1beta2-0.106.4.jaropencensus-api-0.24.0.jarapi-common-1.10.1.-
jargoogle-auth-library-oauth2-http-0.22.0.jargrpc-grpclb-1.33.1.jaropencensus-con-
trib-http-util-0.24.0.jarauto-value-annotations-

Chapter 6

ccxxii

Chapter 6

1.7.4.jarGoogleBigQueryJDBC42.jargrpc-netty-shaded-1.33.1.jarperfmark-api-
0.19.0.jaravro-1.10.0.jargoogle-cloud-bigquery-1.125.0.jargrpc-protobuf-
1.33.1.jarprotobuf-java-3.13.0.jarchecker-compat-qual-2.5.5.jargoogle-cloud-
bigquerystorage-1.6.4.jargrpc-protobuf-lite-1.33.1.jarprotobuf-java-util-
3.13.0.jarcommons-codec-1.11.jargoogle-cloud-core-1.93.10.jargrpc-stub-
1.33.1.jarproto-google-cloud-bigquerystorage-v1-1.6.4.jarcommons-compress-1.20.-
jargoogle-cloud-core-http-1.93.10.jargson-2.8.6.jarproto-google-cloud-bigquerystor-
age-v1alpha2-0.106.4.jarcommons-lang3-3.5.jargoogle-http-client-1.38.0.jarguava-
23.0.jarproto-google-cloud-bigquerystorage-v1beta1-0.106.4.jarcommons-logging-
1.2.jargoogle-http-client-apache-v2-1.38.0.jarhttpclient-4.5.13.jarproto-google-
cloud-bigquerystorage-v1beta2-0.106.4.jarconscrypt-openjdk-uber-2.5.1.jargoogle-
http-client-appengine-1.38.0.jarhttpcore-4.4.13.jarproto-google-common-protos-
2.0.1.jarcoregoogle-http-client-jackson2-1.38.0.jarj2objc-annotations-1.3.jarproto-
google-iam-v1-1.0.3.jarerror_prone_annotations-2.4.0.jargoogle-oauth-client-
1.31.1.jarjackson-annotations-2.11.0.jargrpc-alts-1.33.1.jarjackson-core-
2.11.3.jarslf4j-api-1.7.30.jarfailureaccess-1.0.1.jargrpc-api-1.33.1.jarjackson-data-
bind-2.11.0.jargax-1.60.0.jargrpc-auth-1.33.1.jarjavax.annotation-api-
1.3.2.jarthreetenbp-1.5.0.jargax-grpc-1.60.0.jargrpc-context-1.33.1.jarjoda-time-
2.10.1.jargax-httpjson-0.77.0.jargrpc-core-1.33.1.jarjson-20200518.jargoogle-api-cli-
ent-1.31.1.jargrpc-google-cloud-bigquerystorage-v1-1.6.4.jarjsr305-3.0.2.jar

4. You may get a CLASSPATH conflict regarding the JAR files.

ccxxiii

5. Make sure the BigQuery connector Scala version matches your Spark Scala version.

Chapter 6

ccxxiv

Chapter 6

.

ccxxv

Chapter 6

ccxxvi

https://discourse-static.influitive.net/uploads/db_033c9cc6_3cea_4623_b4a8_52ebc3f9e8a1/original/2X/d/dfca73373275afb5f063f192a3aa7105caa76bd8.png

Chapter 6

Networking

Please account for these urls from a networking and firewall perspective.

logging.googleapis.com

oauth2.googleapis.com

googleapis.com

bigquerystorage.googleapis.com

bigquery.googleapis.com

Permissions

Make sure the project and account have appropriate permissions. These are common
permissions to provide to the account.

ccxxvii

Views

Support for BigQuery views is available from the 2021.11 release onward. There are
BigQuery limitations on creating views from different data sets (collections). Optionally,
you can add the viewsEnabled=true parameter to the connection property when
defining the connection.

Note For read/write access to BigQuery, you can use the Spark BigQuery
connector. To use this connector, ensure that the following configurations are set:

viewsEnabled is set to true.
materializationDataset is set to a data set where the GCP user has table
creation permission.
materializationProject is optional.

Spark Version 2

Warning Be sure to use the Spark BigQuery connector that is compatible with your
version of Spark.

Also, when using Spark <3 and Scala 2.11, add the following props to the
connection properties:

Chapter 6

ccxxviii

Chapter 6

dq.bq.legacy=true,viewsEnabled=true

Connectivity to Databricks

There are three ways to utilize Databricks infrastructure with Collibra Data
Quality:

l JDBC (Supported)
l Notebook/SDK (Supported)
l Spark Submit (Not Supported)

JDBC (Supported)

Note As of May 2022, certification, support and optional packaging is available.

Warning As of September 2022, Databricks JDBC driver version 2.6.27 is
packaged as part of both standalone and Kubernetes download packages. The
Databricks Simba driver (version 2.6.22) is no longer packaged for Kubernetes. As
a result of this change, the Databricks connection template has changed, and any
existing connection using the old driver (2.6.22) must be updated. For more
information on updating your drivers, refer to Standalone Upgrade.

Connecting to a Databricks SQL warehouse

The following table shows the connection details for the required fields of a Databricks
JDBC connection.

Prop-
erty

Description

Name The unique name used for your connection. For example, databricks-sql.

ccxxix

Prop-
erty

Description

Con-
nection
URL

The connection string used to establish a connection to Databricks. This should adhere
to the following format: jdbc:databricks://[Host]:[Port]/[Schema];[Property1]=[Value];
[Property2]=[Value];...

For example, jdbc:databricks://<your-account-here>.cloud.dat-

abrick-
s.com:443/de-
fault;trans-
portMode-
e=http;ssl=1;AuthMech=3;httpPath=/sql/1.0/warehouses/xxx;UID=token;PWD=
<your-token-here>

Driver
Name

The driver class name used for your connection. For example, com.dat-
abricks.client.jdbc.Driver

Port The port used to establish a connection. The default is 0.

Connecting to Databricks Unity Catalog

Note Connectivity to Databricks Unity Catalog is available in Collibra DQ versions
2023.01 or later.

Prop-
erty

Description

Name The unique name used for your connection. For example, databricks-unity-catalog.

Chapter 6

ccxxx

Chapter 6

Prop-
erty

Description

Con-
nec-
tion
URL

The connection string used to establish a connection to Databricks. This should adhere
to the following format and include the catalog name in the connection string:
jdbc:databricks://[Host]:[Port]/[Schema];[Property1]=[Value]; [Property2]=[Value];...Con-
nCatalog=catalog_name

For example, jdbc:databricks://<your-account-here>.cloud.dat-

abrick-
s.com:443/de-
fault;trans-
portMode-
=http;ss-
l=1;AuthMec-
ch=3;httpPath=/sql/1.0/warehouses/xxx;UID=token;PWD=xxxx;ConnCatalog=cdq

Driver
Name

The driver class name used for your connection. For example, com.dat-
abricks.client.jdbc.Driver

Port The port used to establish a connection. The default is 0.

Credentials

user:token

password: <your-user-generated-token>

Jar

You can download the Databricks JDBC zip file by following one of the links below.

For the latest Databricks driver version, refer to the official Databricks JDBC Driver page.

For archived Databricks driver versions, refer to the official Databricks JDBC Driver
archive.

Note Databricks JDBC driver version 2.6.27 is packaged as part of both standalone
and Kubernetes download packages.

ccxxxi

https://www.databricks.com/spark/jdbc-drivers-download
https://www.databricks.com/spark/jdbc-drivers-archive
https://www.databricks.com/spark/jdbc-drivers-archive

Notebook (Supported)

l Pyspark SDK
l Scala SDK
l Collibra DQ + Databricks

Databricks no longer supports Runtime 6.5 or 10.3. Therefore, Collibra DQ Profile 2.45 is
not runnable on Databricks.

https://docs.databricks.com/release-notes/runtime/10.3ml.html

The following table shows the latest supported versions of Collibra DQ Profiles and their
matching Databricks Run times. (last updated: September 2022).

Spark Submit (Not Supported)

l Spark Master URL
l Databricks Jobs API

o Rest
o UI
o DQ-Databricks Submit

Note While these are not officially supported, there is a reference to architecture
and implementation pattern for how to do a Databricks Job submission.

CDQ Connection to Databricks via JDBC

Make a Collibra DQ Connection to Databricks

Make a Collibra DQ connection to Databricks with the following steps.

Chapter 6

ccxxxii

https://www.databricks.com/spark/jdbc-drivers-archive

Chapter 6

Note The Databricks Driver is packaged with the installation and can be found in
the Driver folder.

Steps

1. Login to your Collibra DQ instance.

2. Click the icon, then click Connection.

3. Locate the DATABRICKS driver DatabricksJDBC42.
4. Click Add.
5. Complete the following fields:

o Name - Add a name for the connection (for example, Databricks_JDBC).
o Connection URL - Enter the URL for the connection:
jdbc:databricks://<your-account-here>..cloud.dat-
abrick-
s.com:443/de-
fault;trans-
portMode=http;ssl=1;httpPath=sql/protocolv1/o/3633393438801721/0915-
195703-sh82m595;AuthMech=3;UID=token;PWD=<your-token-here>

o Port - Enter the port for the connection.
o Driver Name - Enter the name for the driver (for example, com.dat-
abricks.client.jdbc.Driver)

o Auth Type - Select the type of authorization from the drop-down list (for
example, Username/Password).

n Username - Username is token.
n Password - The token you entered in the Connection URL.

o Driver Location - Enter the location where the driver resides.
Your connection should look similar to the following screenshot:

ccxxxiii

6. Click Save.
If your connection information is valid, you receive the following message:

You have now successfully made a Collibra DQ connection to Databricks via JDBC.

Chapter 6

ccxxxiv

Chapter 6

Tip To view the connection, you can navigate to the Collibra DQExplorer page and
click Databricks JDBC connection.
Choose your dataset and continue to create your DQ Job.

The following screenshot is an example of the default > nyse database.

ccxxxv

Chapter 6

ccxxxvi

Chapter 6

Recap

Input JDBC credentials:

ccxxxvii

Browse connection:

Chapter 6

ccxxxviii

Chapter 6

Run Job:

ccxxxix

See results:

Chapter 6

ccxl

Chapter 6

Connectivity to Hive

Example URL

jdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-cdh.in-
ternal:10000/default;AuthMech=1;KrbHostFQDN=cdh-instance1.us-
east1-b.c.owl-hadoop-cdh.in-
ternal;Kr-
bRealm-
=CW.COM;K-
rbSer-
viceName=hive;SSL=1;SSLKeyStore=/opt/cloudera/security/pki/cdh-
instance1.us-east1-b.c.owl-hadoop-cdh.internal-
serv-
er.jk-
s;Al-
lowSelfSignedCerts=1;SSLKeyStorePwd=password;principal=hive/cdh-
instance1.us-east1-b.c.owl-hadoop-cdh.internal@CW.COM

Driver Name

com.simba.hive.jdbc41.HS2Driver

Driver Properties

hive.resultset.use.unique.column.names=false

What Does each option mean

Base connection string = jdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-
cdh.internal:10000/default

Authentication identifier = AuthMech=1 (which states Kerberos)

Kerberos Hive Server FQDN = KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-hadoop-
cdh.internal

Kerberos Realm used = KrbRealm=CW.COM (Not necessarily needed)

ccxli

Kerberos Service name = KrbServiceName=hive

Enabling SSL = SSL=1

The SSL KeyStore to be used to = SSLKeyStore=/opt/cloudera/security/pki/cdh-
instance1.us-east1-b.c.owl-hadoop-cdh.internal-server.jks (Could use SSLTrustStore
also)

Allow for Self Signed certifications to be OK = AllowSelfSignedCerts=1 (our environment
used self signed certs)

Password to the KeyStore = SSLKeyStorePwd=password (Not necessarily needed)

Kerberos Principal to use to Authenticate with = principal=hive/cdh-instance1.us-east1-
b.c.owl-hadoop-cdh.internal@CW.COM

Example Connection

FAQ

It is very common to require this connection property when not using the default schema.
Remember to add this to the connection properties when defining the connection.

Chapter 6

ccxlii

Chapter 6

hive.resultset.use.unique.column.names=false

Connecting to CDH 5.16 Hive SSL/TLS/Kerberos Setup

The Cloudera Hive JDBC drivers used
https://www.cloudera.com/downloads/connectors/hive/jdbc/2-5-16.html

JDBC Connection String used
jdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-
cdh.internal:10000/default;AuthMech=1;KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-
hadoop-
cdh.internal;KrbRealm=CW.COM;KrbServiceName=hive;SSL=1;SSLKeyStore=/opt/clou
dera/security/pki/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal-
server.jks;AllowSelfSignedCerts=1;SSLKeyStorePwd=password;principal=hive/cdh-
instance1.us-east1-b.c.owl-hadoop-cdh.internal@CW.COM

What Does each option mean
Base connection string = jdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-
cdh.internal:10000/default

Authentication identifier = AuthMech=1 (which states Kerberos)

Kerberos Hive Server FQDN = KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-hadoop-
cdh.internal

Kerberos Realm used = KrbRealm=CW.COM (Not necessarily needed)

Kerberos Service name = KrbServiceName=hive

Enabling SSL = SSL=1

The SSL KeyStore to be used to = SSLKeyStore=/opt/cloudera/security/pki/cdh-
instance1.us-east1-b.c.owl-hadoop-cdh.internal-server.jks (Could use SSLTrustStore
also)

ccxliii

https://www.cloudera.com/downloads/connectors/hive/jdbc/2-5-16.html

Allow for Self Signed certifications to be OK = AllowSelfSignedCerts=1 (our environment
used self signed certs)

Password to the KeyStore = SSLKeyStorePwd=password (Not necessarily needed)

Kerberos Principal to use to Authenticate with = principal=hive/cdh-instance1.us-east1-
b.c.owl-hadoop-cdh.internal@CW.COM

Within the Collibra DQWeb UI you have to
specify the following (See ScreenShot below)

Name = hivessl

Chapter 6

ccxliv

Chapter 6

Connection URL = jdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-
cdh.internal:10000/default;AuthMech=1;KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-
hadoop-
cdh.internal;KrbRealm=CW.COM;KrbServiceName=hive;SSL=1;SSLKeyStore=/opt/clou
dera/security/pki/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal-
server.jks;AllowSelfSignedCerts=1;SSLKeyStorePwd=password;principal=hive/cdh-
instance1.us-east1-b.c.owl-hadoop-cdh.internal@CW.COM

Port = 10000

Driver Name = com.cloudera.hive.jdbc4.HS2Driver

Username = userspark@CW.COM

Password = password

Connectivity to Oracle

Example URL

jdbc:oracle:thin:@10.589.0.31:1521:DEV

Driver Name

oracle.jdbc.OracleDriver

Connection Properties Recognized by Oracle JDBC Drivers

Name Short
Name

Type Description

user n/a String the user name for logging into the database

password n/a String the password for logging into the database

ccxlv

mailto:userspark@CW.COM

Name Short
Name

Type Description

database server String the connect string for the database

internal_logon n/a String a role, such as sysdba or sysoper, that allows

you to log on as sys

defaultRowPrefetch prefetch String
(con-
taining
integer
value)

the default number of rows to prefetch from the
server (default value is "10")

remarksReporting remarks String
(con-
taining
boolean
value)

"true" if getTables() and getColumns() should
report TABLE_REMARKS; equivalent to using
setRemarksReporting() (default value is "false")

defaultBatchValue batch-
value

String
(con-
taining
integer
value)

the default batch value that triggers an execution
request (default value is "10")

includeSynonyms syn-
onyms

String
(con-
taining
boolean
value)

"true" to include column information from pre-
defined "synonym" SQL entities when you
execute a DataBaseMetaData

getColumns() call; equivalent to connection

setIncludeSynonyms() call (default value

is "false")

Chapter 6

ccxlvi

Chapter 6

Name Short
Name

Type Description

processEscapes n/a String
(con-
taining
boolean
value)

"false" to disable escape processing for state-
ments (Statement or PreparedStatement) cre-
ated from this connection. Set this to "false" if
you want to avoid many calls to State-

ment.setEscapeProcessing(false);.

This is espcially usefull for PreparedStatement
where a call to setEscapeProcessing

(false) would have no effect. The default is

"true".

defaultNChar n/a String
(con-
taining
boolean
value)

"false" is the default. If set to "true", the default
behavior for handling character datatypes is changed
so that NCHAR/NVARCHAR2 become the default.
This means that setFormOfUse() won't be needed
anymore when using NCHAR/NVARCHAR2. This can

also be set as a java property :java -

Doracle.jdbc.defaultNChar=true

myApplication

useFetchS-
izeWithLongColumn

n/a String
(con-
taining
boolean
value)

"false" is the default. THIS IS A THIN ONLY
PROPERTY. IT SHOULD NOT BE USED WITH
ANY OTHER DRIVERS.If set to "true", the
performance when retrieving data in a 'SELECT' will
be improved but the default behavior for handling
LONG columns will be changed to fetch multiple rows
(prefetch size). It means that enough memory will be
allocated to read this data. So if you want to use this
property, make sure that the LONG columns you are
retrieving are not too big or you may run out of
memory. This property can also be set as a java

property : java -

Doracle.jdbc.useFetchSizeWithLong

Column=true myApplication

ccxlvii

Name Short
Name

Type Description

SetFloatAndDoubleUse-
Binary

n/a String
(con-
taining
boolean
value)

"false" is the default. If set to "true", causes the
java.sql.PreparedStatment setFloat and setDouble
API's to use internal binary format as for BINARY_
FLOAT and BINARY_DOUBLE parameters. See
oracle.jdbc.OraclePreparedStatement setBinaryFloat
and setBinaryDouble

https://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.html

Connectivity to Presto

Example URL

jdbc:presto://xyz.presto.svc.cluster.local:8080/database

Driver Name

com.facebook.presto.jdbc.PrestoDriver

Connection Properties

These methods may be mixed; some parameters may be specified in the URL while others
are specified using properties. However, the same parameter may not be specified using
both methods.

Parameter Reference

Name Description

user Username to use for authentication and author-
ization.

Chapter 6

ccxlviii

https://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.html

Chapter 6

Name Description

password Password to use for LDAP authentication.

socksProxy SOCKS proxy host and port. Example: loc-

alhost:1080

httpProxy HTTP proxy host and port. Example: loc-

alhost:8888

protocols Comma delineated list of HTTP protocols to use.
Example: protocols=http11. Acceptable val-

ues: http11,http10,http2

applicationNamePrefix Prefix to append to any specified Applic-

ationName client info property, which is used to set

the source name for the Presto query. If neither this
property nor ApplicationName are set, the

source for the query will be presto-jdbc.

accessToken Access token for token based authentication.

SSL Use HTTPS for connections

SSLKeyStorePath The location of the Java KeyStore file that contains
the certificate and private key to use for authen-
tication.

SSLKeyStorePassword The password for the KeyStore.

SSLTrustStorePath The location of the Java TrustStore file that will be
used to validate HTTPS server certificates.

SSLTrustStorePassword The password for the TrustStore.

KerberosRemoteServiceName Presto coordinator Kerberos service name. This para-
meter is required for Kerberos authentication.

KerberosPrincipal The principal to use when authenticating to the
Presto coordinator.

ccxlix

Name Description

KerberosUseCanonicalHostname Use the canonical hostname of the Presto coordin-
ator for the Kerberos service principal by first resolv-
ing the hostname to an IP address and then doing a
reverse DNS lookup for that IP address. This is
enabled by default.

KerberosConfigPath Kerberos configuration file.

KerberosKeytabPath Kerberos keytab file.

KerberosCredentialCachePath Kerberos credential cache.

extraCredentials Extra credentials for connecting to external services.
The extraCredentials is a list of key-value pairs.
Example: foo:bar;abc:xyz will create cre-

dentials abc=xyz and foo=bar

customHeaders Custom headers to inject through JDBC driver. The
customHeaders is a list of key-value pairs. Example:
testHeaderKey:testHeaderValue will inject

the header testHeaderKey with value testHead-

erValue. Values should be percent encoded.

Connectivity to Redshift

Example URL

jdbc:redshift://redshift-cluster-name.kdkcis9g8.us-east-1.red-
shift.amazonaws.com:5439/dev

Driver Name

com.amazon.redshift.jdbc.Driver

Chapter 6

ccl

Chapter 6

Amazon Redshift offers drivers for tools that are compatible with the JDBC 4.2 API. For
information about the functionality supported by these drivers, see the Amazon Redshift
JDBC driver release notes.

For detailed information about how to install the JDBC driver version 1.0, reference the
JDBC driver libraries, and register the driver class, see Amazon Redshift JDBC driver
installation and configuration guide.

For each computer where you use the Amazon Redshift JDBC driver, make sure that Java
Runtime Environment (JRE) 8.0 is installed.

If you use the Amazon Redshift JDBC driver for database authentication, make sure that
you have AWS SDK for Java 1.11.118 or later in your Java class path. If you don't have
AWS SDK for Java installed, download the ZIP file with JDBC 4.2–compatible driver
(without the AWS SDK) and driver dependent libraries for the AWS SDK:

l JDBC 4.2–compatible driver (without the AWS SDK) and driver dependent libraries
for AWS SDK files version 1.2.55.

The class name for this driver is com.amazon.redshift.jdbc42.Driver.

This ZIP file contains the JDBC4.2–compatible driver (without the AWS SDK) and its
dependent library files. Unzip the dependent jar files to the same location as the
JDBC driver. Only the JDBC driver needs to be in the CLASSPATH because the
driver manifest file contains all dependent library file names which are located in the
same directory as the JDBC driver. For more information about how to install the
JDBC driver, see Amazon Redshift JDBC driver installation and configuration guide.

Use this Amazon Redshift JDBC driver with the AWS SDK that is required for IAM
database authentication.

l JDBC 4.2–compatible driver (without the AWS SDK) version 1.2.55.

The class name for this driver is com.amazon.redshift.jdbc42.Driver.

Be sure to use ANTLR version 4.8.1. The antlr4-runtime-4.8-1.jar is included in the
ZIP download link above with the JDBC 4.2–compatible driver (without the AWS
SDK) and driver dependent libraries for the AWS SDK.

For more information about previous driver versions, see Use previous JDBC driver
versions with the AWS SDK for Java.

ccli

https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.55.1083/Amazon+Redshift+JDBC+Release+Notes.pdf
https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.55.1083/Amazon+Redshift+JDBC+Release+Notes.pdf
https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.55.1083/Amazon+Redshift+JDBC+Connector+Install+Guide.pdf
https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.55.1083/Amazon+Redshift+JDBC+Connector+Install+Guide.pdf
https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.55.1083/RedshiftJDBC42-1.2.55.1083.zip
https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.55.1083/RedshiftJDBC42-1.2.55.1083.zip
https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.55.1083/Amazon+Redshift+JDBC+Connector+Install+Guide.pdf
https://s3.amazonaws.com/redshift-downloads/drivers/jdbc/1.2.55.1083/RedshiftJDBC42-no-awssdk-1.2.55.1083.jar
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html#jdbc-previous-versions-with-sdk
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html#jdbc-previous-versions-with-sdk

Then download and review the Amazon Redshift ODBC and JDBC driver license
agreement.

If your tool requires a specific previous version of a driver, see Use previous JDBC driver
version 1.0 driver versions in certain cases.

Getting the JDBC URL

Before you can connect to your Amazon Redshift cluster from a SQL client tool, you need
to know the JDBC URL of your cluster. The JDBC URL has the following format:
jdbc:redshift://endpoint:port/database.Note

A JDBC URL specified with the former format of
jdbc:postgresql://endpoint:port/database still works.

The fields of the format shown preceding have the following values.

Field Value

jdbc The protocol for the connection.

redshift The subprotocol that specifies to use the Amazon Redshift driver to connect to the
database.

endpoint The endpoint of the Amazon Redshift cluster.

port The port number that you specified when you launched the cluster. If you have a
firewall, make sure that this port is open for you to use.

database The database that you created for your cluster.

The following is an example JDBC URL:
jdbc:redshift://examplecluster.abc123xyz789.us-west-

2.redshift.amazonaws.com:5439/dev

For information about how to get your JDBC connection, see Finding your cluster
connection string.

If the client computer fails to connect to the database, you can troubleshoot possible
issues. For more information, see Troubleshooting connection issues in Amazon
Redshift.\

Chapter 6

cclii

https://s3.amazonaws.com/redshift-downloads/drivers/Amazon+Redshift+ODBC+and+JDBC+Driver+License+Agreement.pdf
https://s3.amazonaws.com/redshift-downloads/drivers/Amazon+Redshift+ODBC+and+JDBC+Driver+License+Agreement.pdf
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html#jdbc-previous-versions
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html#jdbc-previous-versions
https://docs.aws.amazon.com/redshift/latest/mgmt/configuring-connections.html#connecting-connection-string
https://docs.aws.amazon.com/redshift/latest/mgmt/configuring-connections.html#connecting-connection-string
https://docs.aws.amazon.com/redshift/latest/mgmt/troubleshooting-connections.html
https://docs.aws.amazon.com/redshift/latest/mgmt/troubleshooting-connections.html

Chapter 6

https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html

Connectivity to Snowflake

Example URL

JDBC Driver Connection String

jdbc:snowflake://accountname.us-east-2.aws.s-
nowflakecomputing.com?db=cdq&warehouse=cdqw

Driver Name

net.snowflake.client.jdbc.SnowflakeDriver

The previous driver class, com.snowflake.client.jdbc.SnowflakeDriver, is still
supported but is deprecated (i.e. it will be removed in a future release, TBD).

Limit Databases Displayed

Add this connection property to limit the databases and tables displayed in the Explorer
view. This will reduce the entries in the Explorer window to only those tables that the user
can access.

CLIENT_METADATA_REQUEST_USE_CONNECTION_CTX=TRUE

ccliii

https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html

Connection Parameters
For documentation on individual connection parameters, see the JDBC Driver Connection
Parameter Reference.<account_identifier>

Specifies the account identifier for your Snowflake account. For details, see Account
Identifiers. For examples of the account identifier used in a JDBC connection string, see
Examples.<connection_params>

Specifies a series of one or more parameters, in the form of <param>=<value>, with each
parameter separated by the ampersand character (&), and no spaces anywhere in the
connection string.

For documentation on individual connection parameters, see the JDBC Driver Connection
Parameter Reference.

Other Parameters
Any session parameter can be included in the connection string. For example:

CLIENT_SESSION_KEEP_ALIVE=<Boolean>

Specifies whether to keep the current session active after a period of inactivity,
or to force the user to login again. If the value is true, Snowflake keeps the
session active indefinitely, even if there is no activity from the user. If the value
is false, the user must log in again after four hours of inactivity.

Default is false.

For descriptions of all the session parameters, see Parameters.

Examples
The following is an example of the connection string that uses an account identifier that
specifies the account myaccount in the organization myorganization.

Chapter 6

ccliv

https://docs.snowflake.com/en/user-guide/jdbc-parameters.html
https://docs.snowflake.com/en/user-guide/jdbc-parameters.html
https://docs.snowflake.com/en/user-guide/admin-account-identifier.html
https://docs.snowflake.com/en/user-guide/admin-account-identifier.html
https://docs.snowflake.com/en/user-guide/jdbc-configure.html#label-other-jdbc-connection-string-examples
https://docs.snowflake.com/en/user-guide/jdbc-parameters.html
https://docs.snowflake.com/en/user-guide/jdbc-parameters.html
https://docs.snowflake.com/en/user-guide/jdbc-parameters.html
https://docs.snowflake.com/en/sql-reference/parameters.html
https://docs.snowflake.com/en/user-guide/admin-account-identifier.html

Chapter 6

jdbc:snowflake://myorganization-myac-
coun-
t.s-
now-
flake-
com-
put-
ing.-
com/?user=peter&warehouse=mywh&db=mydb&schema=public

The following is an example of a connection string that uses the account locator xy12345
as the account identifier:

jdb-
c:s-
now-
flake://xy12345.s-
now-
flake-
com-
put-
ing.-
com/?user=peter&warehouse=mywh&db=mydb&schema=public

Note that this example uses an account in the AWS USWest (Oregon) region. If the
account is in a different region or if the account uses a different cloud provider, you need to
specify additional segments after the account locator.

Configuring the JDBC Driver -- Snowflake Documentation

Private Link

Please let us know if you are using private link for Snowflake. Setup can vary depending
on the endpoint that is created. In most cases, use the private endpoint as a normal JDBC
connection.

Snowflake Community

cclv

https://docs.snowflake.com/en/user-guide/admin-account-identifier.html#label-account-locator
https://docs.snowflake.com/en/user-guide/admin-account-identifier.html#label-account-locator
https://docs.snowflake.com/en/user-guide/jdbc-configure.html
https://docs.snowflake.com/en/user-guide/jdbc-configure.html
https://community.snowflake.com/s/article/AWS-PrivateLink-and-Snowflake-detailed-troubleshooting-Guide

Advanced Private Link and Proxy
Here is an example JDBC string connection we used that take into account the following
setup:

l <ACCOUNT_NAME> is the full link to the Snowflake instance with the private link.
l DQ installed on-prem in a private IaaS and DQ is behind a proxy.
l If the Snowflake instance is using a private link, whitelist the private link URL to
bypass the proxy.

l In addition to connectivity to the Snowflake instance, the JDBC driver tries to access
Snowflake Blob storage by connecting directly to some S3 buckets managed by
Snowflake.

l Those need to be whitelisted as well.

Example URL
jdbc:snowflake://<ACCOUNT_
NAME>/?tracing=all&useProxy=true&proxyHost=10.142.22.37&proxyPort=8080&proxyU
ser=xyz&proxyPassword=xyz&nonProxyHosts=*.
privatelink.snowflakecomputing.com%7Csfc-eu-ds1-customer-stage.s3.eu-central-
1.amazonaws.com

Configuring Key Pair Authentication

Collibra DQ supports key pair authentication, which is an alternative to basic
authentication methods, like username and password, and provides enhanced
authentication security.

There are two ways to use key pair authentication on Snowflake connections:

l Via the Connection URL.
l Via the Driver Properties.

Chapter 6

cclvi

http://privatelink.snowflakecomputing.com/
http://7csfc-eu-ds1-customer-stage.s3.eu-central-1.amazonaws.com/
http://7csfc-eu-ds1-customer-stage.s3.eu-central-1.amazonaws.com/

Chapter 6

Configuring key pair authentication via the Connection URL
The table below shows the properties used to configure key pair authentication with a
Connection URL in the New JDBC Connection modal.

Property Description

Connection
URL

jdbc:snowflake://<URL>?db=owluserdb&warehouse=owluserdb&authenticator=snowflake_
jwt&private_key_file=/<your-file-path>/keytab/snowflake_key.p8&private_key_file_
pwd=<your-password>

The file name should include a .p8 extension, as shown in the example above.

Note Connection URL parameters must be appended by ampersand (&).

Username The username for which the private key is created. For example, DQ_User.

Password The password field must be left empty.

cclvii

Configuring key pair authentication via the Driver Properties
The table below shows the properties used to configure key pair authentication with the
Driver Properties in the New JDBC Connection modal.

Property Description

Username The username for which the private key is created. For example, DQ_User.

Password The password field must be left empty.

Driver Prop-
erties

authenticator=snowflake_jwt,private_key_file=/<your-file-path>/snowflakeKeys/rsa_
key2.p8,private_key_file_pwd=<your-password>

The file name should include a .p8 extension, as shown in the example above.

Note Driver properties must be comma separated, as shown in the example above.

Setting up Snowflake Pushdown

Note As of the 2022.11 release, Snowflake Pushdown is available as a public beta
offering for participating customers.

To get started with Snowflake Pushdown, a user with Admin access must run the following
script to set up users, roles, and the Collibra DQ virtual warehouse.

Chapter 6

cclviii

Chapter 6

Step Details

1 Update the following session variables:

set dq_username='SERVICE_ACCOUNT_USER';
set dq_password='SERVICE_ACCOUNT_PASSWORD';
set dq_warehouse_name='COLLIBRA_DQ_WH';
set dq_warehouse_size='XSMALL';
set user_database='TARGET_DB';
set dq_role_name='COLLIBRA_DQ_ROLE';

Note dq_passwordmust be in uppercase.

Warning Do not update the variables for Collibra DQ.

2 Run as an admin user.

USE ROLE ACCOUNTADMIN;

3 Create a user and role for Collibra DQ.

CREATE ROLE IF NOT EXISTS identifier($dq_role_
name);
CREATE USER IF NOT EXISTS identifier($dq_user-
name) PASSWORD=$dq_password DEFAULT_ROLE=$dq_
role_name;
GRANT ROLE identifier($dq_role_name) TO USER iden-
tifier($dq_username);

4 Create a virtual warehouse to run Collibra DQ. The virtual warehouse is referenced in
the connection URL to direct DQ traffic to it.

CREATE WAREHOUSE IF NOT EXISTS identifier($dq_
warehouse_name) WAREHOUSE_SIZE=$dq_warehouse_size
INITIALLY_SUSPENDED=TRUE
AUTO_SUSPEND = 5 AUTO_RESUME = TRUE;

cclix

Step Details

5 Assign privileges to the Collibra DQ warehouse.

GRANT OPERATE, USAGE, MONITOR ON WAREHOUSE iden-
tifier($dq_warehouse_name) TO ROLE identifier
($dq_role_name);

6 Assign metadata access to your Collibra DQ role.

GRANT USAGE,MONITOR on DATABASE identifier($user_
database) to identifier($dq_role_name);
GRANT USAGE,MONITOR ON ALL SCHEMAS IN DATABASE
identifier($user_database) to identifier($dq_
role_name);

Chapter 6

cclx

Chapter 6

Step Details

7 Update the session variable user_database and grant read access to objects in

the user database. Run this portion for each target database within which you want to
run DQ checks.

USE DATABASE identifier($user_database);
GRANT SELECT ON ALL TABLES IN DATABASE identifier
($user_database) TO ROLE identifier($dq_role_
name);
GRANT SELECT ON ALL VIEWS IN DATABASE identifier
($user_database) TO ROLE identifier($dq_role_
name);
GRANT SELECT ON ALL EXTERNAL TABLES IN DATABASE
identifier($user_database) TO ROLE identifier
($dq_role_name);
GRANT SELECT ON ALL STREAMS IN DATABASE iden-
tifier($user_database) TO ROLE identifier($dq_
role_name);

GRANT SELECT ON FUTURE TABLES IN DATABASE iden-
tifier($user_database) TO ROLE identifier($dq_
role_name);
GRANT SELECT ON FUTURE VIEWS IN DATABASE iden-
tifier($user_database) TO ROLE identifier($dq_
role_name);
GRANT SELECT ON FUTURE EXTERNAL TABLES IN
DATABASE identifier($user_database) TO ROLE iden-
tifier($dq_role_name);
GRANT SELECT ON FUTURE STREAMS IN DATABASE iden-
tifier($user_database) TO ROLE identifier($dq_
role_name);

Warning Please ensure the SQL variables are updated in the above script before
proceeding.

To run a Snowflake Pushdown job, you must opt in when setting up your Snowflake
connection. To toggle Pushdown capabilities on, ensure that the Pushdown checkbox in
the Snowflake connection modal is checked.

cclxi

Connectivity to SQL Server

Example URL

 jdbc:sqlserver://$host:1433;databaseName=ContosoRetailDW

Chapter 6

cclxii

Chapter 6

Driver Name

com.microsoft.sqlserver.jdbc.SQLServerDriver

Setup

1. Navigate to the connections page
2. Locate the SQL Server template
3. Fill in the required JDBC details
4. Click save to validate the connection

Microsoft JDBC Driver for SQL Server - JDBC Driver for SQL Server

Troubleshooting

The Microsoft JDBC Driver for SQL Server requires that TCP/IP be installed and running to
communicate with your SQL Server database. You can use the SQL Server Configuration
Manager to verify which network library protocols are installed.

cclxiii

https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server

A database connection attempt might fail for many reasons. These can include the
following:

l TCP/IP is not enabled for SQL Server, or the server or port number specified is incor-
rect. Verify that SQL Server is listening with TCP/IP on the specified server and port.
This might be reported with an exception similar to: "The login has failed. The TCP/IP
connection to the host has failed." This indicates one of the following:

o SQL Server is installed but TCP/IP has not been installed as a network protocol
for SQL Server by using the SQL Server Network Utility for SQL Server 2000
(8.x), or the SQL Server Configuration Manager for SQL Server 2005 (9.x) and
later.

o TCP/IP is installed as a SQL Server protocol, but it is not listening on the port
specified in the JDBC connection URL. The default port is 1433, but SQL
Server can be configured at product installation to listen on any port. Make sure
that SQL Server is listening on port 1433. Or, if the port has been changed,
make sure that the port specified in the JDBC connection URL matches the
changed port. For more information about JDBC connection URLs, see Build-
ing the connection URL.

o The address of the computer that is specified in the JDBC connection URL
does not refer to a server where SQL Server is installed and started.

o The networking operation of TCP/IP between the client and server running
SQL Server is not operable. You can check TCP/IP connectivity to SQL Server
by using telnet. For example, at the command prompt, type telnet
192.168.0.0 1433 where 192.168.0.0 is the address of the computer that is
running SQL Server and 1433 is the port it is listening on. If you receive a mes-
sage that states "Telnet cannot connect," TCP/IP is not listening on that port for
SQL Server connections. Use the SQL Server Network Utility for SQL Server
2000 (8.x), or the SQL Server Configuration Manager for SQL Server 2005
(9.x) and later to make sure that SQL Server is configured to use TCP/IP on
port 1433.

o The port that is used by the server has not been opened in the firewall. This
includes the port that is used by the server or optionally, the port associated
with a named instance of the server.

l The specified database name is incorrect. Make sure that you are logging on to an
existing SQL Server database.

l The user name or password is incorrect. Make sure that you have the correct values.

Chapter 6

cclxiv

https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url?view=sql-server-ver15

Chapter 6

l When you use SQL Server Authentication, the JDBC driver requires that SQL Server
is installed with SQL Server Authentication, which is not the default. Make sure that
this option is included when you install or configure your instance of SQL Server.

See also

Diagnosing problems with the JDBC driver

Connecting to SQL Server with the JDBC driver

FAQ

SQL Server represents RDS, Azure SQL, and traditional SQL Server installations

Adding Connections

How to Add DB Connection via UI
We will add a connection named metastore that connects to local Postgres server
(localhost:5432/postgres)

l Login to DQWeb and navigate to Admin Console.

cclxv

https://docs.microsoft.com/en-us/sql/connect/jdbc/diagnosing-problems-with-the-jdbc-driver?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/jdbc/connecting-to-sql-server-with-the-jdbc-driver?view=sql-server-ver15

l From the Admin Console, click on the Connections tile.

l Click on Add button in Postgres box to add a Postgres connection.

Chapter 6

cclxvi

Chapter 6

Default Postgres JDBC template connection is shown. This modal is populated with basic
values what Postgres connection setting should look like.

Replace the Connection URL to point to the Postgres server you want to run DQ Jobs
against. In this example, jdbc:postgresql://localhost:5432/postgres

cclxvii

Also change Driver Location to the JDBC Driver for Postgres in your installation. Click on
the folder icon and click on Postgres driver path. These Driver Directories are default
JDBC Drivers provided by DQ installation (usually in $OWL_BASE/owl/drivers/*)

The following screenshot shows what the new connection setting should look like. Make
sure to provide the correct Postgres Username and Password (if using
Username/Password for authentication). Press Save to continue. This action will attempt
to establish a connection.

Chapter 6

cclxviii

Chapter 6

Link Connection to Agent

Note Make sure to Agent to a DQ Agent, if required.

Remote file connections

About remote file connections

This section is an overview of the supported data file formats and the limitations of
connecting to a remote file.

Supported file types

File formats differ in structure, so you might need to prepare your data before establishing
a connection.

cclxix

Type File structure Notes

Delimited (CSV, TSV,
etc.)

Structured The default delimiter is comma (for example, CSV).

Parquet Structured

Avro Structured

JSON Semi-structured

ORC Semi-structured

XML Semi-structured

Delta Semi-structured

Supported delimiters

The following table is a list of supported delimiters available in the Delimiter dropdown
menu.

Type Format Description

Comma CSV , is used to separate values in the file.

This is the default delimiter for files.

Tab TSV tab is used to separate values in the file.

Semicolon CSV ; is used to separate values in the file.

Double
Quote

CSV " is used to separate values in the file.

Single
Quote

CSV ' is used to separate values in the file.

Pipe TXT \| is used to separate values in the text file.

Chapter 6

cclxx

Chapter 6

Type Format Description

SOH TXT A Unicode character 'START OF HEADING' (U+0001) is an invisible
control character.

Custom N/A Add a custom delimiter. Support for custom delimiters may vary.

Connectivity to Hadoop Distributed File System (HDFS)

Prerequisites

To configure the HDFS connector, you need:

l Admin permissions in your Collibra DQ instance.
l Access to an HDFS cluster.

Steps

1. In the main menu, hover over the gear icon and click Connection.
» The Connections page opens.

2. Scroll down to the HDFS card.
3. Click the Add button to add a new HDFS connection.

» The New Remote File Connection (HDFS) modal opens.
4. Enter the values for each property.

Property Description

Name The unique name of your HDFS connector.

Connection
URL

The HDFS URL used for your connection.

Target Agent The target agent lets you select an agent for your connection.

Auth Type The method used to authorize your connection.

Note: If you use an Unsecured Auth Type, no other authorization fields are required.
This is not recommended.

cclxxi

Property Description

Principal The service principal used to let Collibra Data Quality access your con-
nection.

Keytab The keytab used to authorize your connection.

Note: Only applicable when you select Keytab as the Auth Type.

TGT The Ticket Granting Ticket used to authorize your connection.

Note: Only applicable when you select TGT Cache as the Auth Type.

Driver Prop-
erties

The configurable driver properties for your connection.

Note: This is an optional configuration.

5. Click Save to establish your connection.

What's next?

After you save your HDFS connection:

l A confirmation message tells you that your connection is saved and valid.
l You can immediately access your HDFS connection Explorer (no-code).
l Begin to Profile (automatic).

Connecting to Temp Files

Temp files allow you to upload and run a DQ job on files directly from your local machine.
This is not a recommended connection for more advanced users but can be useful when
you first get started in Collibra Data Quality.

Prerequisites

To connect to a temp file, you need:

l A file in a supported file format saved on your local drive.
l To verify that the Allow Temp File Upload for DQ Job checkbox under Admin Con-
sole > Security Configuration is checked.

Chapter 6

cclxxii

Chapter 6

Steps

1. In the main menu, click the Explorer button. >> Explorer opens.
2. Click Temp Files. >> Temp Files expands.
3. Click Add Temp File. >> Upload Temp File alert opens.
4. Click Choose File.
5. Select a file from your local drive.
6. Click Open. >> Your file loads into the Temp Files folder.
7. In the Temp Files folder in the application, select your file.
8. Click Create DQ Job.
9. Verify your file information and enter the required information.
10. Click Load File. >> The application automatically reads your file and opens Scope &

Range.
11. Select your DQ layers. >> You can also leave the defaults set.
12. Click Save & Run.
13. Enter a unique name and any additional information. >> Note: Temp files differ from

other remote file connections in that they do not require an agent to run successfully.
This is a legacy component.

cclxxiii

14. Click the Run CMD tab. >> This is a bypass step for temp files.
15. Click Run. >> Your job is sent to the Jobs queue.

Warning All temp files are only temporarily stored in the application. At 11:59 PM
EST, all temp files uploaded on a given day are automatically removed.

Adding a connection to a DQ Agent

How To Link DB Connection to Agent via UI

When you add a new Database Connection, the DQ Agent must be given the permission
to run DQ Job via the specified agent.

From Fig 3, select the chain link icon next to the DQ Agent to establish link to DB
Connection. A modal to add give that agent permission to run DQ Jobs by DB Connection
name will show (Fig 5). The left-side panel is the list DB Connection names that has not
been linked to the DQ Agent. The right-side panel is the list of DB Connection names that
has the permission to run DQ Job.

Double click the DQ Connection name to move from left to right. In Fig 5, DB Connection
named "metastore" is being added to DQ Agent. Click the "Update" button to save the new
list of DB Connections.Fig 5: Adding DB Connection named "metastore" to the DQ
AgentFig 6: How to add all connections to the selected DQ Agent

Chapter 6

cclxxiv

https://docs.owl-analytics.com/connecting-to-dbs-in-owl-web/owl-db-connection#how-to-add-db-connection-via-ui

Chapter 6

cclxxv

cclxxvi

Collibra DQ Features

Profile (automatic)
Create profiles based on a table, view, or file.

Note Users have the option to scan the entire dataset or users can apply custom
filtering to select the depth (row filtering) and width (columns).

Select the Scope

You can find detailed instructions about selecting the scope in the Explorer section. You
can run limits, by time, or full table scans if you have enough resources.

Chapter 7

#select-the-scope-and-define-a-query

Chapter 7

Select Options (or leave defaults)

Save / Run

cclxxvii

View the Results

Automatically Profile
Collibra DQ automatically profiles data sets over time to enable drill-ins for detailed
insights and automated data quality. A profile is just the first step towards an amazing
amount of auto discovery. Visualize segments of the data set and how the data set
changes over time.

Collibra DQ offers click or code options to run profiling.

Data Set Profile
Collibra DQ creates a detailed profile of each dataset under management. This profile will
later be used to both provide insight and automatically identify data quality issues.

Chapter 7

cclxxviii

Chapter 7

Pushdown Profiling

Collibra DQ can compute the Profile of a data set either via Spark (default) or a Data
Warehouse (Profile Pushdown) where the data lives as the engine. When the Profile is
computed using the datasource DBMS the user can choose two levels of pushdown:

l Full Profile - Perform full profile calculation except for TopN
l Count - Only perform row and column counts

cclxxix

Note The following DBMS systems are supported for "Profile Pushdown":

l Impala
l Hive
l Snowflake
l Presto
l Teradata
l SQL Server
l PostgreSQL
l Redshift
l MySQL
l Oracle
l DB2

Warning Pushdown and parallel JDBC cannot be used together. If you are using
pushdown, do not select the parallel JDBC option.

Chapter 7

cclxxx

Chapter 7

Profile Insights

By gathering a variety of different statistics, Collibra DQ's profile can provide a great deal
of insight about a data set.

To see the difference between baseline (historical) and current values, Collibra DQ
provides a Delta % change column. In the Delta % change column, data is represented in
a pie chart for quick visualization of the changes.

cclxxxi

To elaborate on the quality metrics:

The profile can discover attributes then helps delineate the relative metrics around
numeric v. non-numeric discovered.

l Filled - [1] Integer - The percentage of data that is numeric (or non-numeric) in a
numeric (or non-numeric) discovered column.

l Mixed - [String] Integer - The percentage of data that is non-numeric (or numeric) in a
numeric (or non-numeric) discovered column.

l Null - [] - The percentage of data that has no value at all.
l Empty - [""] - The percentage of data that has a string instance of zero length.

Note Profile includes a range of statistics:

l Actual Datatype
l Discovered Datatypes
l Percent Null
l Percent Empty
l Percent Mixed Types
l Cardinality
l Minimum
l Maximum
l Mean
l TopN / BottomN
l Value Quartiles
l Minimum (String) Length
l Maximum (String) Length

Sensitive Data Detection (Semantic)
Collibra DQ can automatically identify any type of common PII columns.

Note Collibra DQ is able to detect the following types of PII:

l EMAIL
l PHONE
l ZIP CODE

Chapter 7

cclxxxii

Chapter 7

l STATE CD
l CREDIT CARD
l GENDER
l SSN
l IP ADDRESS
l EIN

Once detected, Collibra DQ tags the column in the Profile as the discovered type and
automatically applies a rule. You can choose to decline any discovered tag by clicking on it
and confirming the delete action. This action also removes the rule associated with the tag.

cclxxxiii

Correlation Matrix (Relationship)
Discover hidden relationships and measure the strength of those relationships.

Histograms
Often the first step in a data science project is to segment the data. Collibra DQ
automatically does this using histograms.

Chapter 7

cclxxxiv

Chapter 7

Data Preview
After profiling the data, for those users with appropriate rights, Collibra DQ provides a
glimpse of the dataset. The Data preview tab also provides a some basic insights such as
highlights of Data Shape issues and Outliers (if enabled), and Column Filtergram
visualization.

cclxxxv

Behavior (automatic)
This is commonly referred to as statistical change detection or data observability.

Note Results are found under the Behavior tab (short for behavioral analytics). This
tracks changes in the heuristics of the underlying data profiling metrics. The
adaptive rules (AR) modal displays a complete list of monitoring types and criteria.

Chapter 7

cclxxxvi

Chapter 7

Evolution of Rule based Data Quality
The main goal of Collibra Data Quality is to provide enterprise data quality insight while
greatly reducing the volume of Rules that need to be written manually. When a data set is
brought under management, Collibra profiles the data and builds a model for each data
set. This allows Collibra to learn what "normal" means within the context of each data set.
As the data changes, the definition of "normal" also changes. Instead of requiring you to
adjust rule settings, Collibra continues to adjust its model. This approach enables Collibra
to provide automated, enterprise-grade data quality coverage that removes the need to
write dozens or even hundreds of rules per data set.

Note Behaviors is turned on by default. Monitoring will calibrate and detect DQ
observations, based on the profiling activity.

Using Behavioral Analytics (Change Detection)
Typically, data quality checks are scheduled to run on a given data set daily. Behavior data
quality, or change detection, is built on top of data calculated by the Profile activity. The
default settings will often work just fine, however, Collibra lets you specify two key
parameters:

cclxxxvii

Parameter Description

Behavior
Lookback

The number of DQ checks that the model encompasses.
For example: A lookback of 10 means that the model is based on the combined stat-
istics from the last 10 DQ checks of a data set.

Learning
Phase

The minimum number of DQ checks that are required before behavioral scoring is
applied. Collibra DQ does not attempt to apply Behavioral scoring to a data set until
at least this many DQ checks are run on it.

Applicable Behavioral Factors

You can choose to forego the application of any of the above factors to the scoring of the
model. For example, you can instruct Collibra Data Quality to not track MIN and MAX
ranges of values in columns by unchecking the MIN and MAX checkbox. This prevents
Collibra from detecting any extreme values in any column of the dataset using the
Behavioral model.

With each run, Collibra Data Quality profiles the data set at the column level and begins to
establish a model for the data set. Initially, there is no need for any manual intervention,
just keep the data coming. Within a few runs, the model becomes sufficiently robust to
begin detecting data quality issues that are otherwise covered by manual rules. For

Chapter 7

cclxxxviii

Chapter 7

example, Collibra may detect that a particular column experienced a spike in the number
of NULL values (typically a manually defined rule).

Note Collibra Data Quality's behavioral model consists of the following factors:

l NULL values
l Empty values
l Cardinality
l Datatype shifting
l Row counts
l Load time
l Minimum value
l Maximum value
l Mean value

Over time, the definition of normal for any given column within the dataset can change.
The data may legitimately become more sparse or decrease in volume. Collibra Data
Quality continues to learn and adjust the model throughout the life of the data set.
However, if there is a drastic (but legitimate) change in the data, this could still mean
several days of unnecessary alerts while the model is adjusting. To accelerate model
adjustment, Collibra DQ provides the ability to adjust the acceptable range for a given
behavioral finding.

For example, Collibra DQ learned that a particular column typically has between 10% and
20% Empty values. Today, the column is 80% Empty values. Collibra raises a data quality
issue and subtracts a proportional amount of points from the quality score of today's DQ
run. You may review the finding and realize that there is a legitimate business reason for
why that column has more empty values. With a few clicks, you can adjust the acceptable
range for that finding. Collibra incorporates the user-defined inputs into the model and
adjusts the current day's quality score. Collibra Data Quality would have eventually arrived
at the correct range without any input, but without user input, it may have taken a few runs
to get there.

cclxxxix

Drill-in to see the predicted range of valid values

Automatic flagging of break records with erroneous data.

The screenshot above shows some of the controls and visualizations that can be used to
tune the Behavioral model. In this specific example, Collibra has detected that the
cardinality of the EXCH field has doubled from 1 to 2 unique values. However, you can
instruct Collibra to disregard this finding and adjust the model by manually specifying the

Chapter 7

ccxc

Chapter 7

range of values acceptable in this column. To assist the user, Collibra provides a line chart
and a historical topN visualization of this column's cardinality.

If you want to instruct Collibra that there can be as many as 3 valid values in the EXCH
column, click the "Manual" button and adjust the upper bound from 1 to 3, then click the
save button.

Collibra adjusts the Behavioral model's baseline, removes the finding, and adjusts the
quality score. From that point on, Collibra knows the acceptable range for unique values in
the EXCH column is between 1 and 3.

Item Description

Blind Spot The name of the column with a possible change detected during a DQ check.

Type The type of DQ check performed on a given column.
For example, Unique (Range) is the number of unique values that fall outside a
given range.

Baseline The baseline value is the mean of the preceding number of scans determined by
the value selected for Behavior Lookback in the Profile section of the Explorer
page.

Today

ccxci

Item Description

% Change The percent change from the value of one row to another.

Δ % Change The delta percent change from the value of one row to another.

Zscore The number of standard deviations away from the expected baseline value.

Description The description of the type of DQ check performed on a given column.

Score The value subtracted from your overall DQ score. The distance from the expected
ranges set by the variance and boundaries of the baseline value. Expected ranges
are also visible in the AR panel with graphs available in the Details panel for each
line item.

Action The item labels you can apply to an observation that let you train the behavioral
model on future runs. Available options are Validate, Invalidate, and Resolve.

Status The status of a DQ item, for example, Observation.

Profile

Details By clicking the Details button, a line graph lets you drill into changes over time.

Adaptive Rules
As Collibra Data Quality builds and evolves the behavioral model, it exposes all of the
"Adaptive Rules" that it learns about. The above example demonstrates how Collibra
learns and automatically applies rules. You have control but if left alone, Collibra learns
what "Normal" means for a given data set and scores the data set accordingly. This results
in a large set of rules that are automatically applied and adapted as the data set changes
over time.

To view or modify Adaptive Rules, navigate to the Behavior tab on the findings page for the
desired data set and click the "View AR" button on the right side of the screen. This brings
up a full list of Adaptive Rules.

Chapter 7

ccxcii

../../../../../../../../Content/DataQuality/LabelingTraining/item-labeling_1.htm

Chapter 7

The Adaptive Rules also provide you with the ability to adjust ranges derived from the
behavior model. You can manually adjust the tolerance range and score of any Adaptive
Rule. While this may at times be convenient, it is also just fine to let Collibra Data Quality
handle the model tuning through its own learning process.

Scoring

In adaptive mode Collibra Data Quality automatically generates a DQ item score based on
the egregiousness of the line item. This measurement is directly proportional to the
distance from the green range to the red line. Example below.

The score can range from 0-30. This ties to the percent change and Z-Score. In cases
when the Z-Score ranges from 0.0 - 6.0.

ccxciii

FAQ
Q: Which Collibra DQ API contains all behavioral checks (passing and breaking)?

l /v2/getdqchecksdetails.

Q: How is 'Mean' defined in the Behavioral Modal chart?

l Mean represents the average of behavioral lookback window e.g. if today is the 11th
of the month, and the bhlb is set at 10, the mean will be the average of the 1st to the
10th, and the statistic on the 11th day will represent the change to that mean.

l Also of note: the mean only includes passing rules, not failed runs.

Rules (user-defined)
Apply custom monitoring with SQL.

SQL Rule Engine

Chapter 7

ccxciv

Chapter 7

Introduction

Collibra Data Quality takes a strong stance that data should first be profiled, auto-
discovered and learned before applying basic rules. This methodology commonly removes
thousands of rules that will never need to be written and evolve naturally overtime.
However there are still many cases to add a simple rule, complex rule or domain specific
rule. Simply search for any dataset and add a rule. You can use the optional Column
Name/Category/Description to add meta-data to your rules for future reporting.

Note Customized discovery routines can be run using the Rule Library together
with Rule Discovery.

Query Builder

Query builder will help generate SQL for more complex rules. You can apply to one or two
tables (Table A on left and Table B on right). The query builder can help build up multi-part
conditions.

ccxcv

data-concepts-and-semantics.htm

Chapter 7

ccxcvi

Chapter 7

Note As with any SQL generator, there are limitations for more complex scenarios.

Break Records

Storing break records is only available for Freefrom and Simple rule types. Rule library
rules uses one of these types as well.

ccxcvii

Enable additional storage with the -linkid flag. This allows you to store complete sets of
break records. See the DQ Job LinkID for more details.

Note Stat, Native, and Data Type (global) rules are not eligible for storing exception
records.

Quick Tips

If joining more than one data source, make sure both sets of drivers are in the -lib. Or
separately supply a -libsrc pointing to the appropriate directory/jar file location. Versions
later than 2021.11 use the -addlib for additional directories to add to the classpath.

Native SQL uses your native DB syntax. The score is total break records / rows from the
scope (query / -q) of the defined DQ job.

Spark SQL

This is a complete list of Spark SQL operators and functions available.
https://spark.apache.org/docs/latest/api/sql/index.html

Chapter 7

ccxcviii

https://spark.apache.org/docs/latest/api/sql/index.html

Chapter 7

Adding a Rule

To add a rule, go to the Rules page. There are two ways to access the Rules page in
Collibra DQ:

l From the left navigation bar.
l From the findings page.

ccxcix

To access the Rules page from the left navigation bar, click the wrench icon and then Rule
Builder. From the Rule Builder page, select a data set and a rule type.

Chapter 7

ccc

Chapter 7

ccci

To access the Rules page from the findings page, open a DQ Job to display the findings
page. From the findings page, click Rules in the metadata box in the upper right of the
page. The Rule Builder opens. Since you're navigating to the Rule Builder from the
findings page directly, you do not have to select a data set. In this case, select a rule type
to get started.

Instructions

1. Search for a data set or navigate to the Rule Builder page in the left navigation panel.
o Rules can only be applied to data sets once a DQ job runs once

2. Click Load.
o The schema and any previously saved rules populate.

3. Select a rule type with the dropdown next to the Type label
4. Select a rule name

o If applying a preset rule, the rule name will be auto populated
5. Input a rule condition

o Only if applying a simple, freeform sql, stat, or native rule type.
o Provide a value in the condition/sql/function input field.

Chapter 7

cccii

Chapter 7

o Keystroke Ctrl+Space provides IntelliSense.
6. Select Low, Medium or High for scoring severity (optional).
7. Add any custom DQ dimensions for reporting (optional).
8. Click submit to save the rule.

The rule is measured on the next DQ job run for that particular data set.

Rule Types

Rule type Description Example

Simple
rules

Simple rules are used when you want to filter a condition on a
single column in a single table.

City = 'Baltimore'

Freeform
SQL rules

Freeform SQL rules are used when you want to apply a condition
across multiple tables/columns and generally when more flex-
ibility or customization is desired.

select * from data-
set where name
= 'Collibra'

Preset
rules

Preset rules are used for quickly adding strict condition checks.
Commonly used conditions are available to add to any data set
columns.

All built-in Spark functions are available to use. Visit
https://spark.apache.org/docs/2.3.0/api/sql/ for simple and freeform sql rules.

ccciii

https://spark.apache.org/docs/2.3.0/api/sql/

Points and Percentage
For every percentage the x condition occurs, deduct y points from the data quality score. If
a rule was triggered 10 times out of 100 rows, break records occurred 10% of the time. If
you input 1 point for every 1 percent, 10 points would be deducted from the overall score.

Creating Your First Rule
Let’s create a simple rule using the below information. The data set name.

1. Search for “shape_example” and click “Load”
2. Select “Simple Rule”
3. Rule Name = lnametest
4. @shape_example.lname = “hootbeck” (should hit one time day over day).
5. Points = 1
6. Percentage = 1
7. Click “Submit”

Chapter 7

ccciv

Chapter 7

Once the rule has been submitted please find the below list of rules with the new rule we
just defined as shown below.

Seeing Your First Rule Get Triggered

Rule scores will appear under the Rules tab on the findings page. You can also see more
details in the bottom panel of the Rules page under the Rules and Results tabs.

Scores
Each rule definition has a specific score. Depending on the severity, rules can be hard or
soft, and can contribute a different weight that affects your overall DQ score.

cccv

Note This is calculated by points per threshold. The ratio is calculated from the total
rows of the associated DQ job scan.

Dimensions
Each rule can be associated with a dimension. You can also apply metadata like primary
column and description. While not mandatory, these can be particularly useful when using
the DQ Connector and Custom.

Chapter 7

cccvi

Chapter 7

Rule Types

SQL-Based Rules

Depending on the complexity, you can choose from short-form or long-form rules.

Simple
Just the condition (short-form). For example, using the column email_address. This runs
against the dataframe and uses Spark SQL syntax. Simple rules can be thought of as
everything after the where clause.

email_address is not null and email_address != ''

Freeform
Where 'Simple' rules just use the condition, 'Freeform' rules use the complete SQL
statement. When more complex SQL is required, you can express more with Freeform
including joins, CTE's and window statements.

cccvii

select * from @DATASET_NAME where
email_address is not null and email_address != ''

Note All built-in spark functions are available to use.
(https://spark.apache.org/docs/2.3.0/api/sql/) for simple and freeform sql rules.

Native
Native rules use the SQL dialect of the underlying connection and database. Files are not
eligible for native SQL rules. This is ideal if you want to use pushdown profiling and you
want to use existing SQL logic. When coupled with pushdown profiling, you can achieve a
very minimal infrastructure footprint.

See the Native section for more details.

Stat rules

Write rules against meta data and profiling stats. Complex counts and ratios can be
referenced with simple syntax.

See the Stat Rules section for more details.

Data Type

l Empty check
o Rule type: EMPTYCHECK
o Description: Checking whether the target column has empty values or not

l Null check
o Rule type: NULLCHECK
o Description: Checking whether the target column has NULL values or not

l Date check
o Rule type: DATECHECK
o Description: Checking whether the target column has only DATE values or not

Chapter 7

cccviii

https://spark.apache.org/docs/2.3.0/api/sql/

Chapter 7

l Integer check
o Rule type: INTCHECK
o Description: Checking whether the target column has only INTEGER values or
not

l Double check
o Rule type: DOUBLECHECK
o Description: Checking whether the target column has only DOUBLE values or
not

l String check
o Rule type: STRINGCHECK
o Description: Checking whether the target column has only STRING values or
not.

l Mixed datatype check
o Rule type: DATATYPECHECK
o Description: ---

SQL Based Rules

Collibra Data Quality uses ANSI-compliant SQL and offers pushdown rules that leverage
specific database syntax.

Simple

This is the condition after the "where" clause.

Depending on the complexity, users can choose from short form or long form rules.

Simple
Just the condition (short form). For example, using the column email_address. This runs
against the dataframe and uses Spark SQL syntax. Simple rules can be thought of as
everything after the where clause.

email_address is not null and email_address != ''

cccix

Note All built-in spark functions are available to use.
(https://spark.apache.org/docs/2.3.0/api/sql/) for simple and freeform sql rules.

Freeform

Fully defined SQL for more detailed checks.

Where 'Simple' rules just use the condition, 'Freeform' rules use the complete SQL
statement. When more complex SQL is required, you can express more with Freeform
including joins, CTE's and window statements.

select * from @DATASET_NAME where
email_address is not null and email_address != ''

Warning Freeform rules should include a semi-colon at the end of the rule value.

Note All built-in Spark functions for non-Pushdown connections are available for
use. See (https://spark.apache.org/docs/2.3.0/api/sql/) for Simple and Freeform
SQL rules.

Cross-Connection Libraries

Chapter 7

cccx

https://spark.apache.org/docs/2.3.0/api/sql/
https://spark.apache.org/docs/2.3.0/api/sql/

Chapter 7

Note When applying cross-connection rules please use the -addlib to submit the
job with the appropriate jar files. In this example, a secondary set of jars is added
through the Explorer. These files are located in the /opt/owl/drivers/mysql directory.
The path should not contain double quotes or single quotes. It should point to a
directory without spaces in the path.

cccxi

Cross-Data Set Rules
Warning Best practice for cross-table joins is to define a view and scan the view.
Only in circumstances when a view cannot be created should you define cross-table
joins with 2 separate data sets (DQ Jobs) and express the join in the rule.

If you're doing multiple lookups, this will improve long-term performance and
consolidate maintenance.

Note Cross-dataset rules require -libsrc (prior to 2021.11) or -addlib (post 2022.01)

In-Clause (Single Column)

select * from @table1 where id
not in (select id from @table2)

Except (Multi-Column)

select id, app_id, email, guid_num from @table1
EXCEPT
select id, app_id, email, guid_num from @table2

Chapter 7

cccxii

Chapter 7

Referencing secondary data sets
When you create a Freeform SQL rule with secondary data sets, there are three important
points to consider in order to avoid missing data set exceptions.

l Ensure that the name of your first data set matches the name of the main data set on
which your rule is created.

l The column names in your table must be exact matches with the syntax of your
query. >> If the column name uses CAPS, then your query must also use CAPS.

l Ensure that any data set referenced in your rule maintains a score of greater than or
equal to (>=) a passing score of 75.

Note These three points apply to all rules, not just Freeform Rules.

Joins
A join lets you reference two or more data sets in one rule. Joins are useful when you want
to compare the values of a data set from a previous, or when you want to verify that all
values are valid across your data sets.

Join example

SELECT
*

FROM
@table1 A
LEFT JOIN @table2 B ON A.id = B.id

where
 B.id is null OR (A.email != B.email)

cccxiii

Sample Results

Cross-Table (Guided). Use our wizard to do ad-hoc analysis
and visual setup.

Join Example Example (vs. cross-table guided seen above).

Multi-part condition rules with the rule builder. Combines
profiling metrics & builder in one screen.

Native

With Native SQL expressions we provide capability to use your existing validation
statements, even if they use database-specific (Postgres/DB2/Oracle/MSSQL/etc.)
functions or expressions.

This is commonly used when using pushdown profiling and/or pre-existing SQL validations
exist in a specific syntax. Native rules are often referred to as pushdown rules.

Chapter 7

cccxiv

Chapter 7

If you have rules already written in Oracle, Sybase, or DB2 syntax - Copy/Paste the rule
directly into the Native SQL section.

When creating a Native SQL rule, keep the following in mind:

l The SQL query must be a valid expression that can be run as a subquery. To avoid
pulling large amounts of data into memory, Collibra Data Quality will wrap your
expression so it only fetches the number of rows returned. Rules should be written
such that the query returns the anomalous rows.

l The SQL query must take less than 30 minutes to run. It is recommended to use par-
titioned columns for efficiency.

l When testing the SQL query from the app, it is helpful if it takes less than 30 seconds
to run. You can add a limit to reduce query time, or test the query in your SQL Editor.

Note Testing native rules can be done quickly by limiting the results or using an
external SQL IDE as well.

cccxv

Warning This rule type is not eligible to store break records, just the score itself!
Additionally the rule will apply the logic directly to the JDBC connection. Native rules
will run on the entire population of the data, regardless of any scope set for the DQ
job (-q flag defined in the scope section of Explorer). Any filter or predicate clause
entered in the -q flag should be added to the logic of the Native rule as well.

Stat Rules

One really powerful technique is to access the profile statistics in your rules. These are
typically sub-second operations that do not require scanning or iterating. There are several
cases where SQL struggles to support rules, such as: isNull but not "null count" or
nullRatio or nullPercent. Or having access to types without doing crazy cast() operations.
These are simplified below, i.e. fname.$type == 'String'

select * from @dataset where
fname.$type != 'String' AND $rowCount < 800

Dataset Level Stat Rule Example Description

$totalTimeInSeconds $totalTimeInSeconds >
25

Alert when DQ job runs longer than 25
seconds.

$totalTimeInMinutes $totalTimeInMinutes >
5

Alert when DQ job runs longer than 5 minutes.

$totalTimeInHours $totalTimeInHours > 1 Alert when DQ job runs longer than 1 hour.

$rowCount $rowCount < 9000 Alert when row count less than 9,000.

$runDate $runDate='2020-01-24' Use the ${rd} variable in rules.

$daysWithoutData $daysWithoutData > 4 Alert when a dataset has missing or no rows
for 5 days.

$runsWithoutData $runsWithoutData > 4 Alert when a dataset runs but has missing or
no rows for 5 days.

Chapter 7

cccxvi

Chapter 7

Dataset Level Stat Rule Example Description

$daysSinceLastRun $daysSinceLastRun >
4

Alert when a dataset has not run for 5 days.

Column Level Stat Rule Example Description

.$type fname.$type != 'String' Alert when fname is not a string.

.$min fname.$min > 'apple' Lexicographical sort works for strings and
numbers.

.$minNum age.$minNum > 13 Type casted to a numeric for simple number
checks.

.$mean row_id.$mean > '4.500' Alert when the mean is greater than a given
value.

.$max fname.$max > 'apple' Alert when the max is greater than a given
value.

.$maxNum age.$maxNum > 13 Alert when the numeric value falls outside an
acceptable range.

.$uniqueCount id.$uniqueCount !=
$rowCount

Alert when the uniqueCount of a field doesn't
match the rowCount.

.$uniqueRatio gender.$uniqueRatio
between .4 and .6

Alert when the ratio of uniqueCounts of a
given field doesn't match the rowCount.

.$nullRatio lname.$nullRatio not
between .4 and .6

Alert when the ratio of nulls no longer falls
within acceptable range.

.$nullPercent lname.$nullPercent not
between 40 and 60

Alert when the percent of nulls no longer falls
within acceptable range

.$nullCount lname.$nullCount >= 1 Test for a single null.

.$emptyRatio nc.$emptyRatio > 0.2 Alert when the ratio of empties no longer falls
within acceptable range.

cccxvii

Column Level Stat Rule Example Description

.$emptyPercent nc.$emptyPercent > 20 Alert when the percent of empties no longer
falls within an acceptable range.

.$emptyCount Alert when the emptyCounts of a field no
longer fall within an acceptable range.

.$mixedTypeRatio nc.$mixedTypeRatio >
0.2

Alert when the ratio of mixed data types no
longer falls within an acceptable range.

For example, Strings and Ints in the same
field.

.$mixedTypePercent nc.$mixedTypeRatio >
20

Alert when the percent of mixed data types no
longer falls within an acceptable range.

For example, Strings and Ints in the same field.

.$mixedTypeCount id.$mixedTypeCount >=
1

Alerts when the mixed data typeCount no
longer falls within an acceptable range.

For example, Strings and Ints in the same
field.

Chapter 7

cccxviii

Chapter 7

Known limitation. Cannot combine stat rules or distribution rules with regex rules in the
same rule. Example car_vin rlike '$[asdf][0-9]' and car_vin.$uniqueCount

Distribution Rule
There is a common case in DQ where you want to know the distribution of a column's
value. Consider gender. It can be expected that a column named gender consists of
roughly 40-60%males and roughly 40-60% females if the data set is large and represents
the population. This can be difficult to express in plain SQL, but it is very easy with the
below syntax.

gender['Male'].$uniquePercent between 40 and 60

Column Value Level Rule

.$uniqueCount credit_rating['FAIR'].$uniqueCount > 7

cccxix

Column Value Level Rule

.$uniquePercent credit_rating['GOOD'].uniquePercent between 40 and 60

Data Type Rules

Data Type
Rule Rule type Description

Empty check EMPTYCHECK Checks whether the target column has empty values
or not.

Null check NULLCHECK Checks whether the target column has NULL values
or not.

Date check DATECHECK Checks whether the target column has only DATE val-
ues or not.

Integer check INTCHECK Checks whether the target column has only integer
values or not.

Double check DOUBLECHECK Checks whether the target column has only DOUBLE
values or not.

String check STRINGCHECK Checks whether the target column has only STRING
values or not.

Chapter 7

cccxx

Chapter 7

Rule Rule type Description

Mixed datatype
check

DATATYPECHECK Checks the dataType of the field.

Rule Templates
Ideal for rules that apply to more than one data set. Write once, apply many.

Templates are great for regex, format, and compliance checks.

A template rule substitutes the data set and column at runtime. This can save hundreds of
redundant rules that do the same thing but on different column names.

Template rules are located in the Type dropdown as well as the Quick Rules dropdown.
The complete list of template rules is located in the Rule Library section. These meant for
global rules that are ideal for code sets, compliance checks, and regex checks. These are
ideal for checks that apply to many tables.

Rule templates use SQLG (simple) and occasionally SQLF (Freeform) types under the
hood. Rule templates appear in the Rule Library once they are created.

See the Rule Library section for more details.

cccxxi

Note Customized discovery routines can be run using the Rule Library together
with Rule Discovery.

Rule Library
An organized repository of all your rule templates.

Chapter 7

cccxxii

data-concepts-and-semantics.htm

Chapter 7

The rule library contains both OOTB and custom-built rule
templates.

OOTB Rules

Collibra DQ shares all of its out-of-the-box rules with each user/tenant. This makes it easy
to get started quickly and lets the team add common rules for specific use cases.

Below is a list of one-click rules that can be added to any data set. It is important to note
that Collibra DQ often self-identifies these columns and automatically provides the proper
protection.

l Email
l Zip
l Credit Card
l SSN
l EIN
l State Code
l Phone
l Gender
l IP Address
l Date
l Int
l Double

cccxxiii

You can also apply common Data Type and Global rules from the Quick Rule dropdown
under the Preview tab.

Customized Rules

Add to the Rule Library
Create a rule once using the Create Generic Rule builder and re-use the rule across any
column on any data set. This is called a global rule, or a rule in the Rule Library that you
can use for global use across many data sets. Collibra Data Quality substitutes the data
set and column to which the rule applies at runtime. This commonly saves hundreds of
redundant rules that do the same thing but on different column names.

To add a rule to the Rule Library:

1. Select a data set from the search bar on the Rule Builder page.
2. Click the Create Generic Rule tab.

Chapter 7

cccxxiv

Chapter 7

3. Enter the required information.

Option Description

Type The type of rule being created.

Is Regex Select Is Regex if your rule is a Regex rule.

Rule Operator rlike is the default operator.

Where Enter your query. Only available for non-Regex rules.

Regex Enter your Regex query. Only available for Regex rules.

Input Enter your Regex input values as single values or a comma-delimited list
of values. Optional field only available for Regex rules.

Rule name Enter a unique name for your rule. This is stored in the Rule Library once
the rule is saved. Required field for both Regex and non-Regex rules.

Descr Enter a description for your rule. Optional field for both Regex and non-
Regex rules.

4. Click Save.

The Rule Library hosts out of the box and custom global rules. See data concepts and
semantics for advanced use of global rules.

cccxxv

The Rule Library hosts out-of-the-box and custom global rules. See Rule Discovery for
advanced use of global rules.

Rule Discovery

Rule Preview

Set a Preview Limit

Rule Previews allow you to set Preview Limits by the row, enabling you to drill in to your
data even further. Limits can be set to any positive number. 6 is default.

Note Best practice is to apply a limit of 1000 or less. Increasing the limit above
1000 should only be done if your Postgres has sufficient CPU and memory.

Chapter 7

cccxxvi

Chapter 7

Set a preview limit

1. Create a new DQ Job and navigate to the Rule Builder page.
2. Select your dataset and click the Search button.
3. Select a rule type from the Select a type button.
4. Create your SQL rule in the Expr field and enter a unique name for your rule in the

Name field.
5. Enter an even number in Preview Limit (Rows).
6. Click Save.
7. Run the DQ Job to execute the rules assigned to the dataset.

Note Freeform and Simple rule are the only two rule types supported at this time.

View and Export Results

Another key feature of Rule Previews is that you have the ability to easily export the details
of your drill-in.

cccxxvii

View and export your results

1. Click the + icon in the Rule Name column to expand the table to view your results.
2. Click Export with Details to download the break records to your local machine.

Note Rule preview is currently available for Freeform and Simple rules.

Rule Discovery
Custom data discovery and enforcement using rule templates (data concepts and
semantics).

Data Categories

A data category is the category or family of a data set, for example, stock data, interest
rate data, etc. By giving data categories, or classifying data sets, we can transfer (apply)
common understanding, rules, and ML to data sets. This allows data stewards to set up
concepts once and enables organizations to unify and standardize common rules and
terms, solving many metadata scale challenges.

Chapter 7

cccxxviii

Chapter 7

Note Data set level
Security reference data - Bloomberg financial data - home loan data - mortgage
application data.

Data Classes

Note Column Level
EMAIL, ZIP CODE, SSN, CUSIP, GENDER, ADDRESS, CURRENCY CD, SKU,
EIN, IP ADDRESS, PHONE, LICENSE, VIN, CREDIT CARD

A data class is the semantic type of a column or attribute of a data set, for example email,
zip code, and so on. All columns have a physical type, such as String, Int, and Date, but
the semantic understanding of what type of String is in the column can be very important.
Data classes allow Collibra Data Quality to enforce DQ validation rules out of the box.

Collibra Data Quality's semantic scanning self-identifies standard columns and
automatically provides the proper protection. This makes it easy to get started adding
common rules for specific use cases.

Collibra Data Quality offers out of the box rules for 1-click rule creation

Run Discovery

With the Run Discovery modal, you can run a DQ Scan to detect for the semantics
assigned to a selected data concept. The Run Discovery algorithm automatically selects

cccxxix

the best match if a column matches two or more data classes. Data class match criteria
are determined by percent match and name distance.

You can access the Run Discovery feature via:

l Catalog
l DQ Job

Via Catalog

1. In Catalog, select your dataset.
2. In the Actions dropdown menu, click Data Concept.
3. Select an option from the Data Concept dropdown and click Run Discovery.

Chapter 7

cccxxx

Chapter 7

Via DQ Job

1. From the DQ Job page, select your DQ Job.
2. Click the Rules tab in your DQ Job.
3. Click the Rule Discovery button.
4. In the Data Concept window, select your Data Concept.
5. Click Run Discovery.

Sensitive Data

Note Column Level

PII - personally identifiable information MNPI - materially non public information
PCI - credit information like a credit card number PHI - HIPAA medical information

cccxxxi

Data Discovery: The Power of Combining All Three into One
Domain

Now imagine if you could classify your datasets as concepts, then automatically have all
the columns be recognized semantically(with validation rules in place) as well as have the
columns labeled with sensitivity tags. It might look something like the following screenshot.

Steps

Step 1: Create a DQ Job with Semantic Detection turned on.

From the Profile options page, create a new DQ Job and select ON from the Semantic
Detection dropdown.

Chapter 7

cccxxxii

Chapter 7

Step 2: In Catalog, select and apply your Data Concept.

Navigate to your dataset in Catalog and select the Data Concept you would like to apply
with the Actions dropdown menu.

See below sections on how to Administer Data Concepts as well as how to Create and
Manage Semantics.

cccxxxiii

Step 3: Rerun your DQ Job with applied Data Concept.

Please rerun your DQ Job so that Collibra Data Quality can 1) profile your data, 2) auto-
generate the rules based on the Semantics under the Data Concept, and 3) highlight any
break records.

Success! Review Findings

On the Profile page, observe the newly tagged Semantics on the applicable columns.

On the DQ Job page, browse your newly created rules based on Semantics, as well as any
corresponding rule breaks.

Chapter 7

cccxxxiv

Chapter 7

Creating and Managing Semantics

Create, test, and manage your Semantics in Collibra Data Quality in your Rule Builder
wizard on the Create Generic Rule tab. Below is an example of creating a RegEx
Semantic.

cccxxxv

Administering Data Concepts

Setup your data concepts once and let the entire organization benefit by unifying all
datasets to a common understanding in the admin Data Concepts page.

Physical Schemas to Semantics

Below you can see the benefit of organized metadata. PDEs or physical data

elements organized/tagged by semantics. This allows for sub-second searches while in
catalog or searching for data to figure out where all your PII data lives, or what systems
have "loan data".

Chapter 7

cccxxxvi

Chapter 7

Above you can see Data Concepts in Yellow, Semantics in Gray and Sensitive labels in
Orange. Enabling you to organize all your data in classes, search and discover types no
matter what system they live in or what the PDE column name is. Transforming technical
types into business metadata.

Business Unit Roll up Reporting

Now that we have all PDEs discovered and tagged and rolled up into business terms, we
can roll up technical assets like database tables and files into business reports across
departments and non technical concepts.

cccxxxvii

More
Collibra DQ advanced features.

When specific DQ challenges require specific DQ detection techniques, Collibra DQ offers
a wide variety of advanced functionality. While Schema and Shapes utilize auto-discovery,
other detection algorithms are best suited for users that understand their data and have
specific use-cases in mind. Read more to understand if specific dimensions can be applied
to your data.

Explorer (no-code)
A no-code option to get started quickly and onboard a data set.

Getting Started

This page can be accessed by clicked the Explorer option (the compass icon).

Chapter 7

cccxxxviii

Chapter 7

Note All UI functionality has corresponding API endpoints to define, run, and get
results programmatically.

cccxxxix

Select Your Data Source

Chapter 7

cccxl

Chapter 7

Create a new DQ Job by clicking +Create DQ Job

cccxli

View Data is an interactive option to run queries and
explore the data

The bar chart icon will take you to a profile page of the
dataset created prior to Explorer 2

Select The Scope and Define a Query

Chapter 7

cccxlii

Chapter 7

Pick Date Column if your dataset contains an appropriate
time filter

Click Build Model -> to Save and Continue

Transform Tab (advanced / optional)

Transform

cccxliii

Click Build Model -> to Save and Continue

Profile

Use the drop-downs to enable different analysis. Best
practice is to leave the defaults.

Pattern (advanced / optional)

Toggle on Pattern to enable this layer.

Click +Add to define a group and series of columns.

Patterns (advanced)

Chapter 7

cccxliv

Chapter 7

Click Save to and Click Outlier to Continue

Outlier (advanced / optional)

Outliers (advanced)

Click Save to and Click Dupe to Continue

Dupe (advanced / optional)

Duplicates (advanced)

Click Save to and Click Source to Continue

Source (advanced / optional)

Navigate to the source dataset.

Click Preview to interlace the columns.

Manually map the columns by dragging left to right or deselect columns.

Source (advanced)

Click Save to and Click Save/Run to Continue

Run

1. Select an agent.
2. Click Estimate Job.
3. Click Run to start the job.

cccxlv

Note *If you do not see your agent, please verify the agent has been assigned to
your connection via Adding a connection to a DQ Agent.

Terminating a DQ Job

If a DQ Job is in progress, incorrectly submitted, or stuck in Staged status, you can
terminate the job by clicking the Actions drop-down list and selecting Terminate job. If you

Chapter 7

cccxlvi

Chapter 7

have an email address configured for alerts to be sent, two alerts are sent when a job is
terminated.

Note Jobs in the Spark UI display a Finished status when terminated, even though
they are terminated from the Collibra DQ UI.

Schema (automatic)
Detect schema evolution and unexpected schema changes.

Data set schemas are the columns or fields that define the dataset. They are often located
in the header row of a tabular file or database table. However, JSON and XML are two
examples of formats that include schema columns that are not in the header but rather
nested throughout the document. OwlDQ automatically without needing to turn on any
features detects the schema columns as well as reads or infers their data types (varchar,
string, double, decimal, int, date, timestamp, etc.). Owl observes each data set so if a
column is ever altered, removed or added it will automatically raise the event via its
standard composite scoring system.

cccxlvii

Scoring... Alerting... Schema Detection... Automatically

Schema Evolution is one of Owl's 9 DQ dimensions. It can be an important measurement
for data stewards to understand how the data set is changing overtime. The orange bar on
the chart shows a change in schema and allows for drilling in over time.

Shapes (automatic)
Collibra Data Quality automatically detects inconsistencies in data formats. These
inconsistencies are where Data Scientists spend an enormous amount of time cleaning
the data before building a ML model. Many reports have documented that over 80% of the
time it takes to build a credible model comes from first understanding all the different

Chapter 7

cccxlviii

Chapter 7

formats and then writing munging or ETL style code to clean it before processing. What
about all the patterns the process or person doesn't even know about?

Drill-in to any Shape anomaly and see a visual example

See an itemized list view of the most infrequent or odd shapes in your datasets.

Shape Tuning

By clicking the gear icon in the upper right corner of the SHAPE tab on the HOOT page.

cccxlix

Duplicates (advanced)
This is an advanced opt-in feature.

General Ledger. Accounting use-case

https://owl-analytics.com/general-ledger

Whether you're looking for a fuzzy matching percent or single client cleanup, Owl's
duplicate detection can help you sort and rank the likelihood of duplicate data.

Chapter 7

cccl

https://owl-analytics.com/general-ledger

Chapter 7

-f "file:///home/ec2-user/single_customer.csv" \
-d "," \
-ds customers \
-rd 2018-01-08 \
-dupe \
-dupenocase \
-depth 4

User Table has duplicate user entry

Carrisa Rimmer vs Carrissa Rimer

ATM customer data with only a 88%match

As you can see below, less than a 90%match in most cases is a false positive. Each
dataset is a bit different, but in many cases you should tune your duplicates to roughly a
90+%match for interesting findings.

cccli

Simple DataFrame Example

Outliers (advanced)

Note This is an advanced opt-in feature.

Numerical Outliers

Kodak Coin! In 2018 Kodak announced themselves as Kodak Coin and witnessed a steep
change in their stock price. Collibra Data Quality automatically captured this event and
provided the ability to drill into the item.

Chapter 7

ccclii

Chapter 7

Complex outliers made Simple

Even though DQ uses complex formulas to identify the correct outliers in a dataset, it uses
simple terms when displaying them. If you notice below the change happened gradually,
therefore if you only compared avgs or previous values you would not understand the full
impact of this price change. 0% changed from yesterday and its moving/trailing avg would
have caught up.

cccliii

Dynamic history options

Data may not always enter your data pipeline on time and as expected due to weekend,
holidays, errors, etc. To help capture outliers in spite of gaps, there are two main options:

l 1) Extend the lookback period (to 10 days from 5 days, for example)
l 2) Utilize additional flags per below (fllbminrow new as of 2021.11)

Chapter 7

cccliv

Chapter 7

Flag Description Example

fllbminrow File Lookback Minimum Rows: determines minimum number of rows
that a previous file scan needs to be counted as file lookback

-fllbminrow
1 (counts
nay DQ
scans with 1
or more row
in minimum
history)

-fllbminrow
0 (default
behavior,
row count
does not
matter)

dllb Date Lookback: determines how many days of learning -dllb 5 (5
days)

Upper & Lower Bound Limits

Collibra DQ automatically detects and flags data that falls outside of preset Upper Bound
or Lower Bound limits. If data is detected outside of these limits, an alert is generated to
notify of an outlier. Setting these limits allows you to finetune your ability to identify outliers.

Categorical Outliers

Categorical Outliers are much different than numerical outliers and require separate
techniques to automatically capture meaningful anomalies. The details regarding Owl's
methodology and testing can be found below, 3 minute read on the topic.

Categorical Outliers Don't Exist

DQ will automatically learn the normal behavior of your String and Categorical attributes
such as STOCK,OPTION,FUTURE or state codes such as MD,NC,D.C. When a strange
pattern occurs (e.g NYC instead of NY), DQ will show this as a categorical outlier.

DQ is able to detect Categorical Outliers both with and without taking time into account. If a
time dimension is not provided, DQ will calculate the distribution of categorical values

ccclv

https://medium.com/owl-analytics/categorical-outliers-dont-exist-8f4e82070cb2

within the available data, and identify the values that fall into the most infrequent percentile
(configurable).

If a time dimension is provided, DQ will first identify infrequent categories in the historical
context and then in the context of the current Owlcheck. Only values that are historically
infrequent or non-existent, and are infrequent in the current run will be considered Outliers.

Training Outlier Detection Model

Although DQ uses different techniques to detect Numerical and Categorical Outliers, the
training process is very similar.

At a minimum, DQ requires historical data that can be used as the training dataset. If no
other input is provided, DQ will calculate the normal range for each selected column and
look for numerical and categorical outliers within the training dataset without any further

Chapter 7

ccclvi

Chapter 7

context. The output will essentially consist of infrequent values that fall outside the normal
range fo each column.

To obtain more targeted results, the DQ requires a "key" column. This column will be used
to provide context by grouping each column by the key column. Defining a good key
column tends to provide results that are a better indicators of actual data quality issues
instead of simply infrequent values.

Another input that can make outlier detection more precise is a data/time column and a
look back period. This enables a more precise calculation of the normal range for a column

ccclvii

and in the case of numerical outliers, makes it possible for DQ to establish a trend. Given a
time column and key column, DQ will not only identify numerical outliers, it will plot the
historical trend of the column value trailing the outlier.

DQ also allows further refinement of the time dimension by defining time bins and
processing intervals. By default, when given a time column, DQ will bin the data into days
and process the data in daily interval. However, if the data is high frequency, day bins and
day intervals might be too coarse grained. In this case, it might make more sense to group
the data into bins on the minute and process the data in hour or minute intervals. The
same concept applies in the other direction. What if the data is already aggregated on the
month or year? In this case, it makes more sense to set the bins and intervals to month by
month or month by year.

Chapter 7

ccclviii

Chapter 7

Some data may be measured in really small or large units or contain a lot of noise. In this
case, DQ allows the user to adjust the sensitivity level and unit of measure for outlier
detection on each column. Click the advanced tab to make these adjustments.

Once Outlier detection is complete for a given run, it's time to tune the scoring of the
model. DQ allows the user to label any outlier findings as legitimate, thus preventing that
outlier from being detected in the future or effecting the score of the current run. In
addition, it is possible to define the significance of an outlier finding to a given dataset. This
can be accomplished by setting how many quality points should be deducted for each
outlier finding on any given run on that dataset. It is also possibly to adjust sensitivity and
unit of measure of future runs by clicking on the small gear icon on the far left of the
screen.

ccclix

Spark DataFrame Example

Real World Example
Imagine you are the data manager at Iowa Department of Commerce, Alcoholic Beverage
Division. As part of the Department's open data initiative, the monthly Iowa liquor sales
data are available to the public for analysis. (Thank you Iowa!)

Chapter 7

ccclx

https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy
https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy

Chapter 7

An Iowan data analyst emails you about a data quality issue with address for store #2508
in the year 2016. You quickly run a SQL query on your data warehouse to see what is
going on.

-- Assuming Postgres DB
select date_trunc('MONTH', "date") "date_month", address, count
(*) "sales_count"
from iowa_liquor_sales
where "date" >= '2016-01-01' and "date" < '2017-01-01' and
store_number = '2508'
group by date_trunc('MONTH', "date"), address
order by date_month, address

date_month address sales_count

2016-01-01 00:00:00 1843 JOHNSON AVENUE, N.W. 422

2016-02-01 00:00:00 1843 JOHNSON AVENUE, N.W. 451

2016-03-01 00:00:00 1843 JOHNSON AVENUE, N.W. 579

2016-04-01 00:00:00 1843 JOHNSON AVENUE, N.W. 404

2016-05-01 00:00:00 1843 Johnson Avenue, N.W. 625

2016-06-01 00:00:00 1843 Johnson Avenue, N.W. 695

2016-07-01 00:00:00 1843 Johnson Avenue, N.W. 457

2016-08-01 00:00:00 1843 Johnson Avenue, N.W. 744

2016-09-01 00:00:00 1843 Johnson Avenue, N.W. 681

2016-10-01 00:00:00 1843 Johnson Avenue, N.W. 728

2016-11-01 00:00:00 1843 Johnson Avenue, N.W. 1062

2016-12-01 00:00:00 1843 Johnson Avenue, N.W. 992

Because store_number is an unique number assigned to the store who ordered the
liquor, the inconsistent address values for the same store pose data quality problem. But
address is a string value that can take many forms. For store #2508, the reported address

ccclxi

value has a shifted behavior from all capital letters starting on May 2016. For other cases,
it might be completely different behavior change that you would have to manually check
one by one. With over 2,000 unique stores, 19 million rows, and 8 years of data, you need
an automated way to detect meaningful categorical outliers.

The following command shows an example of running monthly OwlDQ Checks, from the
month of Jan 2016 to the month of December 2016. Each monthly run looks back 3
months of data to establish a baseline for categorical columns that you suspect would
have similar data quality issues: store_name, address, andcity.

/opt/owl/bin/owlcheck
connection information to data

 -lib "/opt/owl/drivers/postgres/" -driver "org.-
postgresql.Driver"
 -c, "jdbc:postgresql://localhost:5432/postgres"
 -u, "postgres", "-p", "password"

Specify dataset name
 -ds "iowa_liquor_sales_by_store_number_monthly"

Specify date filter for the last filter, e.g. date >= '2016-
12-01' and date < '2017-01-01'
 -rd "2016-12-01" -rdEnd "2017-01-01"

SQL query template (${rd} and ${rdEnd} matches with -rd and
-rdEnd
 -q "select distinct on (date, store_number) date, store_num-
ber, store_name, address, city
 from iowa_liquor_sales where date >= '${rd}' and date <
'${rdEnd}' "

Turn on Outliers
 -dl

Group on store_number (optional if no grouping)
 -dlkey "store_number"

Specify column that is of date type (optional, if running
OwlCheck without time context)
 -dc "date"

Specify columns to run Outlier analysis (if not specified,
all the columns in query are included in analysis)
 -dlinc "store_name,address,city"

Specify 3 month lookback for each OwlCheck
 -dllb 3

Run Monthly OwlCheck
 -tbin "MONTH"

"backrun" Convenient way to run 12 preceding MONTHly owl
check
 -br 12

Results

Chapter 7

ccclxii

Chapter 7

The -br 12 option ran 12 monthly OwlChecks for every month of 2016. The figure below
shows OwlCheck Hoot page for the lastest run of dataset iowa_liquor_sales_by_
store_numbers_monthly. The Hoot page shows that OwlCheck identified 24 Outliers
among 4.8k rows of unique date x store_number for month of December, 2016.

Since the original data quality issue that inspired us to run OwlCheck is from May 2016, we
can navigate to specific run date 2016-05-01 by click on the line graph on top. Then
searching for store #2508 on the key column shows outlier detected for column address.
Press [+] for that row to see contextual details about this detected value.

ccclxiii

We can verify that OwlCheck identified the outlier of interest among other 60 data quality
issues. Using OwlCheck, you can identify issues at scale for past data (using backrun),
current (using simple OwlCheck), and future (using scheduled jobs).

Tech Preview [TP] Outlier Calibration

Use Case

When A) using Outliers and B) faced with an event such as a stock split or currency
devaluation, it may be helpful to calibrate the outlier boundaries within Collibra DQ to avoid
surfacing non-issues for a period of time.

Example Step #1: No Action Necessary

In the video below, Collibra DQ Outliers were set to a high sensitivity. The USDEUR
conversion rate on January 6th in the sample dataset may be considered reasonable and
the user can 1) rerun the dataset with lower sensitivity or 2) downtrain the unintended
Outlier anomalies.

Chapter 7

ccclxiv

Chapter 7

Example Step #2: Macro Event That User Understands e.g. Currency Devaluation or
Stock Split

When examining the outlier on January 11th, the dataset depicts that the USDEUR
conversion shot up to 3.14, which in our hypothetical example coincides with an
explainable macroeconomic phenomenon. As such, the user may not want Outlier
anomalies to trigger for a period of time.

Example Step #3: User Wants To Suppress Outliers

ccclxv

Once Outlier Calibration is enabled, a user can select the boundaries and duration of the
'suppression' period. And once the DQ Job is re-run for the selected date(s), the outliers
will not trigger an anomaly / downscore.

Patterns (advanced)

Note This is an advanced opt-in feature.

Owl uses the latest advancements in data science and ML to find deep patterns across
millions of rows and columns. In the example below it noticed that Valerie is likely the
same user as she has the same customer_id and card_number but recently showed up
with a different last name. Possible misspelling or data quality issue?

Chapter 7

ccclxvi

Chapter 7

Training Anti-Pattern Detection Model

When the Patterns feature is enabled, DQ builds a collection of patterns that it identifies
within the data. It will then use that collection to identify values that break established
patterns. For example, in the image below, DQ learned that a bike route that starts at "MLK
library" will end at "San Jose Diridon Caltrain Station". However, when the current day's
data cross referenced against this pattern, DQ detects an anti-pattern where a trip starts at
"MLK Library" but ends at "Market at 4th". DQ raises this anti-pattern as a data quality
issue and highlights the what it believes the "end_station" value should have been.

To build a Pattern model, DQ requires historical data that contains the valid patterns and if
possible, a date/time column. The user can then needs to define the date/time column, the
look back period, and what columns make up the pattern. In the image below, the pattern
was composed of "end_station", "start_terminal", "start_station".

It is possible that an apparent anti-pattern finding is actually valid data and not a data
quality issue. In this case, DQ allows the user to further instruct the existing Patterns
model on how to properly score and handle the findings. For example, if it turns out that
"Market at 4th" is actually a valid "end_station" for a bike trip, the user can negate the
identified anti-pattern by labeling it as valid. This action instructs DQ to not raise this
particular anti-pattern again. DQ also rescores the current Owlcheck results to reflect the
user's feedback. In addition, it is possible to define the weight of an anti-pattern finding on
the current dataset by setting the numerical value to deduct per finding.

ccclxvii

Fraud Detection?

Think about a scenario where a dataset has a SSN column along with FNAME, LNAME
and many others. What if your traditional rules engine passes because one of the rows has
a valid SSN and a valid Name but the SSN doesn't belong to that person (his or her name
and address, etc.)? This is where data mining can derive more sophisticated insights than
a rules based approach.

Records (advanced)

Note This is an advanced opt-in feature.

Where did my rows go?

Collibra DQ is constantly learning which records or rows in a dataset are most common. In
the case below the NYSE had a reasonable dataset volume (row count).

Row Count Trend

We can see the rows dipping just slightly outside their predicted range. Arguably a subtle
drop, yet abnormal to not represent these companies that typically do trade on the NYSE.
Were they de-listed?

Chapter 7

ccclxviii

Chapter 7

Source (advanced)

Note This is an advanced opt-in feature.

Does your data-lake reconcile with your upstream system?

Copying data from one system to another is probably the most common data activity to all
organizations. Collibra DQ refers to this as source to target. As simple as this activity
sounds, DQ has found that most of the time files and database tables are not being copied
properly. To ensure and protect against target systems getting out of sync or not matching
the originating source, turn on -vs to validate that the source matches the target.

A row count is not enough...

The most common check we encounter is a row count. However, a row count does not
account for:

l Schema differences - Boolean to Int, Decimal to Double with precision loss,
Timestamps and Dates.

l Value differences - Char or Varchars with whitespace vs Strings, null chars, delimiter
fields that cause shifting, and much more.

ccclxix

DQCheck Created fromWizard

The DQWizard GUI creates the below OwlCheck which it can execute from the GUI by
clicking RUN or by pasting at the cmdline.

Chapter 7

ccclxx

Chapter 7

-lib /home/ec2-user/owl/drivers/valdrivers \
-driver org.postgresql.Driver \
-u user -p password \
-c "jdbc:postgresql://ec2-34-227-151-67.compute-1.amazon-
aws.com:5432/postgres" \
-q "select * from public.dateseries4" \
-ds psql_dateseries2 -rd 2018-11-07 \
-srcq select dz, sym as symz, high as highz, low as lowz, close
as closez, volume as volumez, changed as changedz, changep as
changepz, adjclose as adjclosez, open as openz from lake.d-
ateseries \
-srcu user \
-srcp password \
-srcds mysqlSYMZ \
-srcd com.mysql.cj.jdbc.Driver \
-srcc "jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rd-
s.amazonaws.com:3306/lake" \ -valsrckey "SYMZ" \
-vs \
-valsrcinc "dz,symz,open-
z,highz,lowz,closez,volumez,changedz,changepz,adjclosez"

End of Day Stock Data from Oracle to Mysql

In this example we loaded NYSE_EOD data in both Oracle and Mysql and then used
Collibra DQ's Source Validation feature. We see 3 main classes of issues. 1) The row
count is off by 1 row, this means a row was dropped or went missing when the data was
copied. 2) The schemas don't exactly match. 3) In 2 cases the values are different at the
cell level. NULL vs NYSE and 137.4 vs 137.42.

ccclxxi

Latest View in 2.13+

Chapter 7

ccclxxii

Chapter 7

Pushdown
Pushdown feature description

Some of the Collibra DQ features support pushdown to avoid transferring large dataset
from data source (Database, Cloud storage, file systems etc.) into Spark. When pushdown
is enabled and supported, the DQ Job will generate SQL queries to offload the compute to
the data source, reducing the amount of data transfer and Spark computation of the DQ
Job. Not all features support pushdown nor pushdown completely eliminate data transfer.

Why use pushdown

To analyze a dataset for DQ findings as part of a DQ Job, CDQ uses Spark as the compute
engine to power the analysis. This requires the dataset to be loaded into Spark as a Spark
DataFrame, and the DQ Job performance (job completion speed) is limited by Spark
resources available and the complexity of the job. This data transfer from data source to
Spark is dependent on two of the following factors:

1. Bandwidth limitation at the data source
If the DQ Job requires pulling 100 million rows from a SQL Database, then the
Input/Output limit of transferring data out of SQL Database into the Spark cluster will
greatly increase the overall speed of the DQ Job.

2. Compute limitation at the data source for complex queries
If the DQ Job requires complex queries to create the dataset (via -q), then this
computation is done at the SQL Database level. Some examples of "complex"
queries are:
-q "SELECT * FROM public.very_long_table_of_transactions WHERE

date = ${rd} and department = 'finance'"

This query can take long time at the database level due to WHERE clause filtering a
very long table on columns date and department that may not be indexed properly,
leading to a full table scan without a LIMIT clause specified.
-q "SELECT * FROM public.very_long_table_of_transactions trans-

actions INNER JOIN public.departments departments ON trans-

actions.department_id = departiments.id WHERE transactions.date

= ${rd} and departments.name = 'finance'"

This query can take long time at the database level due to a join between tables.

ccclxxiii

3. Resource limitation at the data source
The data source may not have enough hardware resource available to efficiently
fulfill the query and/or handle multiple DQ Jobs & other non-CDQ applications
requesting data.

The bottleneck due to data transfer can be viewed in Jobs page > Job Logs > LOAD stage.
This data loading step is the first step for all DQ Jobs. However, pushdown feature can be
used to reduce (NOT eliminate) the data transfer & compute to Spark from the data
source, if the DQ Job specified does not require loading all the data into Spark.

In summary, speed of loading the data from data source to Spark is a -q query compute

time at data source + network transfer of -q result between data

source and Spark. Pushdown can reduce both elements, but the efficiency gained is
dependent on the complexity of -q query and how big the dataset from -qresult would
have been without pushdown.

How pushdown is efficient

Some of the Spark compute performed by the DQ Job can be translated into SQL queries
that most relational databases support natively. In such a case, the DQ Job does not need
to load all the rows of the dataset. Instead, the DQ Job can query the data source for the
results of those SQL queries and reduce the amount of data transferring out of the data
source. The results of these SQL queries are almost always lead to smaller amount of data
compared to the full dataset defined by -q. Only some of the DQ Job features require the
full dataset to be loaded into Spark. Therefore, pushdown can be a useful tool to speed up
the overall DQ Job speed -- provided that the speed of executing these SQL queries are
faster than the speed of transferring the data out of the data source into Spark. In most
use cases, pushdown leads to faster DQ Job execution for large datasets. If the -q query
is sufficiently complex, then the speed reduced by transferring less data into Spark can be
cancelled out by the multiple frequent SQL queries made to the data source by the
Pushdown process (because each query may have have redundant compute due to the
complexity of -q).

Chapter 7

ccclxxiv

Chapter 7

How pushdown works in CDQ

Using pushdown only reduces the amount of data transferred out of the data source. It
does NOT skip the LOAD stage in DQ Job. Every DQ Job requires a small sample of rows
(10-20) of the dataset defined by -q in order to generate Data Preview and analyze
schema information for the dataset run. This means the -q query may be fully computed at
data source before the sampling can occur (depending on the complexity of the -q). In
such a case, sampling 10-20 rows of data is not a quick and immediate LOAD stage and
only efficiency gain comes from lack of transferring data between data source and Spark.

Therefore, pushdown feature would be most efficient if -q is a simple select query with
simple where filtering. The benefit comes from the fact that if your dataset defined by -q
results in 100 million rows, only 10-20 rows of the dataset defined by -q will be loaded into
Spark.

Profile with pushdown will then generate a series of SQL queries and query the data
source again for aggregate metric data. Depending on the dataset, these multiple SQL
queries can be more efficient than loading all the data into Spark and computing these
aggregate metric in Spark. The results between Profile with pushdown and Profile without
pushdown are (practically) identical.

Profile: pushdown vs no pushdown

Here is the summary of Profile activity with details regarding pushdown support

Feature Supports pushdown Description

Row Count Yes Computes row count of the data-
set.

Distinct Count Yes The number of distinct values in
a column.

Mean Yes The average of all the values in
the column. Supports numeric
columns only.

ccclxxv

Feature Supports pushdown Description

Min / Max Yes The minimum and maximum
values of the column. Supports
numeric and boolean columns
only.

NULL Count Yes The number of null values in the
column.

EMPTY Count Yes The number of empty values in
the column. Supports string
columns only.

TYPE Count Yes The number of different types
inferred in a column (if any).

TopN / BottomN No Computes the top 5 most frequent
(TopN) and least frequent
(BottomN) values. Supports all
types.

This result is displayed as a
frequency bar chart in Profile page.
If pushdown is enabled, then TopN
and BottomN values are not
displayed. Related features like
Stat Rules (Distribution) are also
disabled.

Data Shape Detection No Detects shapes of the values
based on Shape parameters
provided (automatic or
manual).

Histogram No Creates histogram of the values
in the column.

Correlation Matrix No Creates correlation matrix. Sup-
ports only numeric columns.

Chapter 7

ccclxxvi

Chapter 7

Snowflake Pushdown

Note As of 2022.11, Snowflake Pushdown is available as a public beta. Since this
is a beta feature, some capabilities may be limited. For more information on our beta
program, refer to Public betas.

Pushdown is an alternative computation method for running a DQ job, where all of the job's
processing is submitted to a SQL data warehouse, such as Snowflake. Snowflake
Pushdown jobs generate SQL queries to offload the compute to the data source, reducing
the amount of data transfer and Spark computation of the DQ Job.

By running a Snowflake Pushdown job, you can:

l Reduce latency.
l Eliminate dependencies on Spark compute to run Collibra Data Quality, and
increase processing speeds.

l Eliminate the egress costs for running DQ Jobs against large data sets.
l Auto-scale based on your processing requirements.

For more information on Snowflake, see the Snowflake documentation.

Prerequisites

Before running Snowflake Pushdown jobs, a user with Admin permissions must:

l Successfully run the Pushdown setup script.
l Enable Pushdown from the Collibra DQ UI.

Pushdown vs. Pull Up

Collibra DQ Pull Up is a DQ Job without pushdown, where all of the processing is executed
inside the Apache Spark compute engine. Source data is stored inside a database, where
Spark reads it out, and the parameters you set when you select a scope, define a range,
and add build layers, are partitioned and sorted. The results of the profile job are then
recorded in the DQMetastore. Depending on the size of your data set and the number of
DQ checks performed, this process can greatly slow run times because Spark has its own

ccclxxvii

../../../../../../../../Content/ReleaseNotes/co_beta-features.htm
https://docs.snowflake.com/en/user-guide/intro-key-concepts.html

compute resources, such as memory and CPUs. Pull up has limited support for profiling
but you can't run it without setting up Spark.

With Snowflake Pushdown, the Collibra DQ Agent, which creates the Apache Spark DQ
Job, is no longer needed. No agent is required to submit a Snowflake Pushdown job
because all of the processing is sent directly to Snowflake. Therefore, Agent ID is always
set to 0 for Snowflake Pushdown jobs.

With Snowflake, you can also scale your compute needs based on the specific
requirements of your DQ Job. This is because Snowflake's architecture features auto-
scaling, which allows you to automatically scale up, or burst, to 64 or 128 nodes when you
require greater processing needs. Snowflake also automatically scales down when your
DQ Job does not require robust processing. With auto-scaling, the processing of your data
is enhanced, improving runtime performance and removing the egress costs of reading
large amounts of data.

Features and Limitations of Snowflake Pushdown

Note As of 2022.11, Snowflake Pushdown is available as a public beta. Since this
is a beta feature, some capabilities may be limited. For more information on our beta
program, refer to Public betas.

This section describes the features and limitations of using Collibra Data Quality's
Snowflake Pushdown capability to run a DQ Job.

Warning To use Snowflake Pushdown, you must be a participant in the public beta.
This feature is currently unavailable for non-participants.

Features
The following table shows the features unique to DQ Jobs run using Snowflake Pushdown
processing.

Chapter 7

ccclxxviii

../../../../../../../../Content/ReleaseNotes/co_beta-features.htm

Chapter 7

Feature Description

Dynamic date filter A togglable option that allows you to filter column data dynamically by run-
Date $.

Configurable num-
ber of connections

Allows you to set the number of open connections between 1-5 so you can
run jobs in parallel and improve the performance of profile jobs.

Cancel jobs Unlike Spark compute jobs, you can cancel the SQL queries of Snowflake
Pushdown jobs.

No agent Pushdown runs the database engine to execute jobs directly, removing the
need for agents. Agent ID = 0.

More control over
AdaptiveRules

With minimal clicks, you can apply AdaptiveRules, such as row count and
uniqueness, from the UI.

Limitations
Currently, there are some limitations with Snowflake Pushdown because it is in public beta
as of 2022.11:

l Outlier detection is not yet fully supported.
l Pattern detection is not yet supported.
l We do not currently support Okta integration. Support for this integration is planned
for a future release.

l You cannot currently run a job from the command line. This functionality will be sup-
ported in an upcoming release.

Running a Snowflake Pushdown job

Note As of 2022.11, Snowflake Pushdown is available as a public beta. Since this
is a beta feature, some capabilities may be limited. For more information on our beta
program, refer to Public betas.

This section shows you how to get started with the three scanning methods of a Snowflake
Pushdown job.

ccclxxix

../../../../../../../../Content/ReleaseNotes/co_beta-features.htm

Steps

1. From Explorer, select your Snowflake connection with the icon next to it.

Note For the icon to be visible, you need to enable Pushdown when you
establish your Snowflake connection.

2. Select your schema.
3. Click Create DQ Job.

The Job creator page opens.

4. Select a scanning method. Since the steps and procedures vary by scanning
method, refer to the documentation associated with each scanning method for fur-
ther instructions.

Scanning
method

Description

Full Scan Scans your full table to show all results. This is the standard scanning method.

Partial Scan Scans a section of your table for more targeted results than a full scan.

SQL Query Allows you to manually write and compile a SQL query for an advanced scan of
your table.

AdaptiveRules
AdaptiveRules are common metrics used to observe changes to your data. These can be
applied or removed from the AdaptiveRules tab on the Add Layers workflow by selecting
or deselecting AdaptiveRules.

The following table shows a list of AdaptiveRules measured by Collibra DQ and whether
they are applied by default.

Chapter 7

ccclxxx

Chapter 7

AdaptiveRule
type

Subtype Description Default?

Availability N/A Observe changes to the row count and loading
time in your table.

N/A

Row count Monitor the row count change in your table. True

Loading time Monitor loading time changes. False

Distribution N/A Observe the number of unique values in a table. N/A

Uniqueness Monitor a column's cardinality within the range of
previous DQ Jobs

True

Conformity N/A Observe columns with values that fall outside of
the normal range.

N/A

Min Monitor columns with min values outside the nor-
mal range.

False

Mean Monitor columns with mean values outside the
normal range.

False

Max Monitor columns with max values outside the nor-
mal range.

False

Completeness N/A Observe columns in your table containing null val-
ues or empty fields.

N/A

Null values Monitor columns for null values. True

Empty values Monitor columns for empty data. True

Note You can always apply or remove AdaptiveRules, but if you bypass the
configuration, the DQ Job will still run correctly with the default AdaptiveRules
applied.

ccclxxxi

Shapes
A shape is the format of data in a string column. Enabling Shapes lets you discover
inconsistencies in the data formats of a column. For example, when analyzing a date
column, Collibra DQ may detect different string formats of the same meaning, such as 11-
15-2022, 11/15/2022, and 11.15.2022.

The Shapes feature is on by default, but you can choose to toggle it off. You can also
manually control the advanced options by checking the Manual checkbox.

Option Description

Occurrences Set occurrences between 0.001-5 to show shapes that occur less than the per-
centage you set.

Format per
column

Set format per column between 0-100 to identify columns with more formats
than the number you set. This helps identify columns that are too noisy, mean-
ing they do not have a consistent format for detection.

Character length Set character length between 0-100 to identify string lengths that are greater
than the number you set. Character lengths beyond the set value are con-
sidered free from fields and do not have a format for detection.

Data shape gran-
ular

Considers the length of the shape and differentiates between numerical and
letter formats. For the length of a shape to be detected, data shape granular
must be enabled.

Replay
Replay gives you a historical behavior profile of your data by looking back into past runs to
show how the data looked on a certain day, month, or year. To enable Replay, select the
dropdown icon on the Run button and select Replay.

Outliers
Outliers are values that differ significantly from the rest of the data and may indicate bad or
erroneous data. Numerical outliers are detected using the IQR and box plot methods.

Chapter 7

ccclxxxii

Chapter 7

You can detect for outliers by selecting the Outliers tab on the Add Layers screen. Click
the Add Outlier button to open the new Outlier detection bucket's setup options. The
following table shows the setup options and their descriptions:

Option Description

Column The column(s) used to detect outliers. You can select multiple columns for out-
lier detection. Required.

Type The type of data in a given column. For example, VARCHAR.

Key The column used for grouping detected outliers. When assigned, outliers are
grouped to their assigned column when detected. Optional.

Date The column used for bucketing. Optional.

Click Save to save your outlier bucket.

Optionally click the three dots menu icon to configure Quartiles, Lookback, and determine
whether or not to detect for Categorical outliers. The following table shows the
configuration options and their descriptions:

Option Description

Quartile 1 The boundaries beyond which low (Q1) outliers are detected using the IQR for-
mula. Use the slider or enter a value in the text box between 0.01 and 0.45.

Quartile 3 The boundaries beyond which high (Q3) outliers are detected using the IQR
formula. Use the slider or enter a value in the text box between 0.55 and 0.99.

Lookback The period used to look back through the dataset using the date column. Use
the slider or enter a value in the text box between 0 and 30.

Interval The unit of measurement of the lookback period, such as DAY.

Categorical Select this option to detect for Categorical outliers instead of Numerical out-
liers.

Optionally click the pencil icon near Advanced Options to adjust outlier detection
sensitivity. Use the slider to adjust outlier detection Sensitivity from Low to High for a given
column. You can also change the Unit of outlier detection sensitivity with the dropdown
menu. Click Save.

ccclxxxiii

Click the pencil icon to edit a saved Outlier bucket, or click the trash can icon to remove it.

Chapter 7

ccclxxxiv

Chapter 7

Running a Full Scan
Note As of 2022.11, Snowflake Pushdown is available as a public beta. Since this
is a beta feature, some capabilities may be limited. For more information on our beta
program, refer to Public betas.

A full scan is a scan of your entire table. When running a full scan, you do not need to
select columns or apply filters to rows because all columns are selected by default.
Various DQ Layers, such as AdaptiveRules, are also applied by default. A full scan is
commonly used to obtain a high-level overview of your data.

Prerequisites
You have an Connectivity to Snowflake and Pushdown enabled.

Steps
1. From Explorer, select your Snowflake connection with the icon next to it.

Note For the icon to be visible, you need to enable Pushdown when you
establish your Snowflake connection.

2. Select your schema.
3. Click Create DQ Job.

The Job creator page opens.

4. Select Full Scan.
5. Optionally add layers or toggle default settings.

o Certain AdaptiveRules are enabled by default. You can optionally toggle them
on and off.

o Shapes are enabled by default. You can optionally toggle them on and off, and
configure more advanced options by selecting the Manual checkbox.

6. Click Next.
The Review page opens.

7. Review your DQ scan.

ccclxxxv

../../../../../../../../Content/ReleaseNotes/co_beta-features.htm

8. Select Run.
A dialog appears and tracks the status of your Snowflake Pushdown job.

What's next?
After running a Full Scan, go to the Jobs page to Profile (automatic).

Chapter 7

ccclxxxvi

Chapter 7

Running a Partial Scan
Note As of 2022.11, Snowflake Pushdown is available as a public beta. Since this
is a beta feature, some capabilities may be limited. For more information on our beta
program, refer to Public betas.

A partial scan only scans the sections of your table that you specify Select columns, apply
row filters, and add DQ layers to fine tune your DQ scan and obtain a targeted
understanding of your data.

Prerequisites
You have an Connectivity to Snowflake and Connectivity to Snowflake.

Steps
1. From Explorer, select your Snowflake connection with the icon next to it.

Note For the icon to be visible, you need to enable Pushdown when you
establish your Snowflake connection.

2. Select your schema.
3. Click Create DQ Job.

The Job creator page opens.

4. Select Partial Scan.
The Select columns view appears.

5. Select your columns by checking or unchecking the checkboxes associated with a
particular column.

6. Click Next.
Alternatively, you can click Select rows from the left workflow menu.
The Select rows view appears.

7. Select a filter type to apply a specific filter.

ccclxxxvii

../../../../../../../../Content/ReleaseNotes/co_beta-features.htm

Filter Type Description

Time Slice Scans a range of dates or times.

Row Filter Scans a section of rows.

Limit Scans a random sample of rows.

8. Click Next.
Alternatively, you can click Add layers from the left workflow menu.
The Add layers view appears.

9. Optionally add layers or toggle default settings.

o Certain AdaptiveRules are enabled by default. You can optionally toggle them
on and off.

o Shapes are enabled by default. You can optionally toggle them on and off, and
configure more advanced options by selecting the Manual checkbox.

10. Click Next.
The Review page opens.

11. Review your DQ scan.

12. Select Run.
A dialog appears and tracks the status of your Snowflake Pushdown job.

Time Slice
Time slice is a filter that lets you select a range of dates or times for your DQ scan. To
apply a time slice filter, select Add, configure your preferences in the Add Time Slice
modal, then select Save to save your filter. When a filter is successfully saved, a badge
displays on the Time Slice tile and the number of applied filters is reflected in the left
workflow menu.

Chapter 7

ccclxxxviii

Chapter 7

Edit Time Slice modal

Component Description

Column of ref-
erence

Select a column from your table for the application to analyze.

Date When toggled on, the date filter lets you filter column data based on run date
${rd}.

Visualize Displays an autogenerated bar chart of days where data is available in your data
set.

Operator Select an operator, such as =or >, upon which the app bases its operation.

Run Date Select a run date to allow the application to scan sections of your table, add a new
date to it, and then run again. By selecting Run Date, a dynamic result is returned
at runtime.

Row Filter
Row Filter scans a section of rows from your table. To add a Row Filter, select Add,
configure your preferences in the Add Filter modal, then select Save to save your filter.
When a filter is successfully saved, a badge displays on the Time Slice tile, and the
number of applied filters is reflected in the left workflow menu.

Add Filter modal

Component Description

Column of ref-
erence

Select a column from your table for the application to analyze.

Date

Visualize Displays an autogenerated bar chart of days where data is available in your
data set.

ccclxxxix

Component Description

Operator Select an operator, such as =or >, upon which the app bases its operation.

Value

Limit
Limit scans a random sample of rows based on the maximum number of rows you set. To
apply a limit, specify the number of rows greater than 0 for DQ to scan.

What's next?
After running a Partial Scan, go to the Jobs page to Profile (automatic).

Chapter 7

cccxc

Chapter 7

Scanning with SQL Query
Note As of 2022.11, Snowflake Pushdown is available as a public beta. Since this
is a beta feature, some capabilities may be limited. For more information on our beta
program, refer to Public betas.

The SQL Query option lets you write and compile a query manually for an advanced scan
of your table.

Prerequisites
You have an Connectivity to Snowflake and Connectivity to Snowflake.

Steps
1. From Explorer, select your Snowflake connection with the icon next to it.

Note For the icon to be visible, you need to enable Pushdown when you
establish your Snowflake connection.

2. Select your schema.
3. Click Create DQ Job.

The Job creator page opens.

4. Select SQL Query.
The SQL view opens.

5. Write and compile a SQL query.

Note To switch to Standard view and return to the Running a Partial Scan
workflow, select the three-dots menu icon and select Standard view. Any
changes made to your SQL query are lost when you switch between views.

6. Click Next.
Alternatively, you can click Add layers from the left workflow menu.
The Add layers view appears.

cccxci

../../../../../../../../Content/ReleaseNotes/co_beta-features.htm

7. Optionally add layers or toggle default settings.
o Certain AdaptiveRules are enabled by default. You can optionally toggle them
on and off.

o Shapes are enabled by default. You can optionally toggle them on and off and
configure more advanced options by selecting the Manual checkbox.

8. Click Next.
The Review page opens.

9. Review your DQ scan.

10. Click Run.
A dialog appears and tracks the status of your Snowflake Pushdown job.

What's next?
After scanning with SQL Query, go to the Jobs page to Profile (automatic).

Summary

Click or Code

Collibra DQ offers easy to use no (low) code options for getting started quickly.
Alternatively, more technical users may prefer programmatic APIs.

Core Components

Collibra DQ offers a full DQ suite to cover the unique challenges of each data set.

9 Dimensions of DQ

1. Behaviors - Data observability
2. Rules - SQL-based rules engine
3. Schema - When columns are added or dropped
4. Shapes - Typos and Formatting Anomalies
5. Duplicates - Fuzzy matching, Identify similar but not exact entries
6. Outliers - Anomalous records, clustering, time-series, categorical

Chapter 7

cccxcii

Chapter 7

7. Pattern - Classification, cross-column & parent/child anomalies
8. Record - Deltas for a given column(s)
9. Source - Source to target reconciliation

Check out our videos to learn more

Behavior

Imagine a column going null, automatic row count checks - does your data
behave/look/feel the same way it has in the past.

Rules

Assures only values compliant with your data rules are allowed within a data object.

cccxciii

https://www.youtube.com/channel/UCKMcJ5NRiCDZQxBvSsVtTXw/videos

Schema

Columns add or dropped.

Shapes

Infrequent formats.

Chapter 7

cccxciv

Chapter 7

Dupes

Fuzzy matching to identify entries that have been added multiple times with similar but
not exact detail.

Outliers

Data points that differ significantly from other observations.

Pattern

Recognizing relevant patterns between data examples.

cccxcv

Source

Validating source to target accuracy.

Record

Deltas for a given column.

Chapter 7

cccxcvi

Chapter 7

cccxcvii

cccxcviii

Collibra DQ Scorecards

Chapter 8

Chapter 8

Overview

Scorecards allow you to visualize the health and consistency of a data set over time.
DQ highlights macro and micro trends, for example, weekend loads vs weekday loads or
behavioral item changes per day, and display them on the dataset scorecard.

cccxcix

Data Quality Over Time, Drill-In and Roll-Up
Data quality doesn't mean a one time check or once a year project. Data is the life blood
flowing through your organization. It's mandatory to know how your data is behaving right
now, yesterday and over time to gain an understanding of the trends. For insights to be
meaningful, we need to see both the lowest granularity and the big picture. DQ's approach
lets you drill all the way into the exact moment the issue arose, as well as zoom out to see
how your data is behaving month to month. This makes DQ useful at many different levels
in your organization's heirarchy - a Data Steward might be more concerned with a recent
change in data and want to correct it using Service Now immediately, whereas a Chief
Data Officer might be more concerned with the overall health of the organization's data.

Scoring
Scoring can be completely controlled by the end-user with out of the box defaults.

Chapter 8

cd

Chapter 8

Collibra Data Quality provides a data quality assessment that scans nine dimensions of a
data set to assure the integrity of that data. The nine dimensions include behavior, rules,
outliers, pattern, source, record, schema, duplicates, and shapes.

OwlCheck produces a data quality score from 0-100. 100 represents no integrity issues
found in the data set. The score numerically represents the integrity of that data. For
example, the score of 100 tells the data analyst that there are zero data quality issues in
that data set.

DQ scans your data with the same frequency. You load your data - Owl scans nine
dimensions of DQ and summarizes the results into a score from 0-100.

Aggregate Score

cdi

Note Each dimension can be custom weighted and rules can contain custom
scoring severity. In this example, the deducted score (59) from the starting score
(100) equals an overall score of 41.

Page View

Visually and logically group data sets together to create a
heat map of blindspots.
Similarly to job control and build frameworks like Jenkins, we always want to know the
health of our data sets. Did it recently fail? Does it commonly fail on Mondays? What is the
aggregate or composite score for multiple data sets? DQ allows you to define scheduled
health checks that depend on the success/failure status of any number of data sets. This
protects the downstream process consumers from pulling erroneous data into their
models.

Chapter 8

cdii

Chapter 8

List View

Find DQ issues across all data sets in your data lake. Rank them, sort them, search them
and limit them by time.

cdiii

How Do I Take Action on Lots of Alerts?

One of the most frequently asked questions is how to operationalize and take action on all
of the issues that are seemingly valid yet overwhelming. DQ seems to find many valid
issues in your data sets, but there are many more issues in your data than expected. The
list view helps by first limiting to a time range, for example, issues that have occurred less
than five days, or possibly even just issues that occurred today. This will likely result in a
large reduction in the issue count. In addition, you might limit issues to those DQ issues
that have a business impact. This means other downstream processes or data sets are
connected to this data set and field. You only get the business impact feature if you have
enabled the DQ Graph module. This results in another drastic reduction in issues because
now you are limited to issues that recently occurred and have impact to the business.
Finally, you might filter by the "class" or "type" of DQ issue, such as Rules or Outliers. It is
common in a large data lake that after taking these steps you are left with the one or five
top ranking issues in your lake. These are likely the issues that should be prioritized and
moved into a remediation queue.

Pulse View
The Pulse View page provides a great snapshot of Collibra DQ Jobs that were executed,
whether manually or via a schedule. On the Pulse View dashboard, you can view a heat

Chapter 8

cdiv

Chapter 8

map of your Jobs and health by business unit, connections, users, scheduled frequency,
and more.

The following screenshot shows an example of the type of data you can view when you
hover over a heat map label, for example, a grade, score, and scheduled frequency.

The following table describes the heat map labels you can toggle for additional data about
Jobs that ran for Collibra DQ. The charts are based on criteria you select from the drop-
down lists on the Pulse View page.

Label Label icon Description

Missing A run that either failed at run time or was never cre-
ated/started/picked up.

0 Rows A run that is passing or complete and has resulted in 0
rows of data.

0 Rows &
Failing

A run that is failing or incomplete and has resulted in 0
rows of data.

cdv

Label Label icon Description

Passing A run that is passing or complete and has resulted in rows
of data.

Failing A run that is failing or incomplete and has resulted in rows
of data.

show
failed

When you check this check box, only the runs that failed
display. When the check box is unselected, every job that
ran displays, whether the score was passing or failing.

Note Jobs that are run ad-hoc or manually will not appear on the Pulse View page.

Chapter 8

cdvi

cdvii

Collibra DQ Scheduler

Chapter 9

Chapter 9

Schedule a Job
After you successfully run a job, you can schedule that job to run automatically. Do this by
updating the template (if needed) and clicking the schedule icon in the hoot page. To
change the template, you can use the -rd variable: $ in your query to set dynamic dates or
date ranges for your scheduled job.

Here you can choose the Agent to run the job, the frequency (daily/monthly/quarterly) and
the time of day:

cdviii

If your monthly or quarterly jobs are loaded after the month or quarter has ended, you can
schedule the job for the day when the data has landed, but set the offset to the proper run
date required for charting/reporting.

Chapter 9

cdix

Chapter 9

Schedule Management

Enable Scheduled Jobs from your environment variable in owl-env.sh:

SCHEDULE_ENABLED = TRUE/FALSE (Default = TRUE)

Limit Scheduler Open Time-slots:

If you don't want automated jobs to be running during business hours, or for a particular
day/time on any given day of the week, you can set "off-limit" times so authorized users
don't select them when scheduling a job.

cdx

View/Re-Run Scheduled Jobs
You can view your schedule jobs from the scheduled tab on the jobs page.

Chapter 9

cdxi

cdxii

Collibra DQ Alerts

Chapter 10

Chapter 10

Email Alerts
Email alerts let you send emails to specified recipients when an alert condition is met for a
given dataset.

Setting up an email server using the WebApp
To configure the SMTP server, click the gear icon in the left navigation pane and then click
Alerts.

Setting a condition to send an alert
You can set specific conditions so that an email alert is sent to recipients when those
conditions are met.

1. Go to the Alert Definitions page under Alerts.
2. Select a dataset from the Alert Builder searchbar.
3. Enter an Alert Name, for example, score less than 75.

cdxiii

4. Define a Condition.

Condition
Type

Description Example

Built-in Conditions that do not require any predefined rules to trigger alerts.
To use built-in conditions, enter the condition, an operator, and a
value.

Available built-in conditions are:

o score
o row count

score < 75

Rules Conditions that are tied to datasets as predefined, saved rules. To
use rule conditions, enter the rule upon which the alert condition is
based.

Rule conditions can be configured based on:

o SQL Based Rules previously saved to a dataset.
o Stat Rules previously saved to a dataset.

Tip You can configure dataset-level stat rules as conditions
without previously saving them to a dataset.

Note Because rule validation does not occur in the Alert
Builder, it is not recommended to use rules that are not
already saved to a dataset.

$rowCount >
1

5. Optionally enter a Batch Name.
6. Enter an Alert Recipient as a recipient of email alerts, for example, test.user-

@collibra.com.
7. Optionally enter a Custom Message, for example, Alert when a score is less than

75.
8. Click Save.

For more information on creating rules to use as rule conditions, see Adding a Rule.

To use the batch name to create a consolidated list of alerts and distribution lists for a set
of notifications per dataset, see Email Batch Alerts.

Chapter 10

cdxiv

Chapter 10

DQ Alerts for datasets
You can set DQ alerts for datasets so that you are notified based on certain conditions that
are triggered on the datasets. Below is what a dataset email looks like in your inbox. Make
sure your email client didn't mark the email as spam and that the SMTP server was set up
properly.

DQ Alerts for failed jobs
Another scenario is when the DQ Job fails to run or has an exception and, therefore, never
gets the chance to score the data or run the alert condition. This is a failed alert that's
automatically sent to the email address based on the Admin/SMTP settings defined in the
To Email (Default) fields in the Admin console.

Alert Notification in Web UI
There are also alert notifications in the web UI. This can be helpful to confirm that the email
alerts were sent out and who should have received the notifications.

cdxv

Setting up the email server programmatically

If you are in a notebook or pipeline, you may prefer to use the Scala/Spark API to create
the Email Server.

val emailServer = OwlUtils.createEmailServer("smtp-
relay.sendinblue.com", 587)
 emailServer.setUsername("abc@owl-analytics.com")
 emailServer.setPassword("abc")
 emailServer.setCurrentSet(1)

Util.EmailServerDaoFactory.delete(emailServer)
Util.EmailServerDaoFactory.insert(emailServer)

Setting up DQ Alerts for jobs stuck in Staged status
Occasionally, jobs become stuck in Staged status after an attempted run. When you
create a dataset in Explorer, you can set up alerts from the Config tab by entering an email
address in the Email field before the first run of a newly created job.

Chapter 10

cdxvi

Chapter 10

When an email address is assigned to a dataset, an initial alert is sent 1 hour after a job
becomes stuck in Staged. Additional alerts are sent every 24 hours a job remains in
Staged, and these alerts persist until the job is no longer stuck. After resolution, previous
runs of a job no longer in Staged are marked as Unknown.

Alerts for jobs stuck in Staged include:

l The Job ID.
l The name of the dataset.
l The agent status.
l A descriptive reason for why the job is stuck in staged and possible actions to take
for remediation.

Note If multiple alerts are configured for a particular job, an alert is sent for each
one that is configured.

Setting up SMTP alerts without a username or password
Some alert settings are configurable without requiring a username or password when you
set up an email server. To configure this type of alert:

1. Select the gear icon in the left navigation pane and then select Settings.
2. From Settings, select App Config in the upper right and then select Add Custom.
3. Enter a property in the name field and a value in the value field.
4. Select Add.

cdxvii

Property Default
Value

Description

mail.smtp.auth True When set to True, the server attempts to authenticate the user
using the AUTH command.

When set to False, username and password authentication are
turned off.

mail.smtp.starttls.enable True When set to True and TLS is supported by the server, this
enables the use of the STARTTLS command to switch the
connection to a TLS-protected connection before issuing any
login commands.

When TLS is not supported by your mail server, this property
must be set to False.

Note These properties are preset to their default values. For example,
mail.stmp.auth is preset to True.

Email Batch Alerts
The Batch Alerts functionality allows you to setup a single alert with multiple recipients.
Click the Alerts icon in the left navigation pane and then click Alert Definitions.

Chapter 10

cdxviii

Chapter 10

In the Batch Name field, specify a batch name for the multiple recipients. Multiple
recipients are specified by comma (,) AND/OR semicolon (;) delimiters.

Note You can specify either single or multiple recipients.

The accepted formats for email are "name@email.com" OR
"name1@email.com,name2@email.com" OR "name1@email.com;name2@email.com".

You can update the batch at any time.

cdxix

mailto:name@email.com
mailto:name1@email.com
mailto:,name2@email.com
mailto:name1@email.com
mailto:,name2@email.com

After a job runs, it checks the data set with condition email not sent and batch name not
empty. If this condition is met, an email is sent to all recipients in the batch.

You can also run the DQ jobs manually from DQ Job tab.

Alert for Batch Schedule

https://dq-docs.collibra.com/scheduler/schedule-owlchecks

Chapter 10

cdxx

https://dq-docs.collibra.com/scheduler/schedule-owlchecks

cdxxi

Collibra DQ Reports

Chapter 11

Chapter 11

Built-In
Collibra DQ provides various out of the box reports that allow you to access insights
quickly.

Completeness Report
This section provides information on how to generate a Collibra DQ Completeness Report
to determine what percentage of your data is complete.

What is Data Completeness?

Completeness answers the question of what percentage of your data is complete, or "filled
in" (i.e., not EMPTY or NULL). Using this report, you can view the completeness of a column,
a collection of tables, a business unit or data set (file or table), or almost any completeness
query.

Completeness of your data is important because it shows whether data is inaccurate,
invalid, the wrong type, or missing altogether, which can leave you without any data.
Sometimes data values can be missing for valid reasons, which requires a better
understanding of the context of whether the missing data is bad for business or
acceptable.

cdxxii

Steps

To generate a Completeness report, follow these steps.

Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

1. Click the Completeness Report link.
2. From the BizUnit/Dataset drop-down list, select one of the following options:

o Business Unit Level
i. From the Business Unit drop-down list, select a business unit, or All.
ii. Proceed to step 5.

o Dataset Level
i. In the Dataset search field, enter a data set for which you want to run the
report. You can also enter a partial word to locate data sets in the system.

ii. Proceed to step 5.
3. From the Lookback/Custom drop-down list, select one of the following options:

o Lookback
i. From the Lookback drop-down list, select the number of days back to
include in the report. You can choose up to 30 days back.

ii. From the Mode drop-down list, select one of the following options:
n All: includes all jobs in the system.
n DRAFT: includes only the jobs that are in draft mode.
n PUBLISHED: includes the jobs that have been published.

iii. Proceed to step 6.
o Custom Range

i. From the RunDate/UpdateTime drop-down list, select one of the fol-
lowing options:

i. Run Date: date/time the data represents.
ii. Update Time: time the DQ job ran.

ii. In the Date Range field, select a date range by clicking in the from/to
fields and choosing the dates using the interactive calendars.

iii. From the Mode drop-down list, select one of the following options:
n All: includes all reports in the system.
n DRAFT: includes only the reports that are in draft mode.

Chapter 11

cdxxiii

Chapter 11

n PUBLISHED: includes the reports that have been published.
iv. Proceed to step 6.

4. Click GO.
The results display based on your input.

Note When looking at completeness over time, you should differentiate between
the time the DQ job ran (update time) or the date/time the data represents (run
date). For example, you could load stock data today but the data loaded was for last
week.

All View

The All view represents the completeness of data sets throughout the entire Collibra DQ
app. The % Completeness chart measures all the data, which shows around 93%
complete in the following example. The Volume Weighted Completeness chart also
measures the volume of the data, which shows around 97%.

Column View

The column view shows the completeness of specific data sets, which makes it easy to
see the columns that are least complete and, therefore, of possible concern. The columns
range from 0% to 100% complete.

cdxxiv

Behavioral Analytics for Completeness

For a different approach to completeness management, see the Collibra DQ Behavior
feature. This approach uses the data itself to create baselines and profiles to understand
which completeness issues matter and, therefore, require you to take some kind of action.

To generate statistical process around completeness in the events you are most
concerned about, and alert you to a change in slope (a drastic change in completeness),
see the Collibra DQ Job Back Run and Profile (automatic) features.

Chapter 11

cdxxv

Chapter 11

Coverage Report

What is a Data Quality Coverage Report

The Coverage Report provides a view that shows DQ coverage across all your technical
data sets (for example, schemas, files, tables, and items in the database) via a donut
chart, as well as time-series bar charts that show the DQ run level information aggregated
by month.

Steps

To generate a Coverage Report, follow these steps.

1. Log in to the Collibra DQ instance.
2. Click the Explorer icon in the left navigation pane. The Explorer view opens.

3. In Connections, select one of the databases, for which you want to generate a report
and click Generate Report. The Coverage Report displays. The report includes a
donut chart showing the percentage of all schemas in the database that are running
data quality on them and interactive bar charts showing which data sets are running
data quality jobs on a monthly basis.

4. To see how many new data quality jobs have been added, click one of the following
bar charts (the green color represents new DQ jobs and the gray are the existing
jobs):

View Description

1m Shows new and existing jobs after one month.

3m Shows new and existing jobs after three months.

6m Shows new and existing jobs after six months.

YTD Shows new and existing jobs year-to-date.

1y Shows new and existing jobs after one year.

All Shows new and existing jobs for the entire range of months.

cdxxvi

5. To generate a Coverage Report for a specific schema, expand the schema and click
GenerateReport. The Coverage Report displays for that schema. You can click into the
charts to see specific information for DQ coverage for this schema.

In the following screenshot, (22/44) next to the PUBLIC schema represents 22 out of 44
tables that have DQ jobs running on them and (24/24) represents 24 out of 44 jobs that
have been cataloged, meaning they are registered and have metadata.

Data Set Findings

What is the Data Set Findings Report

The Data Quality Data Set Findings Report allows you to search for a particular data set
and generate, view, copy, print, and export the report to an Excel or CSV file format.

Note As of the 2022.08 release, PDF is no longer a supported file format for
exporting and printing reports. These functions are now restricted to the CSV file
format only.

Steps

To generate a Data Set Findings Report, follow these steps.

Chapter 11

cdxxvii

Chapter 11

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

2. Select the Data Set Findings tile.
3. In the search bar in the upper right corner, enter the name of your target data set.

A list of available data sets populates in the drop-down menu.
4. Select the data set for which you want to view and export results.

The Data Set Findings page displays for your data set.
The report includes the name, source, RunDate, and host of your data set, as well as
columns that highlight specific data about it.

5. Select the RunDate from the drop-down list to display the data in the table for that
particular RunDate.

6. Toggle the icon at the top of the column to sort the data that displays in the

columns in ascending or descending order.
7. Filter the report results by entering information in the search bar. For example, if you

enter a number in the search field, any report result that includes the number dis-
plays.

8. Click Copy, Excel, CSV, or Print at the top right of the columns to copy, print, or
export your reports.

9. Navigate the pages of your report by clicking the Previous and Next pagination but-
tons, located bottom-right of the columns.

The following screenshot is an example of a Data Set Findings Report for the lake.nyse
data set.

cdxxviii

Summary Reports
Collibra Data Quality Summary reports provide information about your data sets rolled up
in high level summaries. These reports include the Weekly Summary Report and Data
Quality Checks Report.

Note These reports provide a look at the most simplistic form of the rule. However,
this view does not associate itself with a run's score.

What is the Weekly Summary Report?

When you operate a large data lake or several large data environments, it's helpful to have
a way to report across different dimensions at an executive summary level. You may want
to know the health or coverage per line of business, department or tenet, or per database.

The Collibra Data Quality Weekly Summary Report automatically aggregates a simple
series of the high level trends for each data set, which allows you to see the DQ scores
and trends, as well as row counts and passing runs in a weekly report. You can copy,
export, and print this report to an Excel or CSV file format.

Chapter 11

cdxxix

Chapter 11

Note As of the 2022.08 release, PDF is no longer a supported file format for
exporting and printing reports. These functions are now restricted to the CSV file
format only.

Steps

To generate a Weekly Summary report, follow these steps.

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

2. Select the Data Summary tile.
The Weekly Summary report displays.

The following table describes the report columns.

cdxxx

Column Description

Dataset The data sets scanned over one week.

Score The average data quality score of a data set over
one week.

Score Trend A line graph representation of data quality scores
over one week.
Hover over the blue dots to see the score trend.

Rows The total number of rows of a particular data set
scanned over one week.

Rows Trend A line graph representation of row count over one
week.
Hover over the blue dots to see the rows trend.

Pass/Fail Total number of DQ scans, whether they pass or
fail.

Passing Trend A histogram of DQ scans that passed (blue) or
failed (red) over one week.
Hover over the blue dots to see the passing trend.

Table/File Name The name of the table or file in use.

3. Toggle the icon at the top of the column to sort the data that displays in the

columns in ascending or descending order.

4. Filter the report results by entering information in the search bar. For example, if you
enter a number in the search field, any report result that includes that number
displays.

5. Click Copy, Excel, CSV, or Print at the top right of the columns to copy, export, and
print the report.

6. Navigate the pages of your report by clicking the Previous and Next pagination
buttons, located at the bottom of the columns.

Chapter 11

cdxxxi

Chapter 11

What is the Data Quality Checks Report?

The Data Quality Checks Report provides a number of automatic checks of your data sets
that are continually updated, based on observation and learning. This report includes the
type of check performed and the check value and break value per data set. The top portion
of this report rolls up the highest results of the checks.

Note As of the 2022.08 release, PDF is no longer a supported file format for
exporting and printing reports. These functions are now restricted to the CSV file
format only.

Note The Schema Evolution, located in the automatic checks summary at the top
of the report, is a schema finding that shows how the schema has evolved from the
last run.

Steps

To see the Data Quality Checks report, follow these steps.

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

cdxxxii

2. Select the DQ Check Summary tile.
The Data Quality Checks report displays.
This report includes a summary of the number of checks that Collibra DQ
automatically ran at the top of the report and the details, which are described in the
following table.

Column Description

Data Set The name of the data set.

Check Type The type of check that DQ ran.

Check Value The value associated with this check.

Break Value The number of points associated with a rule break, which
are then
subtracted from a data quality score.

3. Toggle the icon at the top of the column to sort the data that displays in the

columns in ascending or descending order.

4. Filter the report results by entering information in the search bar. For example, if you
enter a number in the search field, any report result that includes that number
displays.

5. Navigate the pages of your report by clicking the Previous and Next pagination
buttons, located at the bottom of the columns.

Profile Report

What is the Profile Report

The Profile Report allows you to search for a particular data set and generate, view, copy,
print, and export the report to an Excel or CSV file format.

Chapter 11

cdxxxiii

Chapter 11

Note As of the 2022.08 release, PDF is no longer a supported file format for
exporting and printing reports. These functions are now restricted to the CSV file
format only.

Steps

To generate a Profile Report, follow these steps.

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

2. Select the Profile Report tile.
3. In the search bar in the upper right corner, enter the name of your target data set.

A list of available data sets populates in the drop-down menu.
4. Select the data set for which you want to view and export results.

The Profile Report page displays for your data set.
The report includes the name, source, RunDate, and host of your data set, as well as
columns that highlight specific data about it.

5. Select the RunDate from the drop-down list to display the data in the table for that
particular RunDate.

6. Toggle the icon at the top of the column to sort the data that displays in the

columns in ascending or descending order.
7. Filter the report results by entering information in the search bar. For example, if you

enter a number in the search field, any report result that includes the number dis-
plays.

8. Click Copy, Excel, CSV, or Print at the top left of the columns to copy, print, or
export your reports.

9. Navigate the pages of your report by clicking the Previous and Next pagination but-
tons, located at the bottom of the columns.

The following screenshot is an example of a Profile Report.

cdxxxiv

Missing Jobs Report

What is a Missing Jobs Report?

The Missing Jobs report provides a view of Collibra DQ jobs that were expected but didn't
run on schedule.

Steps

To generate a Missing Jobs report, follow these steps.

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

2. From the Reports page, click the Missing Jobs Report tile.

3. For x-axis, select one of the following options from the drop-down list:
o count
o updt_ts

4. For y-axis, select one or more of the following options:

Chapter 11

cdxxxv

Chapter 11

o count
o updt_ts

5. For the type of chart you want to display, select one of the following options from the
drop-down:

o Line
o Area
o Column
o Scatter

6. Navigate the pages of your report by clicking the Previous and Next pagination
buttons, located bottom-right of the columns.

Sample SQL query

You can use the following sample SQL query for a Missing Jobs report.

SELECT jsa.updt_ts::date AS updt_ts,
 jsa.dataset,
 bus.name AS business_unit,
 js.freq,
 js.active,
 js.mon,
 js.tue,
 js.wed,
 js.thu,
 js.fri,
 js.sat,
 js.sun
 FROM job_schedule_attempt jsa
 JOIN job_schedule js ON js.dataset::text = jsa.dataset::text
 LEFT JOIN dataset_scan ds ON ds.dataset::text = jsa.data-
set::text AND ds.updt_ts::date = jsa.updt_ts::date
 LEFT JOIN business_unit_to_dataset bu ON jsa.dataset::text =
bu.dataset::text
 LEFT JOIN business_units bus ON bus.id = bu.id
 WHERE ds.updt_ts IS NULL AND jsa.updt_ts >= (now() - '20
days'::interval)
 ORDER BY (jsa.updt_ts::date) DESC

cdxxxvi

Hardware Usage Report

What is a Hardware Usage Report?

The Hardware Usage report provides a view of the Collibra DQ jobs that have consumed
the most hardware.

Steps

To generate a Hardware Usage report, follow these steps.

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

2. From the Reports page, click the Hardware Usage Report tile.

3. For x-axis, select one of the following options from the drop-down list:
o num_executors
o executor_memory
o total_memory
o total_cores
o executor_cores
o avg_row_count
o dataset

4. For y-axis, select one or more of the following options:

o num_executors
o executor_memory
o total_memory
o total_cores
o executor_cores
o avg_row_count
o dataset

5. For the type of chart you want to display, select one of the following options from the
drop-down:

Chapter 11

cdxxxvii

Chapter 11

o Line
o Area
o Column
o Scatter

6. Navigate the pages of your report by clicking the Previous and Next pagination
buttons, located bottom-right of the columns.

Sample SQL query

You can use the following sample SQL query for a Hardware Usage report.

with most_current_dataset_scan as (select dataset, avg(rc)::Int
as avg_row_count from dataset_scan group by dataset)

 select opt.dataset, num_executors, executor_cores,
executor_memory, (executor_cores * num_executors) total_cores,

(NULLIF(regexp_replace(executor_memory, '\D', '',
'g'), '')::numeric * num_executors) as total_memory,
 ds.avg_row_count
 from opt_spark opt, most_current_dataset_scan ds
 where opt.dataset = ds.dataset
 order by total_cores desc limit 75

Oversized Job Report

What is an Oversized Job Report?

The Oversized Job report provides a view of the Collibra DQ jobs that have more hardware
assigned than is available to run. For example, say you have a scenario where 20 jobs all
request 100 servers to kick off at the same time, but 2,000 servers are not available to run.
The Oversized Job report identifies those 20 jobs, which are oversized. Those jobs can
now be resized to the optimal amount of executors, cores, ram, etc.

Steps

To generate an Oversized Job report, follow these steps.

cdxxxviii

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

2. From the Reports page, click the Oversized Job Report tile.

3. For x-axis, select one of the following options from the drop-down list:
o dataset
o reason
o recommended_total_memory
o recommended_total_cores
o recommended_num_executors
o recommended_executor_memory
o num_executors
o executor_cores
o executor_memory
o total_cores
o total_memory
o avg_row_count
o column_count
o avg_total_time_in_minutes
o cell_count

4. For y-axis, select one or more of the following options:

o dataset
o reason
o recommended_total_memory
o recommended_total_cores
o recommended_num_executors
o recommended_executor_memory
o num_executors
o executor_cores
o executor_memory
o total_cores
o total_memory
o avg_row_count
o column_count

Chapter 11

cdxxxix

Chapter 11

o avg_total_time_in_minutes
o cell_count

5. For the type of chart you want to display, select one of the following options from the
drop-down:

o Line
o Area
o Column
o Scatter

6. Navigate the pages of your report by clicking the Previous and Next pagination
buttons, located bottom-right of the columns.

Sample SQL query

You can use the following sample SQL queries for an Oversized Job report.

cdxl

DROP VIEW IF EXISTS report_oversized_jobs;
CREATE OR REPLACE VIEW report_oversized_jobs AS
(
WITH most_current_dataset_scan AS (
 SELECT dataset_scan.dataset,
 avg(dataset_scan.rc)::integer AS avg_row_count
 FROM dataset_scan
 GROUP BY dataset_scan.dataset
),
 dataset_schema_col AS (
 SELECT dataset_schema.dataset,
 count(*) AS column_count
 FROM dataset_schema
 GROUP BY dataset_schema.dataset
),
 dataset_activity_time AS (
 SELECT dataset_activity.dataset,
 round(avg(dataset_activity.total_time_in_
minutes), 2) AS avg_total_time_in_minutes
 FROM dataset_activity
 GROUP BY dataset_activity.dataset
),
 highest_hardware_usage AS (
 SELECT opt.dataset,
 opt.num_executors,
 opt.executor_cores,
 opt.executor_memory,
 opt.executor_cores * opt.num_executors AS total_
cores,
 NULLIF(regexp_replace(opt.executor_memory::text,
'\D'::text, ''::text, 'g'::text), ''::text)::numeric * opt.num_
executors::numeric AS total_memory,
 ds.avg_row_count,
 sch.column_count,
 dat.avg_total_time_in_minutes,
 ds.avg_row_count * sch.column_count AS cell_
count
 FROM opt_spark opt,
 most_current_dataset_scan ds,
 dataset_schema_col sch,
 dataset_activity_time dat
 WHERE opt.dataset::text = ds.dataset::text AND sch.data-
set::text = ds.dataset::text AND dat.dataset::text = ds.data-
set::text AND opt.executor_memory IS NOT NULL AND opt.executor_
memory::text NOT LIKE ''::text
 ORDER BY (opt.executor_cores * opt.num_executors) DESC
)

Chapter 11

cdxli

Chapter 11

SELECT
 highest_hardware_usage.dataset AS dataset,
 CASE
 WHEN (highest_hardware_usage.cell_count::numeric /
highest_hardware_usage.total_memory) > 20000000::numeric THEN
'Too Much Memory'::text
 WHEN (highest_hardware_usage.cell_count / highest_hard-
ware_usage.total_cores) > 190000000 THEN 'Too Many Cores'::text
 ELSE 'Too Much Memory & Cores'::text
 END AS reason,
 GREATEST(highest_hardware_usage.cell_count / 20000000, 1::-
decimal) AS recommended_total_memory,
 GREATEST(highest_hardware_usage.cell_count / 119000000, 1::-
decimal) AS recommended_total_cores,
 GREATEST(highest_hardware_usage.cell_count / 119000000 / 2,
1::decimal) AS recommended_num_executors,
 GREATEST(highest_hardware_usage.cell_count / 20000000, 1::-
decimal) / GREATEST(highest_hardware_usage.cell_count /
119000000 / 2, 1::decimal) AS recommended_executor_memory,
 highest_hardware_usage.num_executors,
 highest_hardware_usage.executor_cores,
 highest_hardware_usage.executor_memory,
 highest_hardware_usage.total_cores,
 highest_hardware_usage.total_memory,
 highest_hardware_usage.avg_row_count,
 highest_hardware_usage.column_count,
 highest_hardware_usage.avg_total_time_in_minutes,
 highest_hardware_usage.cell_count
FROM highest_hardware_usage
WHERE (

(highest_hardware_usage.cell_count::numeric /
highest_hardware_usage.total_memory) < 20000000::numeric
 OR (highest_hardware_usage.cell_count / highest_hard-
ware_usage.total_cores) < 119000000)
 AND highest_hardware_usage.executor_cores > 1
 AND highest_hardware_usage.num_executors > 1
);

Observability Score Roll-Up Report

What is an Observability Score Roll-Up Report?

The Observability Score Roll-Up report provides aggregated scores of all adaptive rules
(includes all data sets and all columns), as well as averages passing and breaking for all

cdxlii

columns over 30 days. The scores are aggregated by check type and dimension.

Steps

To generate an Observability Score Roll-Up report, follow these steps.

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

2. From the Reports page, click the Observability Score Roll-Up Report tile.

3. For x-axis, select one of the following options from the drop-down list:
o check_type
o dimension
o avg_observability_score

4. For y-axis, select one or more of the following options:

o check_type
o dimension
o avg_observability_score

5. For the type of chart you want to display, select one of the following options from the
drop-down:

o Line
o Area
o Column
o Scatter

6. Navigate the pages of your report by clicking the Previous and Next pagination
buttons, located bottom-right of the columns.

Sample SQL query

You can use the following sample SQL query for an Observability Score Roll-Up report.

Chapter 11

cdxliii

Chapter 11

with a as (select dataset, col_nm from dataset_schema),
 b as (select distinct dataset, 'Row Count', 'ROW_COUNT',
'AVAILABILITY' from dataset_scan where updt_ts >= (NOW() -
INTERVAL '30 DAY') and updt_ts <= NOW()),
 c as (select * FROM

(VALUES
('NULL', 'COMPLETENESS'),
('EMPTY', 'COMPLETENESS'),
('TYPE', 'SCHEMA'),
('CARDINALITY', 'DISTRIBUTION'),
('MIN', 'CONFORMITY'),
('MAX', 'CONFORMITY'),
('MEAN', 'CONFORMITY')) as t (type, dimension)

),
 d as (select * from a,c),
 e as (select * from d UNION (select * from b)),
 f as (select dataset as be_dataset, be_score, field,
issue_type, run_id from behavior),
 g as (select * from owl_catalog),
 h as (select distinct dataset, run_id, rc from dataset_
scan where updt_ts >= (NOW() - INTERVAL '30 DAY') and updt_ts <
NOW()),
 i as (select e.dataset, col_nm, type, dimension, run_id,
rc from e, h where e.dataset = h.dataset),
 j as (select distinct dataset, col_nm, col_semantic
from dataset_schema),
 k as (select * from business_unit_to_dataset),
 l as (select * from business_units),
 m as (
 select i.col_nm, type,
 case when be_score is null then 100 else be_
score end as score, i.dimension,
 i.run_id, rc, be_score, issue_type, i.data-
set, g.source_name, g.source, g.table_nm, g.run_mode, g.data_
concept_id, j.col_semantic,
 l.name
 from i
 LEFT join f on f.be_dataset = i.dataset and
f.field = i.col_nm and f.issue_type = i.type and f.run_id =
i.run_id
 INNER JOIN g on i.dataset = g.dataset
 LEFT JOIN j on i.dataset = j.dataset and i.col_
nm = j.col_nm
 LEFT JOIN k on i.dataset = k.dataset
 LEFT JOIN l on l.id = k.id
)
 select avg(score) as avg_observability_score, type as check_
type, dimension from m group by type, dimension order by
dimension

cdxliv

Rules Passing Fraction Roll-Up Report

What is a Rules Passing Fraction Roll-Up Report?

The Rules Passing Fraction Roll-Up report provides the passing and total rows scanned
for user-defined rules over the past 30 days, which are aggregated by dimensions.

Steps

To generate a Rules Passing Fraction Roll-Up report, follow these steps.

1. Login to the Collibra DQ instance and click the Reports icon in the left navigation

pane.
The Reports page opens.

2. From the Reports page, click the Rules Passing Fraction Roll-Up Report tile.
3. For x-axis, select one of the following options from the drop-down list:

o avg_percent_rows_passing
o dimension

4. For y-axis, select one or more of the following options:

o dimension
o avg_observability_score

5. For the type of chart you want to display, select one of the following options from the
drop-down:

o Line
o Area
o Column
o Scatter

6. Navigate the pages of your report by clicking the Previous and Next pagination
buttons, located bottom-right of the columns.

Sample SQL query

You can use the following sample SQL query for a Rules Passing Fraction Roll-Up report.

Chapter 11

cdxlv

Chapter 11

with a as (select * from rule_output where updt_ts >= (NOW() -
INTERVAL '30 DAY') and updt_ts <= NOW()),
 b as (select * from dataset_scan where rc > 1),
 c as (select * from owl_rule),
 e as (select * from dq_dimension),
 g as (select * from owl_catalog),
 h as (select * from business_unit_to_dataset),
 i as (select * from business_units),
 j as (select distinct dataset, col_nm, col_semantic
from dataset_schema),
 f as (
 select
 a.dataset,
 a.rule_nm,
 CASE WHEN c.column_name = '' THEN 'global' WHEN
c.column_name is null THEN 'global'ELSE c.column_name END as
column_name,
 CASE WHEN e.dim_name is null THEN 'UNSPECIFIED'
else e.dim_name END as dim_name,
 c.dim_id,
 ROUND(a.perc) as perc,
 ROUND(a.perc * b.rc) as breaking_rows,

(100 - (ROUND(a.perc * b.rc) / b.rc)) as score,
 b.rc as row_count,
 a.run_id,
 g.alias,
 g.catalog_rank,
 g.db_nm,
 g.run_mode,
 g.source_name,
 g.table_nm,
 i.name,
 j.col_nm,
 j.col_semantic
 from a
 LEFT JOIN b on a.dataset = b.dataset and a.run_id = b.run_id
 INNER JOIN c on a.dataset = c.dataset and a.rule_nm =
c.rule_nm
 LEFT JOIN e on e.dim_id = c.dim_id
 INNER JOIN g on g.dataset = a.dataset
 LEFT JOIN h on h.dataset = g.dataset
 LEFT JOIN i on i.id = h.id
 LEFT JOIN j on a.dataset = j.dataset and c.column_name =
j.col_nm
)
select case when avg(score) < 0 then 0 else avg(score) end as
avg_percent_rows_passing, dim_name as dimension from f group by
dim_name

cdxlvi

Custom
Custom reports can be leveraged by connecting your favorite BI tool on the underlying
reporting mart. Below are a few queries that can be used as inspiration for building your
own reports. Please refer to the ERD diagram for a larger list of tables.

Long Running Jobs

select dataset,run_id,total_time from dataset_activity where total_

time is not null order by total_time desc

Jobs Submitted

select * from owlcheck_q

Jobs by User

select count(*) as owlchecks, username from owlcheck_q where updt_ts

< now() group by username order by owlchecks desc

Jobs by User, Dataset

select count(*), user_nm, dataset from dev.public.owl_check_history

group by user_nm, dataset order by count desc

Largest by Row Count

select dataset,rc as row_count from dataset_scan order by rc desc

Jobs by Month

with grp as (select date_trunc('MONTH', run_id) as by_month from

dataset_scan where run_id < now()) select count(*) as owlchecks,

by_month from grp group by by_month order by by_month desc

Rules by User

select count(*) as rules, user_nm from owl_rule group by user_nm

order by rules desc

By Spark(Cluster) Usage

select * from opt_spark order by num_executors desc

Chapter 11

cdxlvii

Chapter 11

Jobs IDs from Agent

select remote_job_id from agent_q where remote_job_id is not null

Dataset Activity

select dataset,run_id,total_time from dataset_activity where total_

time is not null order by total_time desc

Jobs with Enriched Metrics

with activity as (select dataset,run_id,total_time from dataset_

activity where total_time is not null order by total_time desc limit

100), scans as (select * from dataset_scan where dataset in (select

dataset from activity)), configs as (select * from opt_spark where

dataset in (select dataset from activity)), schema as (select count

(*) as col_cnt, dataset from dataset_schema where dataset in (select

dataset from activity) group by dataset) SELECT A.dataset, A.run_

id, C.total_time, A.rc, D.col_cnt, B.driver_memory, B.num_

executors,B.executor_cores, B.executor_memory, B.master FROM scans A

INNER JOIN configs B ON A.dataset = B.dataset INNER JOIN activity C

ON A.dataset = C.dataset and A.run_id = C.run_id INNER JOIN schema D

on A.dataset = D.dataset ORDER BY C.total_time desc

Jobs. Load Times and Resources

with activity as (select dataset,run_id,total_time from

public.dataset_activity where total_time is not null order by total_

time), scans as (select * from public.dataset_scan where dataset in

(select dataset from activity)), configs as (select * from

public.opt_spark where dataset in (select dataset from activity)),

schema as (select count(*) as col_cnt, dataset from public.dataset_

schema where dataset in (select dataset from activity) group by

dataset) SELECT A.dataset, A.run_id, A.updt_ts, C.total_time, A.rc,

D.col_cnt, B.driver_memory, B.num_executors,B.executor_cores,

B.executor_memory, B.master FROM scans A INNER JOIN configs B ON

A.dataset = B.dataset INNER JOIN activity C ON A.dataset = C.dataset

and A.run_id = C.run_id INNER JOIN schema D on A.dataset = D.dataset

ORDER BY A.updt_ts desc limit 10

cdxlviii

Dataset Scans and Scores By Schema

select * from public.dataset_scan where dataset like 'public.%';

Dataset Scans and Scores By Name

select * from public.dataset_scan where dataset ='public.atm_

customer';

Scans By Month By Schema - 'Public'

select dataset, DATE_TRUNC('MONTH', run_id) as run_id, count(*) as

Total_Scans from dataset_scan where dataset like 'public%' group by

dataset, run_id order by run_id asc

Rule Breaks Past 30 Days

select * from rule_output where run_id < NOW() - INTERVAL '30 DAY';

Scheduled Jobs Queue

select job_id,agent_id,dataset,run_id,status,activity,start_time

from public.owlcheck_q;

Column Counts from Dataset Schema

select dataset, count(*) from dataset_schema group by dataset;

Profiling Stats

select dataset, run_id, field_nm, (null_ratio * 100) as null_

percent, (empty_ratio * 100) as empty_percent, ROUND(CAST((100 -

((null_ratio * 100) + (empty_ratio * 100))) as numeric), 3) as

completeness from public.dataset_field where updt_ts > '2020-06-01'

and dataset = 'ProcessOrder' and run_id > '2021-03-17 00:00:00+00'

order by completeness desc

Metadata / Schema / Datatypes

select * from public.dataset_schema;

Profile Stats

select * from public.dataset_field;

Chapter 11

cdxlix

Chapter 11

Locate Similar Columns

select distinct dataset, field_nm, max_abs from dataset_field where

max_abs = 'Wireless Telecommunications'

Same Column Names

select distinct dataset, field_nm from dataset_field where field_nm

= 'authenticated_user'

Similar Column Names

select distinct dataset,field_nm from dataset_field where field_nm

like '%id%'

Behavior Findings

select * from behavior where dataset='esg_data'

All Columns for Schema from Postgres Stats

SELECT table_name FROM information_schema.tables WHERE table_schema

= 'public' ORDER BY table_name

cdl

cdli

Collibra DQWorkflows

Chapter 12

Chapter 12

Assignments Queue

The Assignments Queue is a summary of existing DQ Job runs that can be filtered by
behavior model assessment, user, and run status.

Collibra DQ provides observations that sometimes require review to validate. It often
makes sense to assign the validation to a user who has access to the source data.

Assignments are handled by Collibra DQ internally, or via an existing ServiceNow queue
when configured. Collibra DQ is the default configuration, but you can configure
ServiceNow from the Assignments Queue section of the Admin Console.

To assign an observation to a user, go to the findings page of a previously run DQ Job.
From the Action dropdown, select Validate or Resolve. Resolving a finding retrains your
Job's quality score if any points were deducted. Alternatively, if you validate a finding, you
can assign an item to a Collibra DQ user for further investigation.

cdlii

If you do not select an assignee, the item is marked as valid but unassigned:
Acknowledged.

Optionally, you can enter a description to provide details for the assignee.

External Queues are where the source of the assignment is tracked. Tracking options
include:

l Internally via the Internal Assignment page.
l Externally via External assignment.

Internal Assignment
Collibra has a built in Assignments Queue. You can assign any item to a user that has
previously logged into the application. Select OwlDQ from the assignment dropdown after
choosing the Validate option from the actions dropdown.

Chapter 12

cdliii

Chapter 12

External assignment
Collibra DQ has the ability to link to an Assignment Queue. You can assign any item to a
user that has previously logged into the application and has a matching Service Now
account. Choose the configured queue from the assignment drop-down list after selecting
the Validate option from the actions drop-down list as previously described.

Warning To configure a queue, you must have ROLE_ADMIN or ROLE_
CONNECTION_MANAGER.

Go to the Admin Console and click Assignment Queues.\

cdliv

Add or Edit a ServiceNow configuration from the corresponding page.\

Chapter 12

cdlv

Chapter 12

FAQ

Can anyone assign an item?

Anyone with access to the dataset and TRAIN role (if enabled) can assign an item. Users
who have been assigned an item can resolve without the TRAIN role.

How do I add people to the assignment list

Once a person logs into the Collibra DQ Application they will get a profile and become
eligible for assignment.

Labeling / Training

Item Labeling
Quickly click findings to trigger retraining.

Action labeling options
The following action labels instruct Collibra on how to handle a finding:

cdlvi

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

V-
a-
l-
i-
d-
a-
t-
e

I-
n-
s-
t-
r-
u-
c-
t-
s

C-
o-
l-
l-
i-
b-
r-

Chapter 12

cdlvii

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

a

t-
o

e-
i-
t-
h-
e-
r

a-
s-
s-
i-
g-
n

cdlviii

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

p-
e-
c-
i-
f-
i-
c

u-
s-
e-
r

f-
o-
r

r-
e-
v-

Chapter 12

cdlix

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

A-
s-
s-
i-
g-
n-
m-
e-
n-
t-
s

Q-
u-
e-
u-
e
,

o-
r

cdlx

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

a-
c-
k-
n-
o-
w-
l-
e-
d-
g-
e

w-
i-
t-
h-
o-
u-
t

a-
n

a-

Chapter 12

cdlxi

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

e-
e

t-
h-
a-
t

t-
h-
e

f-
i-
n-
d-
i-
n-
g

i-
s

a

cdlxii

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

N-
o-
t-
e-
:

V-
a-
l-
i-
d-
a-
t-
i-
n-
g

a

f-
i-
n-
d-
i-
n-

Chapter 12

cdlxiii

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

g

d-
o-
e-
s

n-
o-
t

i-
m-
p-
r-
o-
v-
e

y-
o-
u-
r

s-
c-
o-
r-

cdlxiv

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

Chapter 12

cdlxv

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

I-
n-
v-
a-
l-
i-
d-
a-
t-
e

I-
n-
s-
t-
r-
u-
c-
t-

cdlxvi

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

s

C-
o-
l-
l-
i-
b-

Chapter 12

cdlxvii

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

n-
o-
r-
e

a

f-
i-

cdlxviii

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

e

t-
o

p-
a-
s-
s-
.

Chapter 12

cdlxix

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

i-
n-
.

S-
a-
v-
e-
:

A-
l-
l-
o-

cdlxx

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

w-
s

y-
o-
u

t-
o

m-
a-
r-
k

Chapter 12

cdlxxi

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

d-
i-
n-
g

a-
s

i-
n-
v-
a-
l-
i-
d-
a-

cdlxxii

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

S-
a-
v-
e

&-
-
R-
e-
t-
r-
a-
i-
n-
:
-

Chapter 12

cdlxxiii

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

A-
l-
l-
o-
w-
s

y-
o-
u

t-
o

i-
n-
v-
a-

cdlxxiv

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

i-
d-
a-
t-
e

a

f-
i-
n-
d-
i-
n-
g

a-
n-
d

Chapter 12

cdlxxv

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

d

i-
n-
v-
a-
l-
i-
d-
a-
t-
e-
d

f-
i-
n-
d-
i-
n-
g-

cdlxxvi

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

N-
o-
t-
e-
:

W-
h-
e-
n

y-
o-
u

h-
a-
v-
e

Chapter 12

cdlxxvii

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

m-
a-
n-
y

f-
i-
n-
d-
i-
n-
g-
s

t-
o

i-
n-
v-
a-
l-
i-

cdlxxviii

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

b-
e-
s-
t

t-
o

u-
s-
e

t-
h-
e

S-
a-
v-
e

o-
p-
t-

Chapter 12

cdlxxix

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

d-
i-
n-
g-
s

a-
r-
e

r-
e-
v-
i-
e-
w-
e-
d-
.

cdlxxx

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

R-
e-
s-
o-
l-
v-
e

I-
n-
s-
t-
r-
u-
c-
t-
s

C-
o-
l-
l-
i-
b-
r-
a

t-
o

Chapter 12

cdlxxxi

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

m-
a-
r-
k

t-
h-
e

f-
i-
n-
d-
i-
n-
g

a-
s

a-

cdlxxxii

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

v-
e-
n-
t-
s

i-
t

f-
r-
o-
m

a-
p-
p-
e-
a-
r-
i-
n-
g

i-

Chapter 12

cdlxxxiii

Chapter 12

A-
c-
t-
i-
o-
n

D-
e-
s-
c-
r-
i-
p-
t-
i-
o-
n

a-
t-
a

q-
u-
a-
l-
i-
t-
y

s-
c-
o-
r-
e-
s-
.

Available actions by feature

Feature Available actions

Behaviors Validate, Resolve

Rules Validate, Resolve

cdlxxxiv

Feature Available actions

Outliers Validate, Invalidate, Resolve

Pattern Validate, Invalidate, Resolve

Source Validate, Invalidate, Resolve

Record Validate, Resolve

Dupes Validate, Invalidate, Resolve

Warning Some findings are ineligible for all labeling options. For example, you can
only apply Validate and Resolve labels to findings that result from Rules.

Validating a finding
When you apply a validate label to a finding, you can assign it to another DQ user to
review. This marks the finding for future runs and sends it to the internal Assignments
Queue. You can also configure DQ to send assignments to an external queue, such as
External assignment.

Invalidating a finding
Sometimes the findings page flags issues with your data that DQ discovers during a job
run, but maybe you want DQ to ignore certain flagged issues. The invalidate label allows
you to do that. After you add a descriptive annotation of your action, you can then select
either Save or Save & Retrain.

Save

If you have a large number of findings that DQ has flagged, and you want to invalidate all
of them at once instead of clicking through one at a time, select Save for all of the findings
you would like to bulk invalidate. On your last finding, select Save & Retrain. All previously
saved invalidated findings are removed and DQ retrains your data set.

Chapter 12

cdlxxxv

Chapter 12

Save & Retrain

When you Save & Retrain your data set, any previously deducted points from a flagged
finding are restored and reflected in your overall data quality score. If you do not have
many findings to invalidate, you can Save & Retrain individually instead of in bulk.

Resolving a finding
Some features, such as Behavior and Rules, only permit Validate and Resolve actions.
When you cannot Validate a finding but you want to apply a label, select Resolve. The
Resolve label prevents a finding from appearing in future runs of your data set, and does
not immediately affect your data quality score when applied.

Recalling labeled findings
To modify a previously labeled finding, you can always access them through the Labels
tab. Here you can edit an annotation or delete a label entirely. If you delete a label, it
returns to the findings page, unlabeled. From there you can again choose to Validate,
Invalidate, or Resolve it.

To closely analyze when a finding has received a label, who has applied it, and more, see
also the Dataset Audit Trail.

cdlxxxvi

Peak vs Off Peak

But my Weekend runs are not the Same

A common scenario that can fool behavioral analytics and machine learning is when you
have a few different but normal patterns. Collibra has a rich labeling system that allows a
user to fork the training model to learn these cycles individually without confusing the
model.

Click the Green Button

By clicking the green button, you can label the day of the week as peak vs off peak. You
can also chose your time zone - this will help determine the day of the week accurately.
You only need to click the peak scheduler once and the model will learn and forecast this
understanding for every run in the future. This feature commonly prompts for a re-train.

Chapter 12

cdlxxxvii

Chapter 12

Time Zones

Updating time zones
By default, Collibra Data Quality's time zone associated with the RunID is located in
Coordinated Universal Time (UTC). To update the server time zone, select the Update
Time Zone link from the findings page. An Update Time Zone dialog displays with the
option to select your time zone from the dropdown menu. Click the Update Time Zone
button to confirm your selection.

cdlxxxviii

Note Since the server time zone can differ from the configurable RunID time zone
on the findings page, data sets in List View may have different dates than the date
listed on the findings page of the same data set. For example, a data set with a
RunID in the default UTC time zone may appear as 2022-01-15 00:00:00 on the
findings page, but because the server is located in US/Central time, the date
appears as 2022-01-14 19:00:00.

Chapter 12

cdlxxxix

cdxc

Collibra DQ DIC Integration

Chapter 13

Chapter 13

DQ Connector

Current Status: [Tech Preview]

Benefits
The Native DQ Connector brings intelligence from Collibra Data Quality into Collibra
Data Intelligence Cloud. Once this integration is established, you will be able to bring in
your Data Quality user-defined rules, metrics, and dimensions into Collibra Data Catalog.

Please note: Only data sources ingested by both Collibra Data Catalog and Collibra Data
Quality will be able to synchronize Data Quality assets.

Step 0: Prerequisites

Resource Notes

Collibra Edge Site DQ Connector is a capability of Edge

Collibra Data Intelligence Cloud 2021.07 Release (or newer)

Collibra Data Quality 2.15 (or newer)

Database(s) and Driver(s) Proper Access and Credentials (Username / Password)

Note Let's proceed after gathering all prerequisites!

cdxci

Step 1: Create and Configure Edge and DQ Connector

1A. Create Edge site and Add Name e.g. 'Collibra-DQ-Edge' and
Description (One-Time)

Note For more detailed information on Edge installation and configuration, see
Installing an Edge site.

Chapter 13

cdxcii

https://productresources.collibra.com/docs/collibra/latest/Content/Edge/EdgeSitesInstallation/to_installing-an-edge-site.htm

Chapter 13

1B. Establish Edge’s Connection To Each Data Source (One-Time For
Each Source)

Additional Steps in Collibra DG include:

l Provide Connection Name, which exactly matches Connection / System Name in
Collibra DQ

l Select Connection type e.g. Username / Password JDBC driver
l Input Username and Password to connect to your data source
l Input fully qualified driver class name
l Upload Driver jar (to reduce potential conflicts, use same driver jar from Collibra DQ)
l Input Connection String Input credentials e.g. username / password or Kerberos con-
fig file

l Reminder: All of the above information should be the same as in Collibra DQ

Additional Steps in Collibra DQ include:

l Verify Connection ‘Name’ in DGCmatches Connection ‘Name’ in Collibra DQ
l Verify ‘Connection string’ in DGCmatches ‘Connection URL’ in Collibra DQ
l Verify ‘Driver class name’ in DGCmatches ‘Driver Name’ in Collibra DQ
l Verify ‘Driver jar’ in DGCmatches Driver used in ‘Driver Location’ in Collibra DQ
(may require SSH)

o Verifying the driver jar is only possible on standalone installs. This is not pos-
sible with container builds (k8s deployments), unless you kubectl into the pod
and lookup the directory and jar directly.

cdxciii

Warning Important: Connection / System name (in this example, ‘postgres-gcp’)
must exactly match the Connection / System Name in Collibra DQ

1C. Establish Catalog JDBC Ingestion Capability On Edge (One-Time For Each Data
Source)

Chapter 13

cdxciv

Chapter 13

1D: Configure Destinations For DQ Assets (Rules, Metrics, Dimensions) Within DQ
Connector (One-Time)

Option A: Create New Destinations

l Create New Rulebook Domain (suggested domain type) for DQ Rules and DQMet-
rics

o Global Create -> Search for and select 'Rulebook' under 'Governance Asset
Domain' -> Select desired 'Community' e.g. 'Data Governance Council' -> Input
name of Rulebook domain e.g. 'CDQ Rules', 'CDQ Metrics'

Note Record your domain resource ID e.g. 2xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
(can be found in your URL) for Step 1G.

l Create New Business Asset Domain (suggested domain type) for DQ Dimensions
o Global Create -> Search for and select 'Business Asset Domain' -> Select
desired 'Community' e.g. 'Data Governance Council' -> Input name of domain
e.g. 'CDQ Dimensions'

o Record your domain resource ID e.g. 2xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
(can be found in your URL)

Option B: Use Existing Domains from existing Rulebook and Asset domains

Note Record your domain resource ID e.g. 2xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
(can be found in your URL) for Step 1G.

cdxcv

Note You have now established destinations for where Collibra should ingest your
User-Defined Rules, Metrics, and Dimensions.

1E. Assign Permissions for New Domains of DQ Assets (Rules, Metrics, Dimensions)
(One-Time)

Please assign your Edge user as a Technical Steward in each of the domains specified in
1D, such that Edge can create and update assets into each respective domain. Ensure
that your Edge user also has admin permissions assigned in order to create and update
assets in the Catalog.

Chapter 13

cdxcvi

Chapter 13

Note This step provides Edge with the proper permissions to create and update
assets into the domains from the previous step.

1F. Allow DQ Assets To Attach To Tables and Column Assets (One-Time)

Now we need to add a few relations and update global assignment characteristics:

l Table: Settings -> Operating Model -> Relations -> Search in any column for 'Table' -
> Global Assignment -> Characteristics -> Edit (larger of the two buttons) on right ->
Add characteristic -> Search for and select 'governed by Governance Asset' -> Save

l Column: Settings -> Operating Model -> Relations -> Search in any column for
'Column' -> Global Assignment -> Characteristics -> Edit (larger of the two buttons)
on right -> Add characteristic -> Search for and select 'is governed by Data Quality
Rule' -> Save

cdxcvii

1G. Establish DQ Connector (One-Time)

DQ Connector is an Edge capability that will facilitate communication with your Collibra
DQ instance

l Settings -> Edge -> Capabilities -> Add Capability -> Select 'DQ Connector' -> Input
your Collibra DQ URL e.g. 'customerdq.collibra.com:port' input username and pass-
word

l Under the JWT Issuer, please ensure that you have the correct schema name for the
database you are connecting to (either 'public' if single tenant, or the name of ten-
ant).

Note Remember from previous step 1D, you will need to provide your resource /
UUIDs for your specified domains for DQ Rules, Metrics, and Dimensions.

Specify DQ Asset Destinations Within DQ Connector

Chapter 13

cdxcviii

Chapter 13

Note You've now completed the initial one-time configuration.

Step 2: Register Edge Connections to Collibra Catalog
2A. Create System Asset Within Collibra Catalog To Connect To Edge

cdxcix

Warning Important: Connection / System name (in this example, ‘postgres-
gcp’) must exactly match the Connection / System Name in Collibra DQ.

2B. Register Edge Data Source to Collibra Catalog

Chapter 13

d

Chapter 13

Step 3: Start Ingesting Collibra Data Quality Into Catalog

Note Prerequisite: Catalog will have ingested schemas on Edge.

Note Prerequisite: Ensure targeted schemas have User-defined Rules,
Metrics, and/or Dimensions within Collibra DQ that have been Executed

3A. Synchronize Data Quality for Selected Schemas

di

3B. Verify Data Quality Results in Collibra Catalog

Note The example output was successful.

Appendix: Synchronization For Single Table in Data Quality and Data Catalog

Chapter 13

dii

Chapter 13

FAQ
Q: Known Limitations

l Only 1 source tenant from Collibra DQ can be specified
l On-demand ingestion (vs. scheduled)
l Can only specify 1 domain destination for each of Rules, Metrics, and Dimensions
l Only JDBC sources supported (no file sources)

Q: DQ Dashboard In DGC: I can verify the DQ Connector is synchronizing Data Quality
Rules and Data Quality Metrics, but why don't Data Quality Dashboard Charts display?

diii

A: Ensure correct Aggregation Paths and Global Assignments (or create, if none exist)
for Table and Column below.

Chapter 13

div

Chapter 13

Q: DQ Dashboard In DGC: Why won't my DQ Dimension charts display in my
Dashboard?

A: Please 1) add a new custom Relation 'Data Quality Metric classified by Data Quality
Dimension', 2) Global Assignment for 'Data Quality Metric', 3) UUID of the new Relation
into the DQ Connector setup in Step 1G, 4).

dv

Q: I've connected and configured data sources correctly, why aren't DQ Rules and DQ
Metrics being synchronized?

A: Please ensure Connection / System Names between Collibra Data Quality, Collibra,
and Edge exactly match.

A: Please ensure Edge user has admin permissions to write the assets into Catalog.

A: Please ensure correct URL specified within the DQ Connector capability e.g.
http://cdq.customer.com:9000/.

Q: Is DQ Connector unidirectional?

A: Yes, from Collibra DQ to Collibra Catalog in Data Intelligence Cloud.

Q: How many DQ Connectors can I run simultaneously?

Chapter 13

dvi

http://cdq.customer.com:9000/

Chapter 13

A: Currently, one.

Q: Does the DQ Connector work with On-Prem Collibra DGC?

A: No, any work with on-prem Collibra DGC would be custom API development via
Collibra Professional Services or a partner SI.

Q: If I delete a rule from Collibra DQ that I have already synchronized into Collibra
Catalog, will it be deleted from Catalog in the next synchronization?

A: No, the DQ Connector only upserts into Catalog. If a rule is deleted from Collibra DQ, it
will not be automatically deleted in Catalog.

Q: Why are my scores different in Collibra DQ and Collibra Catalog?

A: Currently, the DQ DQ Connector pulls in the most recent user-defined rules from
Collibra DQ. Other components that affect score such as Behaviors, Outliers, Patterns,
Dupes, Source are not yet included.

Q: Getting errors when trying to delete both domain that Edge created for DB and the
Connection?

A: Please delete Edge created domain via API.

Q: I've hit the synchronize button, how can I tell if my job is complete?

A: Check the Activities circle (button on top right of menu) for the status of your DQ
Synchronization.

DQWorkflows

Benefits
The DQWorkflows package listed on Collibra Marketplace allows you to 1) create and
manage Data Quality Issues, 2) receive Notifications on Rule Metrics, and 3) request Rule
Creation and Modification within Collibra Data Intelligence Cloud. Data stewards will be
able to organize and prioritize all requests within DIC before they take any action within
Collibra Data Quality.

dvii

Once deployed, the workflows will facilitate quicker data issue remediation by involving
business analysts and other personas who can now participate in your data quality
workstreams.

Please note: DQWorkflows are listed on Collibra Marketplace and are templates to get
customers started. Collibra-provided Marketplace listings are not subject to the same SLA
obligations (https://marketplace.collibra.com/marketplace-terms/) In addition, they can
only be leveraged within Collibra Data Intelligence Cloud. In the future, we will work
towards releasing bi-directional workflows.

Step 0: Prerequisites

Resource Notes

Collibra Edge Site DQ Connector is a capability of Edge

Collibra Data Intelligence Cloud 2021.07 Release (or newer)

Collibra Data Quality 2.15 (or newer)

Collibra DQ Connector Synchronized Rules from Data Quality to Catalog

Note After gathering all the prerequisites, you can now proceed to the next step.

Step 1: Download, Deploy and Start DQWorkflows
1A. Download Package from Collibra Marketplace and Unzip Files

**1B. Deploy Workflows **

Chapter 13

dviii

https://marketplace.collibra.com/marketplace-terms/

Chapter 13

1C. Adjust Workflow Settings (One-Time Setup)

Workflow
Con-
figuration Set-
ting

DQ Rule
/ DQ
Sync
Request

DQ Rule
Modification

DQ Data
Remediation

DQ Issue
Resolution

Manage DQ
Sub-
scriptions

Notify of
DQ Met-
rics

Applies To Asset Asset Asset Asset Global Global

Applies To
Asset Type

Column,
Table

Column,
Table, Data
Quality Rule

Column,
Table

Issue

Other: Any
Signed In
User Can
Start Work-
flow

Y Y Y Y

Other: Per-
form Can-
didate User
Check on
Workflow
Start

Y Y Y Y Y

dix

Workflow
Con-
figuration Set-
ting

DQ Rule
/ DQ
Sync
Request

DQ Rule
Modification

DQ Data
Remediation

DQ Issue
Resolution

Manage DQ
Sub-
scriptions

Notify of
DQ Met-
rics

Other: This
Workflow Can
Only Run
Once At
Same Time
on Specific
Resource

Y Y

Other: Show
In Global
Create

Y Y

Roles: Start
Workflow

Sysadmin Sysadmin

Roles: Stop
Workflow

Sysadmin Sysadmin

Roles: Reas-
sign Tasks

Sysadmin Sysadmin

Chapter 13

dx

Chapter 13

Step 2: Create Data Quality Requests / Issues

2A. Create Data Quality Issues

Workflow Main
Requestor
Persona

Description Steward
Taking
Action

DQ Data
Remediation

Data Steward

Business
Analyst

Tracking / management for confirmed data issues
which may require underlying data remediation

Data Lake
Admin,
ETL Engin-
eer

DQ Rule
Request

Business
Analyst

Proposing data quality rules in plain language e.g.
"flag any German phone numbers in this dataset" or
"identify customers with churn risk based on engage-
ment time with our platform"

Data Ste-
ward

DQ Rule Modi-
fication

Business
Analyst

Proposing adjustments to existing rules e.g. values,
dimensions, passing thresholds

Data Ste-
ward

DQ Sync
Request

Business
Analyst

Request for synchronization of the DQ Connector to
synchronize and/or onboarding a new dataset with
pre-populated rules

Data Ste-
ward

dxi

Chapter 13

dxii

Chapter 13

Step 3: Manage Data Quality Issues

3A. Setup Data Helpdesk Filter

Data Helpdesk

l Select Issues
l Navigate to 'Filters'
l Properties > Attributes > Relations > Issue **categorized by **Issue Category > Input
'Data Quality Issue' > Apply

l Save button > Save View as > 'Data Quality Issues'
l Optional settings for View: Can pin, promote, make public, make default

dxiii

3B. Manage Issues From Data Helpdesk View

3C. Alternate: Manage Issues From Tasks

Step 4: Receive Notifications Of DQ Issues And Metrics

4A. Set Up DQMetric Subscription

Who? Anyone can set up a DQ subscription, for yourself or for your teammates.

Chapter 13

dxiv

Chapter 13

Alerts will be sent based on reviewing rules and metrics associated with Tables or
Columns that violate the specified Threshold.

Assuming an e-mail is associated with the Subscriber within Collibra, the Subscriber will
receive e-mail notifications by default at 12pm local server time. This, along with other

dxv

settings within the provided workflow, can be adjusted in Eclipse, Collibra's
recommended workflow editor.

4B. Review DQMetric Alerts

Ensure that the DQ alerts set for you are providing helpful details.

4C. Update Subscription Settings

For every subscription set up for a Subscriber, the Manage DQ Subscriptions modal will
cycle through for your review. You can update Threshold, add or delete Notification Days,
add or delete Tables or Columns, rename the Subscription title, Save the new settings,
or simply Unsubscribe.

Chapter 13

dxvi

Chapter 13

dxvii

dxviii

Collibra DQ Catalog

Chapter 14

Chapter 14

Overview

Smart Catalog - Bringing Data Science to Cataloging

While Collibra DQ does not pride itself on being a catalog tool it does automatically
maintain a dataset and process catalog. It is a necessary control for DQ and helpful to the
end user. Without a smart catalog a user could technically overwrite another user's
OwlCheck (DQ check). For example -ds "Trade" and -ds "Trade". DQ believes a healthier
habit is to store the full natural name of the dataset and allow the user to alias the name in
the event that they wish to make a short-name. By doing this DQ protects users from
mixing up their results and stops the constant renaming of common objects which leads to
more unnecessary business level mapping. This approach makes it effortless for a user to
create a new OwlCheck in the wizard because DQ will warn the user if there is a naming
collision. DQ learns all the server hosts, the database schemas and table names and
keeps things automatically organized. One less catalog to setup, manage and eventually
untangle.

Automatic Sensitive Data (PII) Detection

DQ automatically understands the semantic schema of your data such as CREDIT CARD,
EMAIL, SSN and much more. Additionally, DQ will label sensitive data with PII and MNPI
classifications.

dxix

Data Table View of PII

DQ applies many labels to the header of a field / column. These labels be seen in the data
preview table with highlighted errors and findings.

Chapter 14

dxx

Chapter 14

The catalog offers a global view and filtering to see where PII exists

Business Units

Collibra DQ allows its users to run large sets of DQ jobs. Business units provide a way to
categorize and group these.

Through the admin console the user can navigate to the business units management
page. This page will contain a table of your business units and a button to create new
units.

dxxi

By clicking the Add Business Unit button the user will be able to fill out the business unit
form. A unique name is required and a parent business unit can be optionally selected.
Each unit can have one parent and many children. On the business units table you can
click the blue plus icon to expand all children for that unit. If any children have children unit
they will also have a plus sign to indicate the children rows can be expanded.

Chapter 14

dxxii

Chapter 14

Each business unit has actions. The business unit can be edited or deleted. If the unit is
assigned to at least one data set, it cannot be deleted. If the user wishes to create children
of a unit they can choose the Add Child action to have the new business unit form pre-
populated with the selected unit as the parent.

There are two different ways to assign a business unit to a data set. On the Catalog page
there is an action option to manage the business unit. One the profile page the user can
click the add/edit business units icon to open a control to manage the assigned business
unit.

dxxiii

Chapter 14

dxxiv

Chapter 14

Once a business unit has been assigned to a data set the user can filter by that business
unit on the Catalog and Pulse View.

dxxv

Catalog Bulk Actions

Bulk Delete

The catalog allows user to delete multiple datasets in one action through the catalog. Click
the Bulk Actions button dropdown in the top right corner. Select Bulk Delete.

Chapter 14

dxxvi

Chapter 14

Each data set row will now have a checkbox in the Actions column. All filters can be
applied now and the user can check all data sets they wish to delete. Once desired data
sets are selected, the checkbox can be clicked. The user will be prompted to confirm they
wish to delete data sets. The user can also click the X button to cancel.

dxxvii

Bulk Manage Business Units

Another bulk feature allows the user to manage the assigned business unit to multiple
datasets. Click the Bulk Actions button dropdown in the top right corner. Select Bulk
Manage Business Units.

Chapter 14

dxxviii

Chapter 14

Each data set row will now have a checkbox in the Actions column. All filters can be
applied now and the user can check all data sets they wish to delete. Once desired
datasets are selected, the user can select a business unit from the business unit dropdown
control in the top right corner and click the checkbox. The user will be prompted to confirm
they wish to change the assigned business unit to the data sets.

dxxix

Chapter 14

dxxx

dxxxi

Collibra DQ Solutions

Chapter 15

Chapter 15

Use Cases

Data Projects
Here are the articles in this section:

l Builds a Better DQ Dashboard

l Ensures CCPA & GDPR

l Makes your Data Lake better

l Speeds Migrations/Enables Replications

Builds a Better DQ Dashboard

l DQ Dashboards. Many DQ problems result from an improper or a too slow obser-
vation of business rules related to the data. What is not caught by handmade visual
inspection or a potentially outdated man-made rule can only be flagged by AI
Machine Learning. Conversely, what does get flagged should also be easily triaged
and then immediately fixed with the aid of AI. The most important metric for a DQ
Dashboard is the time to fix, not simply the overall DQ score.

Ensures CCPA & GDPR

Aggregation from hundreds of locations: The dashboard for what is within spec based on
AI observation – not handmade rules.

Then push-down fix: The rules are created and then immediately applied via self-service.
The problem is immediately identified and a fix (recommendation engine) is applied.

The value of this for both companies: The DQ problem never corrupts the whole. The
longer the bad quality exists the bigger problem it can create.

dxxxii

Makes your Data Lake better.

Data Lakes support analytics, which will ultimately drive actions that increase revenue,
support compliance, prevent churn, etc. However, whether that action is near to real-time
or not, none of those can be performed without first performing a DQ check. For example,
can you trigger an action before first checking the “GDPR Remove” list? A Data Quality
check must always be the first step in any action. OwlDQ with Schema Learned can
perform 100+ owl checks. However beyond simply those checks, it is OwlDQ's unique
Spark-based architecture listed below that enables innovation. Churn, credit check, AML,
infosec checks developed in the Data Lake could be added as part of Owlcheck on the
streaming data.

l Data and Privacy in Place. Data never has to move for a DQ OwlCheck. The
latency saved from operating in place, the added hybrid flexibility, the privacy main-
tained serves many new use cases that were not possible before. It also removes
any unnecessary consolidation for the sake of simply consolidation. DQ doesn't have
to start by first moving it into a Data Lake.

l DQ or Any Rules applied in the Stream. The DQ rules learned by DQ can be
applied back to the source on data in the stream. However, other non-DQ rules
learned in the Data Lake can also be added to the OwlDQ check.

l Self-Service and DQ push-down fix. DQ can enable a self-service push-down fix
(recommendation engine) to anything flagged at the source. The best time to fix DQ
is when and where the problem started. This enables tighter integration with Data
Governance tools since DQ is maintained at the source once, not downstream where
corruption beyond just the data can occur.

l Multi-cloud/On-prem/Hybrid. OwlDQ can scan/alert/report at the source or can oper-
ate natively on the target Data Lake such as Databricks Delta in Azure or Snowflake
on AWS, or Qubole on GCP. Why compromise DQ just because your data is not in
one place? Why settle on a DQ strategy that only works if the data is first migrated or
moved?

l DQ Dashboards. Many DQ problems result from an improper or a too slow obser-
vation of business rules related to the data. What is not caught by handmade visual
inspection or a potentially outdated man-made rule can only be flagged by AI
Machine Learning. Conversely, what does get flagged should also be easily triaged
and then immediately fixed with the aid of AI. The most important metric for a DQ
Dashboard is the time to fix, not simply the overall DQ score.

Chapter 15

dxxxiii

Chapter 15

Speeds Migrations/Enables Replications

l Speed Migrations/Enable Replications. Batch collection with subsequent excel
compare is very problematic. Instead, rules are generated by the data itself, and
anomalies are triggered on the fly at the source system. This type of schema learned
approach will speed migration and enable replications with much less overhead.

Assists Data Aggregation

l Greatly Reduce Support Costs. Apply AI-generated rules to maintain consistency
across all accounts, rather than apply hand-made rules per every account. You are
not managing 100+ variations of rules, but a consistent set that is learned from all.

l Capitalize on Real-time. Batch collection with excel compare will never support
real-time. Instead, rules are generated by the data itself, and anomalies are triggered
on the fly at the source system.

l Rapid Onboarding. Universal and already tested scans are applied quickly.
l Improve Customer Satisfaction. Monitor the real-time speed of the DQ pushdown
fix, not just the overall DQ score over time.

l Improved SLAs. When DQ is fixed immediately, all SLAs can be improved not just
DQ SLAs.

Creating a Data Quality Pipeline

Organizations that leverage data as an asset to make decisions into their future must
entrust the data, from which important business decisions are derived. While almost all
businesses leverage their own collected or generated data (or plan to) for internal use,
how many actually scrutinize their data? Companies that sell a product must ensure that it
is run through some sort of quality assurance suite of tests/runs before it is available to a
customer. So organizations that use data internally as their own asset/product should have
the same or more confidence in the quality of their data. Owl-Analytics is a data quality
product that observes the data to surface behaviors, patterns, outliers, schema changes,
record changes, and more.

dxxxiv

Data Scientists are trying to find insights in data to solve complex problems for their
business. However, 80 percent of their time is spent discovering the data to cleanse it to
make it ready for the model. Over time, models deteriorate as data underneath changes or
new trends/ patterns arise. Leveraging Owl-Analytics to validate the quality of the data
during the data pipeline and before the data is presented to the Data Scientist reduces
time to value for business insights as Data Scientists get time back, not cleaning / prepping
the data, and helping the model maintain a longer life.

Azure Databricks allows the ability for Scala code to be written in a Jupyter Notebook
against an Azure backed Databricks cluster to scale the work out to more nodes. This is to
support the model and the amount of data being crunched by a business’s Data Scientists.
The simplistic nature of Azure and Databricks and the unification of Spark and Jupyter
Notebooks, on top of a robust infrastructure (from storage to compute), allow for Owl-
Analytics Data Qualified pipelines to be built and executed seamlessly. This reduces the
time it usually takes to obtain valuable insights.

Here is how you can build such great DQ pipelines.

Step 1: Build a Databricks Cluster in Azure.
Within the Azure portal find Azure Databricks Service and create a cluster, after the cluster
is built you should be able to launch the Workspace as shown below.

Chapter 15

dxxxv

Chapter 15

Step 2: Create a Cluster, add the Owl jar and
create a Notebook.
1.) Inside the Azure Databricks UI, create a cluster, provide a cluster name (in this
example we will be using DBOWL2 as the cluster name) and select the Databricks
Runtime Version that DQ currently supports (as of this blog post), which is Runtime: 5.2
(Scala 2.11, Spark 2.4.0).

2.) After the cluster is created, make sure to import DQ's jar file onto the cluster so that the
Notebook can access the methods exposed in the jar file.

3.) Now that the Jar file has been added, create the Notebook and attach it to the cluster.

dxxxvi

Now the cluster is running with the DQ jar loaded on the cluster. Open the Jupyter
notebook attached to the cluster and begin looking at a data set as a Data Engineer would,
prepping the data for use by a Data Scientist by leveraging a DQ Pipeline as shown in the
below screen shot.

Chapter 15

dxxxvii

Chapter 15

This Scala code imports the DQ jar and loops through the dates residing in files on Azure
blob storage, pulls them into a Spark Data Frame (DF), and executes a DQ job to scan for
the quality issues on the Spark DF. Once the scan is completed, the results are stored into
the metadata repository under DQ’s web application and visible through your browser, as
shown in Figure 4 below.

dxxxviii

The reason for a score of 49 on the raw data (as shown below in Figure 5) is due to the file
having string values sprinkled in the file when something is Not Applicable (N.A.). When
reading data in a column of a file that has a mix of numeric and string values the column
will automatically conform to a string regardless if the majority class are integers. Also,
within the files there is a single record in this file that has meta data information about the
file “META_ZZ” this is also adding empty strings for all other columns. This record will also
cause all columns to conform to strings.

You should now have an understanding of the raw file and how you need to conform it
before analysts can start to glean business value from the contents itself. First, ETL or

Chapter 15

dxxxix

Chapter 15

cleanse the data that you discovered as being in error by filtering out the erroneous record
and flipping all the N.A. values to null as the next step in our ETL and DQ pipeline.

dxl

The DQ block of code is essentially the same, however, there is a new DQ property added
to auto filter values “props.nullValue = ‘N.A’”. This finds every cell that has the value of
N.A. and conforms it to a “null”. Once the file is read into a Spark DF, you use Spark to
“Filter” out the erroneous record on line 36 in the code snippet above. Notice we are also
adding an Owl_Run_ID date as this data set did not have a date that conforms easily. After
the ETL process cleanses the data, you then have DQ’s Data Quality engine scan the
newly processed Spark DF, storing the results into a data set called CleanCSVFiles (as
shown in Figure 7 below).

Notice the composite scores in the boxes are substantially better for the CleanCSVFiles
data set than what they are for the original RawCSVFiles. In the next article, we will look
deeper at the intelligence a DQ scan garners on a data set when run over several days
and how DQ surfaces different patterns, behaviors, trends and more in the data itself.

Our Approach

Because: Using raw data to drive key decisions,
leads to incorrect answers and end-user distrust.
Collibra Data Quality is singularly focused on providing your end-users with the highest
standards of data quality. We are purpose-built to solve the problem of data quality and to
ensure end-user trust.

Whether you use a BI tool to visualize data or you are responsible for serving data to
downstream subscribers, you always want to trust that your data is accurate. Showing
inaccurate data in a bar chart or PDF report leads to a lack of confidence in the data
provider. For example, see the data pipeline below. There are four main stages: Data

Chapter 15

dxli

Chapter 15

Loading, Data Preparation, Data Verification (DQ), and Data Reporting, which covers a
broad category of all ways to see and deliver data.

To avoid getting lost in the latest marketing jargon, a fundamental description is provided
under each of the four stages. There are many ways to ingest and transform data; the
descriptions are not meant to be exhaustive. Imagine a scenario where data is loaded in
either a batch or stream, then joined to another dataset with some column transformations,
and finally made viewable in a BI tool for consumption. But what about quality? What
checks and verifications are in place to guarantee data accuracy and completeness? After
all, showing someone a housing report with incorrect estimated housing values or a stock
report with the wrong stock prices won’t go over well. Figure 2 below shows popular
company logos overlaid in each stage to bring more context to the discussion. There are
easily 30+ software companies in each of the four stages, DQ chose three popular
companies in each sector at random. DQ is not ranking companies. Gartner is of course an
obvious choice if you are looking for companies rankings per sector.

dxlii

So, What’s the Problem?

Detecting data issues is nuanced, manual and time consuming. The traditional solution is
to write bespoke code or use a rules engine to validate specific columns in a data set. If
missing data is a concern, a common remedy is to write a nullcheck. Another common
example is a row count check; a piece of logic that checks if the number of rows in a data
set is greater than a specified number. Of course, DQ and business rules can get much
more complicated. Scale becomes a huge issue, because it is nearly impossible to write all
the rules that a business truly needs to be confident in their data. Often times, the math is f
(x) = columns * dbTables. 100 columns on average and 500 tables in a single warehouse
equals 50,000 rules if you only wrote 1 rule per column. The reality is you need many rules
per column, and your business has more than 500 tables and files. But there are even
bigger problems with this strategy. Rules are a reactive approach to solving the problem;
they are manually written and don’t adapt (they are static). With a rules-only approach, you
can measure your franchise risk by the number of rules you can write. This requires
coders, domain experts and a tool to write and then manage the rules.

Chapter 15

dxliii

Chapter 15

How Can Predictive DQ Help?
DQ intentionally solves the problem using a machine learning first, rules second based
approach. DQ automatically puts all columns under quality control. This includes
nullchecks, emptychecks, statistical profiles, and sketches. DQ creates snapshots and
baselines to benchmark past data and discover drift. DQ automatically creates an ML
labeling system for users to collaborate and down-train items with a click of a button. The
reason for this approach is to maximize coverage while reducing the dependency of
manual rule building. The greater technical benefit is that all of DQ's generated checks and
rules are adaptive. DQ is constantly learning from new data and will make predictions in
many cases for typos, formatting issues, outliers and relationships. This is a paradigm shift
from, risk being a measure of how many rules one can dream up and write, to simply click
the DQ [RUN] button.

dxliv

Why a Unified DQ Solution?

Aren't their other DQ companies and solutions on the market? Yes, absolutely. The
challenge lies in the vast number of ways IT groups consume and process data. You need
to find a product that can plug into Files the same way it plugs into DB Tables, Cloud File
Systems, Data Frames and Kafka Topics, etc. You need a product that offers a consistent
feature set and covers all nine dimensions of DQ. For most companies, DQ is an after
thought, they will add-on a single dimension of DQ, such as rules or data drift.DQ offers a
full data quality suite to cover the unique challenges of each data set. Complete coverage
and consistency drives trust. A single scoring and reporting framework with nine pluggable
features that can be activated in a tailorable DQ pipeline. DQ is horizontally scaleable, it
can scan data from any location with infinity scale. Data quality needs to be abstracted
from data ingestion for management to have a single normalized view of data health.

Chapter 15

dxlv

Chapter 15

Do One Thing Extremely Well

DQ believes that data quality is such an important part of the data lifecycle that it requires a
company that is solely committed to revolutionizing the way enterprises manage data
quality. This is why DQ has a prescriptive approach to data quality (ML first, Rules
second). The DQ software is purpose built for predicting and detecting data quality issues.
Much like how Jira is used as the standard for software project management, even though
it is absolutely possible to manage project line items in an excel sheet. Businesses that
manage a lot of data require Score Cards, Alerts, Reports, List Views, Collaboration, Down
Training, Cataloging, Scheduling and much more.

Get Started

Email us: info@collibra.com

dxlvi

Does your DQ Solution Have?

Unified DQ The ability to score and manage and report on all datasets (files, tables, topics)
agnostically. Providing a single pane of glass for DQ across all data sources.

Collaboration The ability for end-users to down-train, annotate and audit each DQ item

Auto Discovery The ability to figure out issues in your data without requiring domain experts
and rule writers

Anomaly Detec-
tion

The ability to detect numeric and categorical outliers in a dataset

Correlation Ana-
lysis

The ability to measure the lift or relationship between numeric columns

Chapter 15

dxlvii

Chapter 15

Relationship
Analysis

The ability to discover and make predictions on hidden relationships in your
data

Alerting The ability to send out alerts when DQ scores drop

Scheduling The ability to schedule DQ jobs with a click of a button in the UI

Profiling The ability to provide descriptive statistics about the current run overlaid with
the past runs for trend analysis

Reconciliation The ability to validate the source and target dataset in timeline snapshots

Duplicate Detec-
tion

The ability to find exact and similar matches in data records

Lineage Graphs The ability to asses business impact via a business impact score by under-
standing how connected each dataset is

Schema Evolu-
tion

The ability to detect changes in data types, additions and removals

Rules The ability to write custom rules for simple and complex scenarios

Our Story

Background
The Collibra DQ team comes from a variety of backgrounds. While some spent a decade
building technology to detect financial crimes, others were architecting data fabrics at
fortune 100 companies.

Regardless of the industry or experience, we all faced similar challenges as it
related to data quality.

These unique vantage points have allowed us to understand the most common data
quality challenges organizations are facing.

dxlviii

What Did We Notice?
We tried many of the traditional tools and techniques. The biggest problem was always the
amount of time it took to do everything needed to implement and maintain data quality
controls.

You get left with half-baked data quality coverage and the right controls are added only
after issues occur.

It turned out teams were doing the same tasks for every data set and for each department,
building the exact same tools over and over again.

Note The result was a never-ending cycle of data issues, fire drills, and a mad
scramble to fix it fast. All within the context of real-time business operations.

Traditional Approach
Traditional approaches are very manual.

Start by opening a sample or spreadsheet and conduct analysis (table-by-table, column-
by-column, query-by-query, and item-by-item).

Next, manually craft the rules, conditions, tolerances, and thresholds.

Then stitch together the dashboards, scoring, workflows, alerts, and reporting. And you
wonder why bare-minimum coverage is common.

Note You're only as good as the rules you thought to write.

Fast Forward
Now that the surface area of the data in an organization is so much larger, these traditional
techniques don't hold up.

Chapter 15

dxlix

Chapter 15

What Did We Need?
What we needed didn't exist. As lifelong data enthusiasts, we wanted a tool that could alert
us when data changes occurred without complicated setup and lengthy analysis. We
sought something that could work on big, medium, and small data and across all storage
formats. Upon evaluating all the commercially available tools, and assessing costs and
time of homegrown solutions, there were no great options.

dl

DQ is the difference

Lake vs Swamp
The difference between a business-critical lake and a swamp is data _quality_. One
organization’s data lake may be another's data swamp. The difference lies in how data is
curated. A data lake describes a vast amount of data that can be stored, assessed, and
analyzed. A data swamp has little data governance, DQ automation, or contextual
metadata.

The accuracy and cleanliness of data is directly proportional to the quality of insights end-
users will derive. Data lakes that gain broad adoption have strong governance programs.
The challenge is, adding a DQ program typically takes 6-12 months but the project never
really ends due to the volume, variety and velocity of incoming data. OwlDQ uses autoML
so solve this problem. OwlDQ constantly monitors the lake with native integration and
unlimited scale. Use OwlDQ to generate the equivalent of 10K rules, while continuously
adapting to the natural variance in your data. When erroneous data enters your lake
OwlDQ will alert the data steward and provide a rich visual displaying the break records
and explainable AI describing the issue. OwlDQ's approach is to learn from data and
become incrementally smarter each day to ensure a statistically defensible DQ program.

Chapter 15

dli

Chapter 15

What is CDQ
CDQ is an intelligent data validation tool.

8 Ways to Add Value Using CDQ
1. Crowdsourcing

“People that have never written SQL are now helping with data quality”

2. Rule Coverage

“Did in 20 days what took 2 years with our legacy tool”

3. Audit & Identify Gaps

“Audited our existing checks and could not imagine the gaps we uncovered.”

4. Automate Repeatable Processes

“DQ cut 60% of our manual workloads”

5. Technology Limitations

“We now scan files and Kafka, avoiding downstream issues”

6. Getting standard

“No more piecemeal reports. Files, Warehouse, Lake. All metrics in one, transparent
place.”

7. Building Reports, Visuals, Workflows

“This takes the place of 3 tools”

8. Prioritized Efforts

“Easy to see top priorities for improvement”

dlii

What Savings Does CDQ Provide?

Save Hours of Effort with Auto-generated Data
Validation Checks

l Top 10 Bank
Reduced 60% of their manual Data quality workload + $1.7M cost savings

l Top 3 Healthcare Organization
Saved 2,000 hours during a cloud migration requirement

l Top Insurance Organization
Satisfied Regulatory Second Line Controls in a 4 weeks (what originally took 2 years
using their previous tool)

While Reducing System-Wide Pain Points
l Overwhelmed with tickets
l Business users find issues first
l Touchy pipelines break with minor updates
l Too busy responding to fire drills to implement new projects {% endhint %}

How Can CDQ Help?

Click a button and smile - knowing baseline validation
checks are applied - instead of spending hours manually
digging through data & stitching together scripts

l Implementing Checks
o Autodiscovery
o Generates SQL validations, parameters & thresholds
o Rule suggestions

Chapter 15

dliii

Chapter 15

l Taking Inventory
o Bulk Profiling & Metadata Collection
o Data Mapping with Column Identification
o Map Column Fingerprints, Cross-Table Matches & PII Checks

l Consolidating Systems
o No more closed-systems or confusing scripts
o Macro & micro views for measuring effectiveness over time
o Global management Across Sources / Platforms / Environments

l Enabling More Users
o Self-Service, Easy to use Rule Editor
o Pre-Built Analytics and Charts
o Extensible APIs, Open Architecture

Boost productivity. 80% faster than manual coding.
Minimize development costs. Get faster, easier access to
data quality metrics. Show line of business users how to
self-service.

What makes CDQ unique?

CDQ is The Only Tool Business & Technical
Users Will Love
Every feature, visual, and component within Collibra DQ is intended to make the analysis
and implementation of data checks easier.

dliv

Why?

Because Humans Can’t Predict Every Which
Way Data Can GoWrong.
{% tabs %} {% tab title="Billing Issue Example" %}

{% endtab %}

{% tab title="Financial Data Example" %}

{% endtab %}

{% tab title="API Example" %}

{% endtab %}

{% tab title="IoT / Meter Example" %}

{% endtab %} {% endtabs %}

Chapter 15

dlv

Chapter 15

Prescriptive Personas

Collibra DQ has four prescriptive personas to manage user permissions: Analyst, IT
Admin, Observer, and Steward. Click the user icon located on the bottom left of the blue
DQ Menu bar and select User Profile. The persona type can be assigned under the
access tab in Profile Management.

Bank Loans
It is common for banks to lend money in return for monthly payments with interest.
However, to do so a bank must make sure that the applications are valid and well formed
to begin the underwriting and approval process. The following list comprises some basic
lending concepts to Collibra DQ.

dlvi

1. Credit Score Validation
2. SSN Validation
3. Loan to Value Validation
4. Interest Rate Validation
5. Duplicate Loan Applications
6. Loan Amount Validation
7. Loan Completeness Validation

1. Credit Score

Business Check OwlDQ
Feature

Manual
vs Auto

Is the credit score a whole number? BEHAVIOR AUTO

Chapter 15

dlvii

Chapter 15

Business Check OwlDQ
Feature

Manual
vs Auto

Is the credit score within a valid range?

(between 300 - 850)

RULE credit_
score
between
300 and
850

Is the credit score NULL or Missing? BEHAVIOR AUTO

2. SSN Validation

Business Check Collibra DQ Feature Text

Is the SSN format valid? RULE AUTO-SSN detection

SSN is PII. SENSITIVITY AUTO-SSN labeled

Is the SSN NULL or Missing? BEHAVIOR AUTO

Does the SSN belong to the Applicant? PATTERN SSN -> first_name, last_name

3. Loan to Value

Business Check Collibra DQ
Feature

Text

Are loan amount and asset value (home or auto) valid
numbers?

BEHAVIOR AUTO

95% loan to value ratio to approve? RULE loan / asset_value <
.95

dlviii

4. Interest Rate

Business Check OwlDQ
Feature

Text

Interest rate between min and max allowable range for
the loans credit rating.

RULE
COMPLEX

loan l join rates r on l.credit_rating
= r.credit_rating

where l.rate between r.min_rate
and r.max_rate

5. Duplicate Loan Applications

Business Check OwlDQ
Feature

Manual
vs Auto

Ensure we don't issue the same loan twice. DUPE first_n,
last_n,
SSN,
Address

6. Loan Amount

Business Check OwlDQ
Feature

Manual vs Auto

Loan amount within lendable
range

OUTLIER AUTO

Loan amount within lendable range.

Only lend money between 50K and
3M.

RULE loan_amount between 50000 and
3000000

Chapter 15

dlix

Chapter 15

Resulting OwlCheck

-lib "/home/opt/owl/drivers/postgres" \
-cxn postgres-gcp \
-q "select * from public.loan_risk_grade where last_pymnt_d =
'2019-04-01'" \
-key member_id -alias loan_risk \
-ds public.loan \
-rd "2019-04-01" \
-dl -loglevel INFO \
-h 10.142.0.29:5432/owltrunk \
-numexecutors 10 -executormemory 1g -drivermemory 4g \
-master yarn -deploymode cluster \
-sparkprinc user2@CW.COM \
-sparkkeytab /tmp/user2.keytab -tbin MONTH \
-dupe -dupeinc purpose -fpgon -fpgkey grade \
-fpginc grade,sub_grade -fpglb 365 -fpgdc last_pymnt_d \
-record member_id -dupecutoff 60 -dupepermatchupperlimit 99

Which components did we use?

Wemade use of Profiles, Duplicates, Outliers and Rules in this example. The experiments
were automatically cataloged and put on a job scheduler. The next time a loan issue
arises, we will be able to take remediation action using the workflow Q. Over time we can
see how the bank loan program is running via the report section.

dlx

Files that can be used to replicate this example

interest_rates.csv

Binary

Owl Dataset (2).csv

Binary

Bloomberg Data
Collibra DQ finds over 50 data quality issues per day in common market data through
pattern mining. Sequential pattern mining is a tool that finds statistically relevant patterns
between data examples where the values are delivered in a sequence.

Chapter 15

dlxi

spaces_gQGIrDKkfoH92VHWy7ch_uploads_KlUvKgeZnZI4GzsTBCcx_interest_rates.csv
spaces_gQGIrDKkfoH92VHWy7ch_uploads_KlUvKgeZnZI4GzsTBCcx_interest_rates.csv
spaces_gQGIrDKkfoH92VHWy7ch_uploads_7lCGncMNXpGlnwgpgzee_Owl Dataset (2).csv
spaces_gQGIrDKkfoH92VHWy7ch_uploads_7lCGncMNXpGlnwgpgzee_Owl Dataset (2).csv

Chapter 15

Cyber Anomalies in Real-Time
With an increasing number of cyber threats, most of the cyber security team doesn’t have
the capacity to manually detect, monitor, and defend against all of them. Effective cyber
threat management requires leveraging automation to inform decisions.

The Collibra DQ framework, provides organizations the ability to load and process diverse
security data feeds at scale to detect network data anomalies. The DQ alerts enable
network admins to respond to these events in timely manner.

The following scenario demonstrates how to detect anomalies with network traffic data
sets.

1. Perform IP address validation.
2. Detect the unusual network traffic patterns based on locations.
3. Identify the suspicious packets based on size.
4. Detect the malicious activity based on source and destination IP addresses.

dlxii

Infosec data set preview

Data set contains Timestamp, Source Workgroup, Source IP, Source Port, Destination
Workgroup, Destination IP, Destination Port, Application, Protocol and Packet size
information.

Chapter 15

dlxiii

Chapter 15

IP Address format validation

Business Check Collibra DQ Feature Text

Is IP a valid format? RULE AUTO-IP detection

Is the IP address NULL or Missing? BEHAVIOR AUTO

Source and destination workgroups

Business Check OwlDQ
Feature

Text

Is it usual network traffic based on loc-
ations?

PATTERN Source_Workgroup -> Destination_
Workgroup

dlxiv

Source and Destination IP Address validation

Business Check Collibra DQ
Feature

Text

Is it usual network traffic based on
source and destination IP?

PATTERN Source_IP ->
Destination_IP

Packet Size

Business Check Collibra DQ Feature Text

Is the Packet Size NULL or Missing? BEHAVIOR AUTO

Packet Size within normal range? PATTERN Source_IP -> Packet_SizeB

Resulting OwlCheck

-f file:///home/danielrice/owl/bin/demos/infosec/ -d tab \
-fullfile -fq "select * from dataset" -encoding UTF-8 -ds
infosecv2 \
-rd "2020-04-04" -dl -dlinc Destination_IP,Packet_SizeB,Source_
IP \
-dlkey Source_IP -fpgon -fpginc Destination_Workgroup -fpgkey
Source_Workgroup \
-df "yyyy-MM-dd" -loglevel INFO -h 10.142.0.29:5432/owltrunk -
owluser admin \
-fpgsupport .000000001 -fpgconfidence 0.4

Which components did we use?

DQ addresses the issue of efficient network traffic classification by performing
unsupervised anomaly detection and uses this information to create dynamic rules that
classify huge amounts of Infosec data in real time.

Chapter 15

dlxv

Chapter 15

By providing Infosec data sets, along with anomaly records DQ outlier and pattern
algorithms found the anomaly in the network traffic. It mainly detects the following
anomalies:

1. Traffic between Atlanta->Texas.
2. The packet size extremely low between Atlanta->Texas.
3. Atlanta source IP and Texas Destination IP.

Realtime DQ provides the alerts on network traffic anomalies, which can help network
admins to do further deep analysis and takes preventative measure, which is a daunting
task with huge amount of data.

Sample Data set

infosec-anomaly.csv

Binary

Financial FxRate Data

Collibra DQ Automatically Alerts to Incorrect Foreign Exchange (FX) Rate
Data without a Single Rule

FX Rate data commonly looks like the below table. Often you have a TO currency and a
FROM currency with the RATE being the multiplier column for conversion. For example, in
March you would need to spend $1 US Dollar and 18 US cents to receive $1 Euro. "In
exchange for":

TO_CURR FROM_CURR RATE DATE

USD EUR 0.82 2019-03-12

EUR USD 1.18 2019-03-12

USD YEN 111.0 2019-03-12

dlxvi

spaces_gQGIrDKkfoH92VHWy7ch_uploads_DBVoYuOde0aRUomk72Yt_infosec-anomaly.csv

28,000 Currency Pairs

There are roughly 28,000 currency pairs and the exchange rates change throughout the
day but at a minimummost banks are concerned with the daily close of the FX Rate. Now
imagine trying to write a rule for each currency pair. You'd have to know the relationship
and adjust a static threshold for each of the 28K pairs every couple of days to keep the rule
intact. Our minds quickly jump to a conclusion that we might be able to solve this with
simple math. We can get closer using averages or percent change formulas but these
formulas quickly come up short when some currencies commonly fluctuate more than
others. Our minds then quickly graduate from stats 101 to 201 and we could consider the
individual variance of every combination. But even this only gets us so far as time is an
important dimension, the length of time or window can often be tricky to calculate. The
problem gets harder when you run your basic stat model and receive multiple false
positive alerts. Signal-to-noise ratio is important, confidence factors are important and
down-training individual foreign currencies that don't seem to fit your statical model are
important. Knowing if you copied the data incorrectly, truncated nine levels of precision on
the decimal, or if the source provider sent the wrong information is important. Needing the
ability to flag exceptions in production on a single currency pair while not flagging the other
27,445 pairs. Using a feedback loop so that the data steward interactions are captured and
learned from vs having to take the same corrective action over and over. What happens
when there is a typo in the currency pair or a single pair goes missing? The answer is that
rules don't scale and we need much more than just one off statistical metrics to have a
robust and trust worthy data quality program.

Consistency

Even when it is possible to deploy a team of smart people to build a solution to handle this
use case, the question then becomes "but what about all my other data, don't I want similar
yet different controls on everything?" Especially since FX Rate data by itself doesn't mean
that much and is often combined with a number of other data sets to produce value. What
if those data sets aren't accurate either? But those data sets have very different columns,
different relationships and different time windows. DQ takes an auto-learning approach
whereby it interrogates and runs fitness tests against each data set individually to devise
the best statistical and learning approach. The goal being to provide an automated and
elegant way to have consistent controls across all your data sets.

Chapter 15

dlxvii

Chapter 15

Auto Adapting OwlCheck for FxRate Data

-ds fx_rate \
-rd $rd \
-dl \
-dlkey TO_CURR,FROM_CURR \
-q "select * from FX_RATE where date = '${rd}'" \
-cxn dbConnName \
-dupe -dupeinc TO_CURR,FROM_CURR -depth 0

What this OwlCheck Does
l Automatic correlation and relationship analysis
l Histograming and segmentation analysis
l Anomaly detection
l Currency pair tracking
l Schema evolution
l Removes 28K static rules
l Duplicate detection for redundant currency pairs

Healthcare Data Quality
Collibra DQ connects all members of the healthcare continuum with trustworthy, timely,
and meaningful patient data, while reducing the time, expense, and effort required by 70
percent.

Poor data quality in healthcare is the leading problem that maligns patient outcomes.
Hospitals and health information exchanges (HIEs) still struggle with patient matching
issues, with most citing data quality problems and poor algorithms as top barriers to
patient matching. Correctly linking patient data across organizations is a key element of
value-based care, patient safety, and care coordination. Duplicate or mismatched records
can result in privacy risks, claim denials, redundant medical tests or procedures, and
reporting errors.

The lack of accurate and reliable data quality in healthcare leads to dire consequences
that are completely preventable, as shown in DQ's troponin example below. Complete and
accurate data is a vital component of our complex health system, and anything less is an

dlxviii

unacceptable risk. DQ provides the predictable data quality that healthcare organizations
need to deliver high-quality care that we all strive to achieve.

Health Insurance Claims Data
Poor data quality is the primary cause for diagnostic providers receiving incomplete health
care payments during Revenue Cycle Management (RCM).

Revenue Cycle Management is the process of identifying, collecting and managing the
practice’s revenue from payers based on the services provided. A complete RCM process
is critical for a healthcare practice to maintain financial viability and continue to provide
quality care for their patients.

Inaccurate claims data, is the primary cause for diagnostic providers receiving incorrect
payments for their services. Most providers struggle with the quality of the data that they
receive, and without direct access to the patients, it can be an expensive, laborious
process to correct incomplete, or missing data that is required for claim reimbursement.

Cleaning up or correcting incomplete data is not a step in the claims process that can be
skipped. It must be done to assure the reimbursement process is accurate, and complete
in the agreed time frame. Automating the data quality during intake is the key to the timely

Chapter 15

dlxix

Chapter 15

completion of the reimbursement process, and saving the cost and effort of correcting the
data down stream.

Increase revenue from insurance and patient payments
Spend less time tracking down missing patient information
Lower error processing rates
Reduce operating costs
Improve claim processing speed

The revenue cycle includes all the administrative and clinical functions that contribute to
the capture, management and collection of patient service revenue, according to the
Healthcare Financial Management Association.

dlxx

Preregistration - Collecting preregistration information
Verification - Patient eligibility and benefit is verified
Transcription - recording the diagnoses and procedure
Medical Coding - Properly coding diagnoses and procedures.
Charge capture - Medical services into billable charges.
Claim submission - Submitting claims to insurance companies.
Claim Rejection - when necessary
Payment Posting - Determining patient balances, collection
Secondary Claim Submission
Denial Management - Applying or rejecting payments remittance
Medical Appeals - Examining the necessity of medical services.
Refund - where aplicable

Intraday Positions
It is common for financial organizations to receive a steady stream of files that have hourly
or minutely data. The files might trail the market in a near real-time fashion. Below is an
example:

--positions/
 |--2019/
 |--01/
 |--22/
 position_2019_01_22_09.csv
 position_2019_01_22_10.csv
 position_2019_01_22_11.csv
 position_2019_01_22_12.csv

File Contents @ 9am

TIME COMPANY TICK SIDE QTY

2019-01-22 09:00 T&G xyz LONG 300

2019-01-22 09:00 Fisher abc SHORT 20

2019-01-22 09:00 TradeServ def LONG 120

Chapter 15

dlxxi

Chapter 15

File Contents @ 10am

TIME COMPANY TICK SIDE QTY

2019-01-22 10:00 T&G xyz LONG 280

2019-01-22 10:00 BlackTR ghi SHORT 45

Notice that during the day you may or may not have a position for every company
recorded. We need a way to link the "company" to its position throughout the day but not
alert in cases where they simply did not trade or adjust their position. Collibra DQ offers
real-time outlier detection for this scenario (see code snippet below). We also need to
ensure that each company's position is only represented once per file (per hour in this
case) because positions are already the aggregate view of the trades, so they should be
unique. DQ offers duplicate detection (see code snippet below).

dlxxii

Collibra DQ Pipeline

Chapter 15

dlxxiii

Chapter 15

// Part of your pipeline includes the ingestion of files that
have the date
// and hour encoded in the file name. How do you process those
files using Owl?
//
// Format: <name>_<year>_<month>_<day>.csv

val filePath = // <set this> positions/2019/01/22/positions_
2019-01-22_09.csv

// Configure Owl.
val opt = new OwlOptions
opt.dataset = "positions"
opt.load.delimiter = ","
opt.load.fileQuery = "select * from dataset"
opt.load.filePath = file.getPath

opt.outlier.on = true
opt.outlier.key = Array("COMPANY")
opt.outlier.timeBin = TimeBin.HOUR

opt.dupe.on = true
opt.dupe.include = Array("COMPANY", "TICK")
opt.dupe.exactMatch = true

// Parse the filename to construct the run date (-rd) that will
be passed
// to Owl.
val name = file.getName.split('.').head
val parts = name.split("_")
val date = parts.slice(2, 5).mkString("-")
val hour = parts.takeRight(1).head

// Must be in format 'yyyy-MM-dd' or 'yyyy-MM-dd HH:mm'.
val rd = s"${date} ${hour}"

// Tell Owl to process data
opt.runId = rd

// Create a DataFrame from the file.
val df = OwlUtils.load(opt.load.filePath, opt.load.delimiter,
spark)

// Instantiate an OwlContext with the dataframe and our custom
configuration.
val owl = OwlUtils.OwlContext(df, spark, opt)

// Make sure Owl has catalogued the dataset.

dlxxiv

owl.register(opt)

// Let Owl do the rest!
owl.owlCheck

DQ Web

DQ Coverage for Position data

l Schema evolution
l Profiling
l Correlation analysis
l Segmentation
l Outlier detection
l Duplicate detection
l Pattern mining

Chapter 15

dlxxv

Chapter 15

Security Reference Data
Pattern recognition for cross column, categorical, and conditional relationships.

Given the interconnected, automated nature of the data generated by reporting,
exchanges, and source systems - hidden patterns go unnoticed.

Financial firms of all shapes and sizes ingest financial data for a variety of reasons. A few
vendors include Bloomberg, Thomson Reuters, ICE Data Services or SIX Financial
Information.

Note In no uncertain terms, critical business decisions rely on the accuracy of
this data.

dlxxvi

This data is not monolithic and most real-world data easily consists of over 100 columns.
Maintaining the quality can be challenging, given the variety of sources feeding into just a
single feed. Even the most simple quality checks can snowball into a daunting task.
Everything from tickers, sedols, cusips, products, sub-products, issuers, and issuing
countries can further complicate the problem. Identifying anomaly values earlier in the
data ingestion process can significantly reduce downstream complexity. Furthermore,
finding improbable patterns before they're used for making decisions can save costly
remediation efforts.

Chapter 15

dlxxvii

Chapter 15

An easy way to think about Pattern Analysis. Columns that belong 'together'.

A common application of Collibra DQ is to identify securities that are violating historical
patterns. Conditional dependencies can be discovered and used as a guide to highlight
misreporting. Rather than defining look-up tables, reference data sets, and predefining
exact conditions - security specific patterns can be derived using probabilistic inferences.

By clicking columns that belong together, a robust framework for cross-column pattern
analysis can be generated. The equivalent of dozens of multi-column, conditional rule
checks can be applied with just a few clicks. In creating a confidence and probability
weighted classification algorithm, this is both adaptive and granular.

Using this technique, DQ reduces false positives, scales coverage, and quickly models a
more complex series of checks than domain experts would want to develop.

dlxxviii

Smart Meter Data
Colliba DQ uncovered $10 million dollars in unbilled revenue for a leading U.S. energy
company.

DQ's Smart Meter Data Analytics provides accurate and predictable data quality to
companies often inundated with massive amounts of data and aging enterprise systems.

The U.S. smart meter data management market forecast is projected to reach $556.94
million by 2026. In 2018, U.S. electric utilities had about 86.8 million advanced (smart)
metering installations. DQ provides an automated process to manage the mountain of data
collected and glean critical business insights. By applying our ML algorithms during the
normal data ingestion cycles, DQ uncovered $10 million dollars in unbilled revenue for a
leading U.S. energy company.

In the example below, DQ detected 200 records missing from the previous run.

Consider the following opportunities that smart meter data analytics provide:

l Generate new customer insights
l Manage and prevent outages
l Improve maintenance techniques
l Build predictive models for program planning
l Develop new services and rate plans based on customer requirements

Identification of unbilled revenue: Meter events and usage information helps illustrate a
picture of the customer’s energy usage over time. This helps detect energy theft, meter
tampering, and equipment issues that may be affecting service levels.

Chapter 15

dlxxix

Chapter 15

Outage event analysis and prevention: Today, some utilities are still unable to verify an
outage unless personnel physically visit the suspected problem area to confirm. With
outage event analysis, however, the utility knows the exact piece of equipment causing the
problem, along with the customers directly impacted by it.

Meter quality assurance: Focusing on meter reading performance enables utilities to
ensure reliability. When meter readings are expected but not delivered, the system
provides an alert, and calculates overall data score from previous runs . Utilities are
notified to potential data quality issues they never would have identified in the past.

It is meter data analytics that will enable utilities to tackle the problems of the future.

Validating Data Movement
Validate Data Integrity between distinct storage systems.

Record-for-Record Reconciliation

When you’re copying or moving data between distinct storage systems, such as multiple
HDFS clusters or between non-HDFS storage and cloud storage, it’s a good idea to
perform some type of validation to guarantee data integrity. This validation is essential to
be sure data wasn’t altered during transfer.

Detect potential data corruption caused, for example, by older versions of drivers, parsing
errors, connection limits, noisy network links, memory errors on server computers and
routers along the path, or software bugs (such as in a library that customers use).

Common Data Copying/Movement Scenarios

l Landing, Loading, Persisting third-party files
o Landing daily files.
o Loading daily files into staging location.
o Finally, persisting data in lake or warehouse.

l Cloud Migrations
o Between existing database storage to optimized cloud storage formats.
o Between local file systems and cloud relational database.

dlxxx

l Data Lake or Data Warehouse
o Migrating data from single storage system to distributed storage.
o Consolidating storage systems to a single lake or warehouse.

l Same Storage, Different Environments
o Copying same data between Dev, QA, and Prod environments.

Warning How do you easily validate that the same data exists in distinct locations?

Shortcomings of Existing Validation Checks

l Low-level integrity checks like row counts and column counts may not be sufficient.
l No easy way to reconcile between across non-HDFS files and database.
l Chunk verification requires storage size, format, and metadata to be exactly equal.
l Different data types in two distinct databases (Oracle and Teradata) will not recon-
cile.

l Two different copies of the same files in HDFS, but with different per-file block sizes
configured.

l Two different instances of HDFS with different block or chunk sizes configured.
l Copying across non-HDFS Hadoop-compatible file systems
l https://wiki.apache.org/hadoop/HCFS
l (HCFS) such as Cloud Storage.

Explicit end-to-end data integrity validation adds protection for cases that may go
undetected by typical in-transit mechanisms.

Enter, Collibra DQ Integrity Validation!

To ensure and protect against target systems getting out of sync or not matching the
originating source, turn on -vs to validate that the source matches the target. Read More

https://docs.owl-analytics.com/dq-visuals/validate-source
docs.owl-analytics.com

Complete row, column, conformity, and value checks between any two distinct storage
systems can be run against high-dimension or low-dimension datasets. Works between
Files and/or Database storage, On-premise, or across Cloud environments.

Chapter 15

dlxxxi

https://wiki.apache.org/hadoop/HCFS
https://wiki.apache.org/hadoop/HCFS
https://docs.owl-analytics.com/dq-visuals/validate-source
https://docs.owl-analytics.com/dq-visuals/validate-source

Chapter 15

Get Started Today

We don’t want you to get stuck writing a lot of reconciliation checks we’ve already written.
Focus on other things that actually move your project forward.

For more information, please contact info@owl-analytics.com or schedule a demo at
www.owldq.com ****

Best Practices

Multi Tenant Names

Note Tenant names should be lower case only.

dlxxxii

http://www.owldq.com/

Understanding Collibra DQ activities and what the key/date
columns mean for each

l Starting with profile and expanding to rules and then other advanced capabilities.
o https://dq-docs.collibra.com/dq-visuals/profile

l Training with DQ-team Zoom/Onsite support.
l Running with sample data.
l Introducing anomalies on sample data and running an owlcheck to see the anom-
alies.

Using the tool with practical scenarios

l Having Well Defined Use Cases
o Determine a single table (dataset) that you would like to scan.
o Have an expectation of what you would expect DQ to find in this dataset.
o Understand which activities would capture the expected findings.

l Target internal datasets with known data issues.
l Historical Comparisons:

o If pre-cleaned data is available with data findings that have been cleaned via
legacy methods such as internal rules, run these datasets and compare the res-
ults from DQ to Internal findings.

l Work with data owners to understand findings or review expected findings.

Explorer

l The date selected with the calendar widget in the Scope (home) tab should align with
the calendar widget assigned on the final (Save/Run) tab.

l If you elect to Unlock the cmd line and override the final parameters, do not re-lock or
the changes will be overwritten. In general, only advanced users should override the
guided settings.

l Pushdown and parallel JDBC cannot be used together. If you are using pushdown,
do not select the parallel JDBC option.

Chapter 15

dlxxxiii

https://dq-docs.collibra.com/dq-visuals/profile

Chapter 15

Files

l File paths should not contain spaces or special characters.
l Backrun (replay) and advanced features are best suited for JDBC connections.
Some features are unavailable if file and storage naming conventions do not con-
sistently contain a date signature.

Connection Pool

If you see this message, update the agent configs in owl-env.sh or agent confg map for k8
deployments.

Failed to obtain JDBC Connection; nested exception is org.a-
pache.tomcat.jdbc.pool.PoolExhaustedException: [pool-29-thread-
2] Timeout: Pool empty. Unable to fetch a connection in 0
seconds, none available[size:2; busy:1; idle:0; lastwait:200].

Adjust these configs to modify the connection pool available.

export SPRING_DATASOURCE_POOL_MAX_WAIT=500
export SPRING_DATASOURCE_POOL_MAX_SIZE=10
export SPRING_DATASOURCE_POOL_INITIAL_SIZE=5

Freeform Agent Configs

When configuring the DQ Agent and using the Free Form Parameters at the bottom of the
dialogue, you need to comma separate multiple -conf key/value pairs. I am going to write
this as a forum post but use this format: "-conf some.key=x, some.other.key=y".

K8 Secrets

The following Env Vars are now managed as a Secret instead of as a Configmap:

LICENSE_KEY LIVY_SSL_KEY_PASS SERVER_SSL_KEY_PASS SPRING_AGENT_
DATASOURCE_PASSWORD SPRING_AGENT_DATASOURCE_USERNAME
SPRING_DATASOURCE_PASSWORD SPRING_DATASOURCE_USERNAME

dlxxxiv

DQ Job Stages

DQ job failure is one of the most frequently asked. This outlines the DQ Job Lifecycle and
where to find logs for each phase. Every DQ Job goes through a three stage Lifecycle:

Stage 1

Agent picks up job from the Metastore and translates it into a valid Spark Submit request.
This includes credential acquisition and injection for Cloud and Kerberos. If a job never
makes it out of STAGING, the first thing to do is to check the Agent logs (<INSTALL_
HOME>/log/agent.log or on K8s kubectl logs -n .

Stage 2

Agent hands off the DQ check to Spark via Spark Submit, maintaining a handle on the
Spark Submit request. At this point the Job is in Spark’s custody but not yet running (Spark
Submit creates its own JVM to manage the submission of the Spark Job to the
cluster/runtime). If the job fails with a message saying something like “Failed with reason
NULL” on the Jobs page, check the Stage 2 logs (there will be a separate log for each
Job). These can be found either on the Agent itself (<INSTALL_HOME>/log/.log) or
whenever possible on the Jobs page Action Dropdown on the job entry. Stage 3: Spark
Submit instantiates the Job in the target Spark Runtime (Hadoop/K8s/Spark-Master). At
this point, the DQ core code is active and DQ is back in control of the job. Typically, if a job
makes it to this stage, it will no longer be in STAGING status and you should see an error
message on the Jobs Page. Typically, the full Stage 3 log is required to trouble shoot a
problem that happens in Core.

Stage 3

logs can be obtained from the Actions drop down for the job entry. If log extraction failed,
job logs will need to be gathered from the Spark Runtime directly (Hadoop Resource
Manager, K8s API via Kubectl or vendor provided UI, Spark Master UI or directly from the
Spark Master Host).

Chapter 15

dlxxxv

dlxxxvi

Collibra DQ Benchmarks

Chapter 16

Chapter 16

Performance Settings

Job Limits

Limits can be set to limit resources that are requested. There are options for cores,
memory, executors, and cells (maxexecutorcores, maxexecutormemory,
maxnumexecutors and maxcellcountforparalleljdbc).

If you request more cells than the limit, you should see a warning message before hitting
run.

dlxxxvii

Chapter 16

dlxxxviii

Chapter 16

Agent Defaults

Set defaults at the agent level. These should be right-sized to your environment and be
used as defaults for jobs with when estimate is not available (primarily local files and
remote files).

dlxxxix

Performance Tests

Cells Per Second Performance Theory (9.5M CPS)

Load and Profile

Dataset

Name

GBs in

Memory

Rows Cols Cells Num

Execs

Num

Cores

Exec

Memory

Network

Time

Total

Time

NYSE 0.1G 103K 9 816K 1 1 1G 00:00:15 00:00:48

AUM 14G 9M 48 432M 5 1 4G 00:01:20 00:03:50

ENERGY 5G 43M 6 258M 8 3 3G 00:00:00 00:04:35

INVEST_
DATA

20G 3.8M 158 590M 3 2 3G 00:00:40 00:03:32

NYSE

Postgres database call, no concurrent processing, simple case, small data.

Chapter 16

dxc

Chapter 16

-bhtimeoff -numexecutors 1
-lib "/opt/owl/drivers/postgres"
-executormemory 1g
-h metastore01.us-east1-b.c.owl-hadoop-
cdh.internal:5432/dev?currentSchema=public
-drivermemory 1g -master k8s:// -ds public.nyse_128 -deploymode
cluster
-q "select * from public.nyse" -bhlb 10 -rd "2020-10-26"
-driver "org.postgresql.Driver" -bhminoff
-loglevel INFO -cxn postgres-gcp -bhmaxoff

AUM

Postgres database call uses parallel JDBC, split on aum_id serial id.

-owluser kirk
-lib "/opt/owl/drivers/postgres" -datashapeoff
-numpartitions 6 -ds public.aum_dt2_50
-deploymode cluster -bhlb 10 -bhminoff
-cxn postgres-gcp -bhmaxoff -bhtimeoff
-numexecutors 6
-executormemory 4g -semanticoff
-h metastore01.us-east1-b.c.owl-hadoop-
cdh.internal:5432/dev?currentSchema=public
-columnname aum_id -corroff -drivermemory 4g -master k8s://
-q "select * from public.aum_dt2" -histoff -rd "2020-10-27"
-driver "org.postgresql.Driver" -loglevel INFO -agentjobid 7664

ENERGY

HDFS file with 43 million rows, converting a string date to date type, deploy mode client.

-f "hdfs:///demo/owl_usage_all.csv" \
-rd "2019-02-02" \
-ds energy_file \
-loglevel DEBUG -readonly \
-d "," -df dd-MMM-yy \
-master yarn \
-deploymode client \
-numexecutors 3 \
-executormemory 10g

dxci

Load Profile Outliers

NYSE - 1:10 total runtime. 20 seconds for outliers

-bhtimeoff -owluser kirk -numexecutors 1
-lib "/opt/owl/drivers/postgres" -executormemory 1g
-dl -h metastore01.us-east1-b.c.owl-hadoop-
cdh.internal:5432/dev?currentSchema=public
-drivermemory 1g -master k8s:// -ds public.nyse_128 -deploymode
cluster
-q "select * from public.nyse" -bhlb 10
-rd "2020-10-27" -driver "org.postgresql.Driver"
-bhminoff -loglevel INFO -cxn postgres-gcp -bhmaxoff -agentjobid
7721

Performance Tuning

Storage
Format

Num

Rows

Num

Columns

Bytes
Disk

Num

Executors

Executor
Memory

Total
RAM

Transfer
Time

Process
Time

Local
File

1M 50 1G 1 3G 3G 0 mins 2 mins

HDFS
File

10M 50 5G 3 8G 24G 0 mins 4 mins

Hive
Table

10M 50 5G 3 8G 24G 0 mins 4 mins

JDBC
Table

50M 50 25G 8 10G 80G 3 mins 8 mins

JDBC
Table

10M 100 10G 3 12G 36G 3 mins 6 mins

JDBC
Table

250M 9 10G 5 7G 35G 14 mins 15 mins

Chapter 16

dxcii

Chapter 16

Storage
Format

Num

Rows

Num

Columns

Bytes
Disk

Num

Executors

Executor
Memory

Total
RAM

Transfer
Time

Process
Time

JDBC
Table

250M 145 70G 17 12G 204G 28 mins 30 mins

Using a 10/1 ratio of RAM to Executors is often a good rule of thumb, another and more
simple option is to turn on dynamic.allocation and allow the resources to be provided as
needed on demand.

Limit Columns

In most cased there are a large number of columns that go unused by the business or
columns that don't require checking. One of the most efficient things you can do is limit the
cols using the below cmds. As a best practice Collibra DQ strongly recommends using
less than 80 columns per dataset.

-q "select colA, colB, colC, datCol, colD from table"
// vs
-q "select * from * from table"

How to limit columns when using a file

-fq "select colA, colB, colC from dataset"
// file query using keyword dataset

JDBC vs Local Data

Co-Located data (local data)

It is always a good performance practice to colocate data and processing. That doesn't
mean that you tech organization chooses to do this in it's architecture and design which is
why DQ accounts for both. If the data is located on the cluster that is doing the processing

dxciii

use options like -hive for non JDBC and native file access. Skip tuning for JDBC as moving
data to the cluster first will routinely reduce 50 percent of the performance bottleneck.

JDBC

Set fetchsize 1M rows -connectionprops fetchsize=1000 5M rows -connectionprops
fetchsize=5000 10M rows -connectionprops fetchsize=10000

Set DriverMemory add more memory to the driver node as it will be responsible for the
initial landing of data.

--driver-memory 7g

Add Parallel JDBC

Limit Features, Turn Flags Off

-corroff //only losing visuals, 5% speed gain
-histoff //only losing visuals, 4% speed gain
-hootonly //speeds up 1% based on less logging
-readonly //remove owl webapp read writes, 1% gain
-datashapeoff //removes Shape Detection 3% speed gain

Real World Scenario

Nine million rows with 46 columns on a daily basis for just 1 dataset. The data lives in
Greenplum and we want to process it on a cluster platform where DQ runs. The first run
results in a 12 minute runtime. While acceptable it's not ideal, here is what you should do:

1. Add Parallel JDBC for faster network.
2. Limit columns to the 18 that are of use in the downstream processing.

Chapter 16

dxciv

Chapter 16

3. Turn off unneeded features.
4. Find out of the job is memory bound or CPU bound.

By setting the below configs this same job ran in six minutes.

parallel functions
-columnname run_date -numpartitions 4 \
-lowerbound "2019-02-23 00:00:00" \
-upperbound "2019-02-24 00:00:00"
driver optimization
-connectionprops fetchsize=6000
analyst functions
-corroff \
-histoff
hardware
-executormemory 4g
-numexecutors 3

The Full OwlCheck

./owlcheck \
-u u -p pass \
-c jdbc:postgresql://$host/postgres \ # jdbc
url
-ds aumdt -rd 2019-05-05 \
-q "select * from aum_dt" \
-driver org.postgresql.Driver \ # driver
-lib /home/owl/drivers/postgres \ # driver
jar
-connectionprops fetchsize=6000 \ # driver
performance setting
-master yarn -deploymode client \
-executormemory 2G -numexecutors 2 -drivermemory 3g \ # hard-
ware sizing
-h cdh-edge.us-east1-b.c.owl-hadoop-cdh.internal:2181 \ # owl
metastore
-corroff -histoff -statsoff \ # owl
features
-loglevel INFO \ # log
level
-columnname updt_ts -numpartitions 12 \ # par-
allel jdbc
-lowerbound 1557623033193 -upperbound 1557623051585

dxcv

{
 "dataset": "aumdt",
 "runId": "2019-05-05",
 "score": 100,
 "behaviorScore": 0,
 "rows": 9000000,
 "passFail": 0,
 "peak": 0,
 "avgRows": 0,
 "cols": 46,
 "runTime": "00:05:23",
 }

Performance Considerations
Performance Recommendations

Performance is a function of available hardware.

When running Collibra DQ Scans on a Hadoop distribution:

l Check YARN resource manager.
l Check limits on queue size.
l Contact Platform Administration team on any limitations.

When running DQ Scans on Spark standalone (single node):

l Check Spark endpoint (example: http://<IP>:<PORT>).
l Suggested maximum size on 16 core x 64GB machine: 100 million rows * 200
columns = 2 billion cells.

l If exceeding 2 billion cells, limit the width by selecting certain columns or limit depth
with a WHERE clause or a FILTER condition.

When running DQ Scans on EKS:

l Check your compute pool for available pods.
l Check your worker configuration and your Spark operator configuration.
l Check minimum and maximum of allowed workers.

How-To

Chapter 16

dxcvi

Chapter 16

Increment DQ Scans with gradually increasing limits. Starting with a low level allows you to
confirm whether database has proper indexing, skip scanning, or partitioning.
Incrementing also allows you to validate security and connectivity quickly.

l Test 1: Limit 1k rows.
l Test 2: Limit 1mm rows.
l Test 3: Limit 10mm rows.

dxcvii

dxcviii

Collibra DQ APIs

Chapter 17

Chapter 17

Rest

All REST APIs are available inside the application under admin section. The APIs can be
used against the application in live working mode, which is preferred over documentation
of APIs because it means the API works and was tested at compile time versus
documentation time.

Product API
The product API is for end-users who want to interact with the official and supported API.
You can also generate a client side SDK from the API with four steps below.

dxcix

#psuedo code example REST API

dataset = 'public.nyse'
runId = '2021-03-05'

#SAVE datasetDef
dataset = POST /v3/datasetDefs/ {json_datasetDef}

#UPDATE datasetDef
dataset = PUT /v3/datasetDefs/ {json_datasetDef}

#RUN JOB
jobId = POST /v3/jobs/run/{dataset},{runDate}

#CHECK STATUS
status = /v3/jobs{jobId}/status

#GET DQ FINDINGS
findings = /v3/jobs/{jobId}/findings

Chapter 17

dc

Chapter 17

JWT Token For Auth #

import requests
import json
url = "http://localhost:9000/auth/signin"
payload = json.dumps({

"username": "<user>",
"password": "<pass>",
"iss": "public"

})
headers = {

'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data-
a=payload)
print(response.text)

curl --location --request POST 'http://-
localhost:9000/auth/signin' \
--header 'Content-Type: application/json' \
--data-raw '{

"username": "<user>",
"password": "<pass>",
"iss": "public"

 }'

Python Example
Alternatively, you can use the rest endpoints directly. This example shows how it can be
done with Python.

1. Create a dataset def:
a. Using the UI (Explorer) or
b. Using the dataset-def-api (https://<ip>/swagger-ui.html#/dataset-def-api)

2. Confirm your Python environment has the appropriate modules and imports.
3. Fill-in the variables and customize to your preference:

a. url, user and pass
b. dataset, runDate, and agentName

dci

import requests
import json

Authenticate
owl = "https://<url>"
url = "https://<url>/auth/signin"
payload = json.dumps({

"username": "<user>", # Edit Here
"password": "<pass>", # Edit Here
"iss": "public" # Edit Here

})
headers = {

'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data-
a=payload, verify=False)
owl_header = {'Authorization': 'Bearer ' + response.json()
['token']}

Run
dataset = '<your_dataset_name>' # Edit Here
runDate = '2021-08-08' # Edit Here
agentName = '<your_agent_name' # Edit Here

response = requests.post(
 url = owl +
'/v3/jobs/run?agentName='+agentName+'&dataset='+dataset+'&run-
Date='+runDate,
 headers=owl_header,
 verify=False
)

jobId = str(response.json()['jobId'])

Status
for stat in range(100):
 time.sleep(1)

 response = requests.get(
 url = owl + '/v3/jobs/'+jobId,
 headers=owl_header,
 verify=False
)

 job = response.json()

Chapter 17

dcii

Chapter 17

if job['status'] == 'FINISHED':
break

Results
response = requests.get(
 url = owl + '/v3/jobs/'+jobId+'/findings',
 headers=owl_header,
 verify=False
)

print(response.json())

This assumes you have created a data set definition using the UI or from the template.

Command Line instead of JSON dataset def

You can run a similar job submission using the cmd line. Please note it is easiest to get the
saved command line from the dataset-def-api /v3/datasetDefs//cmdline (with proper
escaping) and passed to the /v3/jobs/runCmdLine.

Breaking Down The Sections

Submit the Job

Send in a data set name, date and agent to submit the job. This kicks off the engine to go
do the work.

Run
dataset = 'API_V3'
runDate = '2021-08-08'
agentName = 'owldq-owl-agent-owldq-dev-0'

response = requests.post(
 url = owl +
'/v3/jobs/run?agentName='+agentName+'&dataset='+dataset+'&run-
Date='+runDate,
 headers=owl_header
)

jobId = str(response.json()['jobId'])

dciii

Get the Status

Using the jobId returned from the job submission, you can check the status. In the example
above, there is an interval to wait for the job to complete. You can create your own logic
and orchestrate more precisely.

response = requests.get(
 url = owl + '/v3/jobs/'+jobId,
 headers=owl_header
)

Get the Results

Using the same jobId returned from the job submission, you can check the results. You will
get a detailed json object with all the capabilities and detections in one payload. This is
where you would decision, based on your organization and process.

response = requests.get(
 url = owl + '/v3/jobs/'+jobId,
 headers=owl_header
)

Chapter 17

dciv

Chapter 17

Python Example Raw

import requests
import json

Variables
owl = 'https://<ip_address>' #Edit
user = '<user>' #Edit
password = '<password>' #Edit
tenant = 'public' #Edit
dataset = '<your_dataset_name>' #Edit
runDate = '2021-08-08' #Edit
agentName = 'your_agent_name' #Edit

Authenticate
url = owl+'/auth/signin'
payload = json.dumps({"username": user, "password": password,
"iss": tenant })
headers = {'Content-Type': 'application/json'}
response = requests.request("POST", url, headers=headers, data-
a=payload, verify=False)
owl_header = {'Authorization': 'Bearer ' + response.json()
['token']}

Run
response = requests.post(url = owl +
'/v3/jobs/run?agentName='+agentName+'&dataset='+dataset+'&run-
Date='+runDate, headers=owl_header, verify=False)
jobId = str(response.json()['jobId'])

Status
for stat in range(100):
 time.sleep(1)

 response = requests.get(url = owl + '/v3/jobs/'+jobId, head-
ers=owl_header, verify=False)
 status = response.json()['status']

if status == 'FINISHED':
break

Results
response = requests.get(url = owl + '/v3/jobs/'+jobId+'/find-
ings', headers=owl_header, verify=False)

dcv

Internal API

Collibra DQ also exposes the internal API so that all potential operations are available.
The caveat is that these calls may change over time or expose underlying functionality.

Chapter 17

dcvi

Chapter 17

Data Set Definition

The JSON for the full data set definition. It can be more terse to send in the cmdline string
of just the variables you use for your DQ Job.

-df "yyyy/MM/dd" -owluser <user> -numexecutors 1 -executormemory
1g \
-f s3a://s3-datasets/dataset.csv -h <host>:5432/dev?-
currentSchema=public \
-fq "select * from dataset" -drivermemory 1g -master k8s:// -ds
dataset_csv_1 \
-deploymode cluster -bhlb 10 -rd "2021-04-01" -fullfile -log-
level INFO -cxn s3test5 \
-sparkprinc user2@CW.COM -sparkkeytab /tmp/user2.keytab

dcvii

{
"dataset": "",
"runId": "",
"runIdEnd": "",
"runState": "DRAFT",
"passFail": 1,
"passFailLimit": 75,
"jobId": 0,
"coreMaxActiveConnections": null,
"linkId": null,
"licenseKey": "",
"logFile": "",
"logLevel": "",
"hootOnly": false,
"prettyPrint": true,
"useTemplate": false,
"parallel": false,
"plan": false,
"dataPreviewOff": false,
"datasetSafeOff": false,
"obslimit": 300,
"pgUser": "",
"pgPassword": "",
"host": null,
"port": null,
"user": "anonymous : use -owluser",
"alertEmail": null,
"scheduleTime": null,
"schemaScore": 1,
"optionAppend": "",
"keyDelimiter": "~~",
"agentId": null,
"load": {

"readonly": false,
"passwordManager": null,
"alias": "",
"query": "",
"key": "",
"expression": "",
"addDateColumn": false,
"zeroFillNull": false,
"replaceNulls": "",
"stringMode": false,
"operator": null,
"dateColumn": null,
"transform": null,
"filter": "",
"filterNot": "",

Chapter 17

dcviii

Chapter 17

"sample": 1,
"backRun": 0,
"backRunBin": "DAY",
"unionLookBack": false,
"cache": true,
"dateFormat": "yyyy-MM-dd",
"timeFormat": "HH:mm:ss.SSS",
"timestamp": false,
"filePath": "",
"fileQuery": "",
"fullFile": false,
"fileHeader": null,
"inferSchema": true,
"fileType": null,
"delimiter": ",",
"fileCharSet": "UTF-8",
"skipLines": 0,
"avroSchema": "",
"xmlRowTag": "",
"flatten": false,
"handleMaps": false,
"handleMixedJson": false,
"multiLine": false,
"lib": "",
"driverName": null,
"connectionName": "",
"connectionUrl": "",
"userName": "",
"password": "",
"connectionProperties": {},
"hiveNative": null,
"hiveNativeHWC": false,
"useSql": true,
"columnName": null,
"lowerBound": null,
"upperBound": null,
"numPartitions": 0,
"escapeWithBackTick": false,
"escapeWithSingleQuote": false,
"escapeWithDoubleQuote": false,
"escapeCharacter": "",
"hasHeader": true

 },
"outliers": [

{
"id": null,
"on": false,
"only": false,

dcix

"lookback": 5,
"key": null,
"include": null,
"exclude": null,
"dateColumn": null,
"timeColumn": null,
"timeBin": "DAY",
"timeBinQuery": "",
"categorical": true,
"by": null,
"limit": 300,
"minHistory": 3,
"historyLimit": 5,
"score": 1,
"aggFunc": "",
"aggQuery": "",
"query": "",
"q1": 0.15,
"q3": 0.85,
"categoricalColumnConcatenation": false,
"limitCategorical": null,
"measurementUnit": "",
"multiplierUpper": 1.35,
"multiplierLower": 1.35,
"record": true,
"filter": null,
"combine": true,
"categoricalConfidenceType": "",
"categoricalTopN": 3,
"categoricalBottomN": 2,
"categoricalMaxConfidence": 0.02,
"categoricalMaxFrequencyPercentile": 0.25,
"categoricalMinFrequency": 1,
"categoricalMinVariance": 0,
"categoricalMaxCategoryN": 1,
"categoricalParallel": true,
"categoricalAlgorithm": "",
"categoricalAlgorithmParameters": {}

 }
],

"outlier": {
"id": null,
"on": false,
"only": false,
"lookback": 5,
"key": null,
"include": null,
"exclude": null,

Chapter 17

dcx

Chapter 17

"dateColumn": null,
"timeColumn": null,
"timeBin": "DAY",
"timeBinQuery": "",
"categorical": true,
"by": null,
"limit": 300,
"minHistory": 3,
"historyLimit": 5,
"score": 1,
"aggFunc": "",
"aggQuery": "",
"query": "",
"q1": 0.15,
"q3": 0.85,
"categoricalColumnConcatenation": false,
"limitCategorical": null,
"measurementUnit": "",
"multiplierUpper": 1.35,
"multiplierLower": 1.35,
"record": true,
"filter": null,
"combine": true,
"categoricalConfidenceType": "",
"categoricalTopN": 3,
"categoricalBottomN": 2,
"categoricalMaxConfidence": 0.02,
"categoricalMaxFrequencyPercentile": 0.25,
"categoricalMinFrequency": 1,
"categoricalMinVariance": 0,
"categoricalMaxCategoryN": 1,
"categoricalParallel": true,
"categoricalAlgorithm": "",
"categoricalAlgorithmParameters": {}

 },
"pattern": {

"id": null,
"only": false,
"lookback": 5,
"key": null,
"dateColumn": null,
"include": null,
"exclude": null,
"score": 1,
"minSupport": 0.000033,
"confidence": 0.6,
"limit": 30,
"query": "",

dcxi

"filter": null,
"timeBin": "DAY",
"on": false,
"match": true,
"lowFreq": false,
"bucketLimit": 450000,
"deDupe": true

 },
"patterns": [

{
"id": null,
"only": false,
"lookback": 5,
"key": null,
"dateColumn": null,
"include": null,
"exclude": null,
"score": 1,
"minSupport": 0.000033,
"confidence": 0.6,
"limit": 30,
"query": "",
"filter": null,
"timeBin": "DAY",
"on": false,
"match": true,
"lowFreq": false,
"bucketLimit": 450000,
"deDupe": true

 }
],

"dupe": {
"on": false,
"only": false,
"include": null,
"exclude": null,
"depth": 0,
"lowerBound": 99,
"upperBound": 100,
"approximate": 1,
"limitPerDupe": 15,
"checkHeader": true,
"filter": null,
"ignoreCase": true,
"score": 1,
"limit": 300

 },
"profile": {

Chapter 17

dcxii

Chapter 17

"on": true,
"only": false,
"include": null,
"exclude": null,
"shape": true,
"correlation": null,
"histogram": null,
"semantic": null,
"limit": 300,
"histogramLimit": 0,
"score": 1,
"shapeTotalScore": 0,
"shapeSensitivity": 0,
"shapeMaxPerCol": 0,
"shapeMaxColSize": 0,
"shapeGranular": null,
"behavioralDimension": "",
"behavioralDimensionGroup": "",
"behavioralValueColumn": "",
"behaviorScoreOff": false,
"behaviorLookback": 10,
"behaviorMinSupport": 4,
"profilePushDown": null,
"behaviorRowCheck": true,
"behaviorTimeCheck": true,
"behaviorMinValueCheck": true,
"behaviorMaxValueCheck": true,
"behaviorNullCheck": true,
"behaviorEmptyCheck": true,
"behaviorUniqueCheck": true,
"adaptiveTier": null

 },
"source": {

"on": false,
"only": false,
"validateValues": false,
"matches": false,
"sourcePushDownCount": false,
"include": null,
"exclude": null,
"includeSrc": null,
"excludeSrc": null,
"key": null,
"map": null,
"score": 1,
"limit": 30,
"dataset": "",
"driverName": "",

dcxiii

"user": "",
"password": "",
"passwordManager": "",
"connectionName": "",
"connectionUrl": "",
"query": "",
"lib": "",
"checkType": true,
"checkCase": false,
"validateValuesFilter": "",
"validateSchemaOrder": false,
"connectionProperties": {},
"filePath": "",
"fileQuery": "",
"fullFile": false,
"header": null,
"skipLines": 0,
"inferSchema": true,
"fileType": null,
"delimiter": ",",
"fileCharSet": "UTF-8",
"avroSchema": "",
"xmlRowTag": "",
"flatten": false,
"handleMaps": false,
"handleMixedJson": false,
"multiLine": false,
"hasHeader": true

 },
"rule": {

"on": true,
"only": false,
"lib": null,
"name": "",
"absoluteScoring": false,
"ruleBreakPreviewLimit": 6

 },
"colMatch": {

"colMatchParallelProcesses": 3,
"colMatchDurationMins": 20,
"colMatchBatchSize": 2,
"level": "exact",
"fuzzyDistance": 1,
"connectionList": []

 },
"spark": {

"numExecutors": 3,
"driverMemory": "",

Chapter 17

dcxiv

Chapter 17

"executorMemory": "",
"executorCores": 1,
"conf": "",
"queue": "",
"master": "local[*]",
"principal": "",
"keyTab": "",
"deployMode": "",
"jars": null,
"packages": null,
"files": null

 },
"env": {

"jdbcPrincipal": "",
"jdbcKeyTab": ""

 },
"record": {

"on": false,
"in": "",
"notIn": "",
"include": null,
"percDeltaLimit": 0.1,
"score": 1

 },
"transforms": [],
"pipeline": []

 }

dcxv

Generate Client SDK

1. Go to https://editor.swagger.io/.
2. Click File Import URL.
3. Paste a URL that looks like this https://<host>/v2/api-docs?group=Product%20API.
4. Click generate client (python, java, scala, C#).

Chapter 17

dcxvi

https://editor.swagger.io/
https://146.148.84.143/v2/api-docs?group=Product%20API

Chapter 17

#Python SDK Example

#GET CMDLINE
cmdLine = get_job_cmdline(dataset)

#SUBMIT JOB
job_id = run(dataset, run_date)

#CHECK STATUS
status = get_job_status(job_id)

#GET DQ ISSUES
status = get_job_findings(dataset, run_date)

Swagger
You can find Swagger in the Collibra DQ application.

Docs built into the application

Collibra DQ comes with full swagger support out of the box.

http://<YOUR_IP_ADDRESS>/swagger-ui.html

Swagger can be found in the application under the Admin section labeled APIs.

dcxvii

You will find a direct link to the Swagger page

Chapter 17

dcxviii

Chapter 17

Toggle between Product API and Internal API.

dcxix

For example swagger API please visit - http://<YOUR_IP>:9000/v2/api-docs?group=UI
Internal.

Chapter 17

dcxx

http://35.194.91.201:9003/v2/api-docs?group=UI%20Internal
http://35.194.91.201:9003/v2/api-docs?group=UI%20Internal

Chapter 17

dcxxi

Find the endpoint

Find an API Endpoint

Any front-end action uses the API. You can find the corresponding endpoint using
developer tools.

In this example, we will look at the api call for /create rule.

Locate the call in Developer Tools

Chapter 17

dcxxii

Chapter 17

Locate the API in Swagger

All UI endpoints are the API and can be located in swagger. You can script against this
externally as well.

Export and Import API
Promoting and moving data sets across environments.

Pre-requirements

Warning The database needs the stored procedure (function) defined in order to
use the Export/Import API.

V2 - Stable - available from 2022.02 release

Step 1a - Export content from source schema

https://<collibra-dq-url>/v2/db-export

Exports tables from database
Parameters

dcxxiii

Query

data

sets*

List of
strings

List of data sets to export. You need to give at least one valid data set
name into the list.

schema String Name of the schema/tenant where you want to perform the export.
\
Default value: public

tables String List of tables to export on the given schema & data set(s).
\
If you leave it empty, the following tables will be exported altogether:
rule_repo, owl_catalog, owl_rule, alert_cond, owl_check_repo, job_
schedule, alert_output

Responses

200: OK List of SQL - INSERT statements as JSON list.

{
 // Response
}

400: Bad Request Any error happened with error message

{
 // Response
}

Step 1b - Import content #

https://<collibra-dq-url>/v2/db-import

Import content into the target tenant
The target schema/tenant name will be part of the input SQL INSERT statements.

The import is rung on non-transactional mode, any error happens in the middle, the saved
items will be left in the database as is.

Chapter 17

dcxxiv

Chapter 17

Parameters

Body

* List of SQL INSERT, which will be imported into the target Collibra DQ metastore.
Format: JSON string list

Responses

200: OK When the import was successful.

{
 // Response
}

400: Bad Request Any error happened with error message

{
 // Response
}

We suggest using db-export, but we will not remove get-
exports. We do expect to consolidate the newer logic behind
the method.

Step 1c - Get-Exports
You can pass in several dataset names and several tables at once. This endpoint will
create a JSON payload

Note Exports and Imports are currently limited to the 3 tables listed below.

These are the three most common tables. These are the supported tables for re-
promotion (running the export multiple times). The most common use case is to copy
jobs and rules from environment A to environment B. Running the export/import

dcxxv

sequence on the same environment likely result in a key constraint conflict, unless in-
between edits are made to the insert payload.

l owl_rule
l job_schedule
l owl_check_repo

http://<url>/v2/get-exports?dataset=public.dataset_scan_2,pub-
lic.dataset_scan_1&schema=public&tables=owl_rule,job_sched-
ule,owl_check_repo

Use Swagger to build this for you
This is located under controller-scala (internal API)

Chapter 17

dcxxvi

Chapter 17

Click Try it out to input the details

Step 2 - Run-Import

Note You will want to perform a find/replace on the import payload to check for
differences in connections, agents, spark and environment configurations. Migrating
to different environments typically requires the payload to be modified.

Run import on the desired environment, passing the output of the previous statement to
the body of the request.

http://<url>/v2/run-import

dcxxvii

Use Swagger to try it out
This is under controller-catalog.

This would be the body of the POST.

Chapter 17

dcxxviii

Chapter 17

Requirement - Stored Procedure

The following function needs to be created in the Collibra DQ metastore, before this can
run.

CREATE OR REPLACE FUNCTION public.dump(p_schema text, p_table
text, p_where text)
RETURNS SETOF text
LANGUAGE plpgsql

AS $function$
DECLARE

dumpquery_0 text;
dumpquery_1 text;
selquery text;
selvalue text;
valrec record;
colrec record;

BEGIN

-- ------ --
-- GLOBAL --
-- build base INSERT

dcxxix

-- build SELECT array[...]
dumpquery_0 := 'INSERT INTO ' || quote_ident(p_schema) ||

'.' || quote_ident(p_table) || '(';
selquery := 'SELECT array[';

<<label0>>
FOR colrec IN SELECT table_schema, table_name, column_

name, data_type
FROM information_schema.columns
WHERE table_name = p_table and table_schema

= p_schema
ORDER BY ordinal_position

LOOP
dumpquery_0 := dumpquery_0 || quote_ident(colrec.-

column_name) || ',';
selquery := selquery || 'CAST(' || quote_ident

(colrec.column_name) || ' AS TEXT),';
END LOOP label0;

dumpquery_0 := substring(dumpquery_0 ,1,length(dumpquery_
0)-1) || ')';

dumpquery_0 := dumpquery_0 || ' VALUES (';
selquery := substring(selquery ,1,length(selquery)-

1) || '] AS MYARRAY';
selquery := selquery || ' FROM ' ||quote_ident(p_

schema)||'.'||quote_ident(p_table);
selquery := selquery || ' WHERE '||p_where;
-- GLOBAL --
-- ------ --

-- ----------- --
-- SELECT LOOP --
-- execute SELECT built and loop on each row
<<label1>>
FOR valrec IN EXECUTE selquery
LOOP

dumpquery_1 := '';
IF not found THEN

EXIT ;
END IF;

-- ----------- --
-- LOOP ARRAY (EACH FIELDS) --
<<label2>>
FOREACH selvalue in ARRAY valrec.MYARRAY
LOOP

IF selvalue IS NULL
THEN selvalue := 'NULL';
ELSE selvalue := quote_literal(selvalue);
END IF;

Chapter 17

dcxxx

Chapter 17

dumpquery_1 := dumpquery_1 || selvalue || ',';
END LOOP label2;
dumpquery_1 := substring(dumpquery_1 ,1,length

(dumpquery_1)-1) || ');';
-- LOOP ARRAY (EACH FIELD) --
-- ----------- --

-- debug: RETURN NEXT dumpquery_0 || dumpquery_1 || '
--' || selquery;

-- debug: RETURN NEXT selquery;
RETURN NEXT dumpquery_0 || dumpquery_1;

END LOOP label1 ;
-- SELECT LOOP --
-- ----------- --

RETURN ;
END
$function$

;

This assignment needs to be added.

alter function dump(text, text, text) owner to <ownername>;

Export and Import Example

Note Best practice is to use get-exports and the owl_rule table post 2021.09
release. Please refer to the Export and Import API page for more details.

Steps

1. Find your dataset.
2. Pass your table to the following api call - http://<url>/v2/get-rules-export?data-

set=public.transit_6.
3. Run import on the desired environment, passing the output of the previous statement

to the body of the request - http://<url>/v2/run-import.

The following function needs to be declared in the postgres metastore before this can run.

dcxxxi

http://localhost:9000/v2/get-export?dataset=public.transit_6
http://localhost:9000/v2/get-export?dataset=public.transit_6
http://35.202.14.58/v2/run-import

CREATE OR REPLACE FUNCTION public.dump(p_schema text, p_table
text, p_where text)
 RETURNS SETOF text
 LANGUAGE plpgsql
AS $function$
 DECLARE
 dumpquery_0 text;
 dumpquery_1 text;
 selquery text;
 selvalue text;
 valrec record;
 colrec record;
 BEGIN

 -- ------ --
 -- GLOBAL --
 -- build base INSERT
 -- build SELECT array[...]
 dumpquery_0 := 'INSERT INTO ' || quote_ident(p_schema) ||
'.' || quote_ident(p_table) || '(';
 selquery := 'SELECT array[';

 <<label0>>
 FOR colrec IN SELECT table_schema, table_name, column_name,
data_type
 FROM information_schema.columns
 WHERE table_name = p_table and table_schema =
p_schema
 ORDER BY ordinal_position
 LOOP
 dumpquery_0 := dumpquery_0 || quote_ident(colrec.-
column_name) || ',';
 selquery := selquery || 'CAST(' || quote_ident
(colrec.column_name) || ' AS TEXT),';
 END LOOP label0;

 dumpquery_0 := substring(dumpquery_0 ,1,length(dumpquery_
0)-1) || ')';
 dumpquery_0 := dumpquery_0 || ' VALUES (';
 selquery := substring(selquery ,1,length(selquery)-
1) || '] AS MYARRAY';
 selquery := selquery || ' FROM ' ||quote_ident(p_
schema)||'.'||quote_ident(p_table);
 selquery := selquery || ' WHERE '||p_where;
 -- GLOBAL --
 -- ------ --

 -- ----------- --

Chapter 17

dcxxxii

Chapter 17

 -- SELECT LOOP --
 -- execute SELECT built and loop on each row
 <<label1>>
 FOR valrec IN EXECUTE selquery
 LOOP
 dumpquery_1 := '';
 IF not found THEN
 EXIT ;
 END IF;

 -- ----------- --
 -- LOOP ARRAY (EACH FIELDS) --
 <<label2>>
 FOREACH selvalue in ARRAY valrec.MYARRAY
 LOOP
 IF selvalue IS NULL
 THEN selvalue := 'NULL';
 ELSE selvalue := quote_literal(selvalue);
 END IF;
 dumpquery_1 := dumpquery_1 || selvalue || ',';
 END LOOP label2;
 dumpquery_1 := substring(dumpquery_1 ,1,length
(dumpquery_1)-1) || ');';
 -- LOOP ARRAY (EACH FIELD) --
 -- ----------- --

 -- debug: RETURN NEXT dumpquery_0 || dumpquery_1 || ' -
-' || selquery;
 -- debug: RETURN NEXT selquery;
 RETURN NEXT dumpquery_0 || dumpquery_1;

 END LOOP label1 ;
 -- SELECT LOOP --
 -- ----------- --

 RETURN ;
 END
 $function$
;

From Swagger

Navigate to the API page.

dcxxxiii

Find the Rest APIs link.

Chapter 17

dcxxxiv

Chapter 17

Drill-in to the controller-scala section.

Find the get-rules-export call.

Click Try it out and enter a data set name, Execute to run the call.

dcxxxv

Copy the response body.

Navigate to the controller-catalog section.

Find run-import and Try it out.

Chapter 17

dcxxxvi

Chapter 17

Make any edits and paste in the response body from the previous step.

Visually validate the rules were transferred to another dataset successfully.

dcxxxvii

Assignment API

Time Zone API
UTC + global DateTime standard

Chapter 17

dcxxxviii

Chapter 17

Background on common time issues

Controlling dates and times has always been a troublesome topic for global systems.
Server clock vs server code such as new Date() which may create a date in the local
timezone of the server vs the Browser or clients timezone. Moving to the cloud only makes
the problem worse when you need to consider the timezone the server might be in and
inherit from it's system clock.

Collibra Data Quality's Solution - Keep it Simple

If everyone worked off of a globally understood format that is not subject to
misinterpretation things would be more simple. Take 03/02/2019, for example. Is this
March 2nd or February 3rd? That depends on which country you live in. Collibra DQ only
accepts this format: YYYY-MM-DD. Extending this to time would mean YYYY-MM-DD
00:00:00.

CmdLine Examples

./owlcheck -ds trades -rd "2019-04-01" or -rd "2019-04-01 00:00:00"

Simple Example

A user running an DQ Check in New York and a user running an DQ Check three hours
later in California.

CmdLine Arg User Location TimeZone Stored in Owl (UTC)

-rd 2019-04-01 New York implied EST 2019-04-01 04:00:00

-rd 2019-04-01 California implied PST 2019-04-01 07:00:00

These jobs run three hours apart, even though they appear to run first thing in the morning
to each user. Collibra DQ stores all dates in a common UTC format for global consistency.

On the Jobs page, the Start Time and Update Time columns are always based on the
server time zone of the DQWeb App, and appear in the YYYY-MM-DD 00:00:00 format.

dcxxxix

Web API or URL Example

http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01 04:00:00
http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01 07:00:00

For Convenience, if a user prefers seeing and interacting
with dates in their local time zone:
http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01
00:00:00&tz=EST http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-
01 00:00:00&tz=PST

Cookie
Use cookies file to run Collibra DQ CURL commands.

curl -i -X POST -d username=<username> -d password=<password>
http://localhost:9000/login -c cookies.txt

curl -i --header "Accept:application/json" -X GET -b cookies.txt
"http://localhost:9000/v2/getsecuritymap"

Multi-Tenant without subdomain in URL (tenant parameter required):

curl -i -X POST -d username=<username> -d password=<password> -d
tenant=<tenant> -d tenant=public http://localhost:9000/login -c
cookies.txt

curl -i --header "Accept:application/json" -X GET -b cookies.txt
"http://localhost:9000/v2/getsecuritymap"

JWT
Use JSON web tokens to run Collibra DQ CURL commands.

Chapter 17

dcxl

http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01
http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01
http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01
http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01
http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01

Chapter 17

TOKEN=$(curl -s -X POST http://localhost:9000/auth/signin -H
"Content-Type:application/json" -d "{\"user-
name\":\"<username>\", \"password\":\"<password>\"}" | jq -r
'.token')

curl -i -H 'Accept: application/json' -H "Authorization: Bearer
${TOKEN}" http://localhost:9000/v2/getsecuritymap

Multi-Tenant without subdomain in URL (tenant parameter [iss] required):

TOKEN=$(curl -s -X POST http://localhost:9000/auth/signin -H
"Content-Type:application/json" -d "{\"user-
name\":\"<username>\", \"password\":\"<password>\", \"is-
s\":\"<tenant>\"}"| jq -r '.token')

curl -i -H 'Accept: application/json' -H "Authorization: Bearer
${TOKEN}" http://localhost:9000/v2/getsecuritymap

Without Headers and jq display:

curl -H 'Accept: application/json' -H "Authorization: Bearer
${TOKEN}" http://localhost:9000/v2/getsecuritymap | jq '.' | cat

Livy

What is Livy?

At its core, Apache Livy is an optional component that changes how the Collibra DQ Web
app caches remote files. From Explorer, Livy allows for interaction with Spark clusters
over REST APIs. This is especially useful with larger data or Spark clusters, because with
Livy, you can drill into those bigger files.

In a future release, we plan to make Livy a standard component as part of our data
visualization, but as of 2022.04 it remains optional. An orange icon shows cached remote
files.

dcxli

Notebook

Collibra DQ + Databricks

Introduction

This page provides guidance to help you upload Collibra DQ jars to a Databricks cluster
and run a Collibra DQ job by invoking Collibra DQ APIs.

Architecture

Collibra DQ Environment Setup

This section explains the steps involved in setting up your Collibra DQ environment in
Databricks. This is the first step towards invoking Collibra DQ APIs in Databricks.

Chapter 17

dcxlii

Chapter 17

Step 1: Extract the Collibra DQ core jar from owl package zipped file.

The first step is to get the CDQ jar file. Once you have the cdq jar package file, you can get
the jars by running the following commands:

tar -xvf package.tar.gz

For example, tar -xvf owl-2022.04-RC1-default-package-base.tar.gz

Running this command instructs tar to extract the files from the zipped file. From the list of
the files, you need to upload the owl-core-xxxx-jar-with-dependancies.jar to our Databricks
file system which will be explained in the next section.

Step 2: Upload the Collibra DQ core jar file to Databricks file system using UI

The jars should be manually uploaded in Databricks file system. Below is the quick
summary of the steps. For more information on uploading files in Databricks, refer to the
official Databricks documentation.

a. Login to your Databricks account.

b. Click Data in the sidebar.

dcxliii

https://docs.databricks.com/data/databricks-file-system.html

c. Click DBFS at the top of the page.
d. Upload the owl-core-xxxx-jar-with-dependancies.jar to your desired path.

Step 3: Install Collibra DQ library in your Databricks cluster

Once this step is completed, you can create a workspace and start using Collibra DQ
APIs.

Step 4: Update the Spark Config in your Databricks cluster

Note This step is required if your cluster uses Spark 3.2.1 and onward.

Chapter 17

dcxliv

Chapter 17

When you bring Collibra DQ jars into Databricks, you are required as of the Collibra DQ
2023.01 release to set the property
spark.sql.sources.disabledJdbcConnProviderList='basic,oracle,mssql'

at either the Spark Cluster-level or the SparkSession-level before using Collibra DQ's set
of functions for Spark profiles 3.2.1 and onwards.

Setting the property in the Spark Config of your Databricks
cluster
If you have an active Databricks cluster, you can set the property in the Spark Config
section of your Databricks cluster.

1. On your Databricks cluster configuration page, click the Advanced Options toggle
and select the Spark tab.

2. In the Spark Config section, enter the following configuration property as one key-
value pair per line:
spark.sql.sources.disabledJdbcConnProviderList

basic,oracle,mssql

Setting the property in a SparkSession
If you have your own Spark data source, you can set the property in the SparkSession. For
example:
SparkSession.getActiveSession.get.conf.set

dcxlv

("spark.sql.sources.disabledJdbcConnProviderList",

"basic,oracle,mssql")

Step 5 (Optional): Update datasource pool size

Note This step is necessary if you get PoolExhaustedException when you call
Collibra DQ APIs.

Update the connection pool size in the Spark environment using the following environment
variables:

SPRING_DATASOURCE_POOL_MAX_WAIT=500

SPRING_DATASOURCE_POOL_MAX_SIZE=30

SPRING_DATASOURCE_POOL_INITIAL_SIZE=5

For more information on setting up Databricks environment variables, refer to the official
Databricks documentation.

Chapter 17

dcxlvi

https://docs.databricks.com/clusters/configure.html#environment-variables

Chapter 17

dcxlvii

Collibra DQWorking Example in DataBricks

Import Collibra DQ library

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import scala.collection.JavaConverters._
import java.util.Date
import java.time.LocalDate
import java.text.SimpleDateFormat
import spark.implicits._
import java.util.{ArrayList, List, UUID}
// CDQ Imports
import com.owl.core.Owl
import com.owl.common.options._
import com.owl.common.domain2._
import com.owl.core.util.OwlUtils
spark.catalog.clearCache

Bringing customer data from another database

Bringing customer data from a file

val df = (spark.read
.format("csv").option("header", true).option("delimiter", ","
.load(dbfs:/FileStore/nyse.csv")
)

Bringing customer data from a database

val connProps = Map(
"driver" -> "org.postgresql.Driver",
"user" -> "your-username",
"password" -> "your-password",
"url" -> "jdbc:postgresql://abc:1234/postgres",
"dbtable" -> "public.example_data")
//--- Load Spark DataFrame ---//
val df = spark.read.format("jdbc").options(connProps).load dis-
play(df)
display(df) // view your data

Chapter 17

dcxlviii

Chapter 17

Variables to set up Collibra DQ Metastore database location

val pgHost = "xxxx.amazonaws.com"
val pgDatabase = "postgres"
val pgSchema = "public"
val pgUser = "???????"
val pgPass = "????"
val pgPort = "0000"

Create a Collibra DQ Test (Rules) and detect breaks

Note If the rules are already created and assigned to a dataset from the UI, calling
owlcheck() automatically executes all the rules associated with the given dataset
and there is no need to recreate the rule from notebook.

dcxlix

val dataset = "cdq_notebook_db_rules"
var date = "2018-01-11"

// Options
val opt = new OwlOptions()
opt.dataset = dataset
opt.runId = date
opt.host = pgHost
opt.port = pgPort
opt.pgUser = pgUser
opt.pgPassword = pgPass

opt.setDatasetSafeOff(false) // to enable historical overwrite
of dataset

// Create a simple rule and assign it to dataset
val simpleRule = OwlUtils.createRule(opt.dataset)
 simpleRule.setRuleNm("nyse-stocks-symbol")
 simpleRule.setRuleValue("symbol == 'BHK'")
 simpleRule.setRuleType("SQLG")
 simpleRule.setPerc(1.0)
 simpleRule.setPoints(1)
 simpleRule.setIsActive(1)
 simpleRule.setUserNm("admin")
 simpleRule.setPreviewLimit(8)

// Create a rule from generic rules that are created from UI:
val genericRule = OwlUtils.createRule(opt.dataset)
 genericRule.setRuleNm("exchangeRule") // this could be any
name
 genericRule.setRuleType("CUSTOM")
 genericRule.setPoints(1)
 genericRule.setIsActive(1)
 genericRule.setUserNm("admin")
 genericRule.setRuleRepo("exchangeCheckRule"); // Validate
the generic rule name //from UI
 genericRule.setRuleValue("EXCH") // COLUMN associate with
the rule

// Pre Routine
val cdq = com.owl.core.util.OwlUtils.OwlContext(df, opt)
cdq.removeAllRules(opt.dataset)
.register(opt)
.addRule(simpleRule)

// Scan
cdq.owlCheck()

Chapter 17

dcl

Chapter 17

val results = cdq.hoot() // returns object Hoot, not a DataFrame
//See Json Results(Option for downstream processing)
println("--------------Results:----------------\n")
println(results) //optional

//Post Routine, See DataFrame Results (Option for downstream pro-
cessing)
val breaks = cdq.getRuleBreakRows("nyse-stocks-symbol")
println("--------------Breaks:----------------\n")
display(breaks)

// Different Options for handling bad records
val badRecords = breaks.drop("_dataset","_run_id", "_rule_name",
"owl_id")
display(badRecords)

val goodRecords = df.except(badRecords)
display(goodRecords)

Write the breaks (bad records) DataFrame to a Parquet file

// Remove the file if it exists
dbutils.fs.rm("/tmp/databricks-df-example.parquet", true)
breaks.write.parquet("/tmp/databricks-df-example.parquet")

The following image shows the code snippet and the result in Databricks:

dcli

Steps to reassign the rules of one dataset to another via the API.

The breaks and the rules can also be viewed in Collibra DQ web.

Chapter 17

dclii

Chapter 17

Create a Collibra DQ Test (Profile)

val dataset = "cdq_notebook_nyse_profile"

val runList = List("2018-01-01", "2018-01-02", "2018-01-03",
"2018-01-04", "2018-01-05"
for(runID <- runList {
// Options
val options = new OwlOptions()
options.dataset = dataset
options.host = pgHost
options.port = pgPort
options.pgUser = pgUser
options.pgPassword = pgPass

//Scan
val profileOpt = new ProfileOpt
profileOpt.on = true
profileOpt.setShape(true)
profileOpt.setShapeSensitivity(5.0)
profileOpt.setShapeMaxPerCol(10)
profileOpt.setShapeMaxColSize(10)
profileOpt.setShapeGranular(true)
profileOpt.behaviorEmptyCheck = true
profileOpt.behaviorMaxValueCheck = true
profileOpt.behaviorMinValueCheck = true
profileOpt.behaviorNullCheck = true
profileOpt.behaviorRowCheck = true
profileOpt.behaviorMeanValueCheck = true
profileOpt.behaviorUniqueCheck = true
profileOpt.behaviorMinSupport = 5 // default is 4
profileOpt.behaviorLookback = 5
options.profile = profileOpt

var date = runId
var df_1 = df.where($"TRADE_DATE"===s"$date")

//Scan
val cdq = OwlUtils.OwlContext(df_1, options)
cdq.register(opt)
cdq.owlCheck()
val profile = cdq.profileDF()
profile.show()
}

dcliii

Chapter 17

dcliv

Chapter 17

Create a Collibra DQ Test (Dupes)

val dataset = "cdq_notebook_db_dupe"
var date = "2018-01-11"

// Options
val options = new OwlOptions()
options.dataset = dataset
options.runId = date
options.host = pgHost
options.port = pgPort
options.pgUser = pgUser
options.pgPassword = pgPass

opt.dupe.ignoreCase = true
opt.dupe.on = true
opt.dupe.lowerBound = 99
opt.dupe.include = Array("SYMBOL", "TRADE_DATE")

//Scan
val cdq = OwlUtils.OwlContext(df, opt)
cdq.register(options)
cdq.owlCheck()

val dupesDf = cdq.getDupeRecords
dupesDf.show()

dclv

Chapter 17

dclvi

Chapter 17

Create a Collibra DQ Test (Outlier)

import scala.collection.JavaConverters._
import java.util
import java.util.{ArrayList, List, UUID}

val dataset = "cdq_notebook_db_outlier"
var date = "2018-01-11"

// Options
val options = new OwlOptions()
options.dataset = dataset
options.runId = date
options.host = pgHost
options.port = pgPort
options.pgUser = pgUser
options.pgPassword = pgPass

opt.dupe.on = false

val dlMulti: util.List[OutlierOpt] = new util.ArrayList[Out-
lierOpt]
val outlierOpt = new OutlierOpt()
outlierOpt.combine = true
outlierOpt.dateColumn = "trade_date"
outlierOpt.lookback = 4
outlierOpt.key = Array("symbol")
outlierOpt.include = Array("high")
outlierOpt.historyLimit = 10
dlMulti.add(outlierOpt)

opt.setOutliers(dlMulti)

val cdq = OwlUtils.OwlContext(df, opt)
 .register(opt)

cdq.owlCheck
val outliers = cdq.getOutliers()
outliers.show
outliers.select("value")

dclvii

Create Collibra DQ Test (ValidateSource)

import com.owl.common.options.SourceOpt
import java.util
import java.util.{ArrayList, List}

var opt = new OwlOptions()
val dataset = "weather-validateSrc"
opt.setDataset(dataset)
opt.runId = "2018-02-23"
clearPreviousScans(opt)
val src = Seq(

("abc", true, 55.5, "2018-02-23 08:30:02"),
("def", true, 55.5, "2018-02-23 08:30:02"),
("xyz", true, 55.5, "2018-02-23 08:30:02")

).toDF("name", "sunny", "feel-like-temp", "d_date")

val target = Seq(
("abc", 72, false, 55.5, "2018-02-23 08:30:02"), // true to

false
("xyz", 72, true, 65.5, "2018-02-23 09:30:02") // 08 to 09

).toDF("name", "temp", "sunny", "feel-like-temp", "d_date")

val optSource = new SourceOpt
optSource.on = true
optSource.dataset = dataset
optSource.key = Array("name")
opt.setSource(optSource)

//scan
val cdq = OwlUtils.OwlContext(src, target, opt)
 .register(opt)
cdq.owlCheck

val breakCountDf = cdq.getSourceBreaksCount()
breakCountDf.show()

Known API Limitations

Collibra DQ activities cannot currently be called independently. DQ Check() function
should be called before calling any of the activities. For example, to get the profile
DataFrame you should call the following code snippet:

Chapter 17

dclviii

Chapter 17

cdq.owlCheck()
cdq.getProfileDF()

DQ-Databricks Submit

Introduction
In this page we will demonstrate two paths to run a spark submit job on Databricks's
cluster. The first approach is to run a DQ spark submit job using Databricks UI and the
second approach is by invoking Databricks rest API.

Note These are only examples to demonstrate how to achieve DQ spark submit to
Databricks's cluster. These paths are not supported in production and DQ team
does not support any bug coverages or professional services or customer questions
for these flows.

Limitations
There are a few limitation to spark-submit jobs in Databricks listed in this section:
https://docs.databricks.com/jobs.html#create-a-job. Also, spark-submit is only on new
clusters from both the UI via Jobs or calling the REST APIs. See Step 4 in:
https://docs.databricks.com/jobs.html#create-a-job where it lists that spark-submit is
handled by new clusters only.

Steps to create and run a spark submit job from Databricks
UI:

1. Grant Collibra DQ Database access to your instance of Databricks.
2. Upload DQ jars in Databricks File System (DBFS).
3. Set up environment variables for your new cluster.
4. Prepare the DQ JSON payload.
5. Create and Run your job.
6. View the status and result of your job from the DQ Jobs page.

dclix

https://docs.databricks.com/jobs.html#create-a-job
https://docs.databricks.com/jobs.html#create-a-job

Database access
To begin, ensure that sure your Databricks instance has access to the DQ Database.

The entire subnet must be whitelisted to connect to the database. As specified in
Databricks' documentation on subnets, Databricks must have access to at least two
subnets for each database. To connect to the two Databricks subnets where the nodes will
be instantiated, you must allow AWS to whitelist your IP address range.

Upload DQ's jars in DBFS
The jars should be manually uploaded in Databricks file system. The steps can be found
on Databricks website: https://docs.databricks.com/data/databricks-file-
system.html#access-dbfs.

Environment variables for the new cluster:
Here is the documentation from Databricks about how to set up environment variables:
https://docs.databricks.com/clusters/configure.html#environment-variables

These CDQ environment variables should be set on the new cluster:SPRING_
DATASOURCE_URL=xx\ SPRING_DATASOURCE_USERNAME=xx\ SPRING_DATASOURCE_
DRIVER_CLASS_NAME=xx\ LICENSE_KEY=xx // This is DQ's license key

Chapter 17

dclx

https://docs.databricks.com/administration-guide/cloud-configurations/aws/customer-managed-vpc.html#subnets
https://docs.databricks.com/data/databricks-file-system.html#access-dbfs
https://docs.databricks.com/data/databricks-file-system.html#access-dbfs
https://docs.databricks.com/clusters/configure.html#environment-variables

Chapter 17

JSON payload
Once the above steps are completed, you can submit a spark submit job with DQ's
parameters. Payload parameters can be from DQ's web Run command. You can copy and
paste the parameters to prepare a JSON payload. Here is one sample:

 "--class",
 "com.owl.core.cli.OwlCheck",
 "dbfs:/FileStore/cdq/owl-core-2022.02-
SPARK301-jar-with-dependencies.jar",
 "-lib",
 "dbfs:/FileStore/cdq/owl/drivers/postgres",
 "-q",
 "select * from xx.xxx",
 "-bhlb",
 "10",
 "-rd",
 "2022-03-16",
 "-driver",
 "owl.com.org.postgresql.Driver",
 "-drivermemory",
 "4g",
 "-cxn",
 "metastore",
 "-h",
 "xxxx.xxxxxx.amazonaws.com:xxxx/postgres",
 "-ds",
 "public.agent_2",
 "-deploymode",
 "cluster",
 "-owluser",
 "admin"
]

Run the job
Once you have completed the above steps, you can create a spark submit job through
Databricks UI.

You can then add the environment variables to the cluster and click Run on Databricks UI.

dclxi

https://docs.databricks.com/jobs.html

Check the result in DQ web:
Once the job is submitted, you can login to your DQ web instance and check the job in the
Jobs page.

Chapter 17

dclxii

Chapter 17

Spark submit by invoking Databricks REST API
There are public REST APIS available for the Jobs API, including the latest version.

For this path we need to do the steps 1-4 of the the previous section and then call directly
the REST API using Postman, or your preferred API testing tool. We assume that as per
step 2, CDQ jars are uploaded to the DBFS path in the location dbfs:/FileStore/cdq. Also
JDBC postgres driver should be uploaded to DBFS. For example:
dbfs:/FileStore/cdq/owl/drivers/postgres

Steps:

1. Prepare the DQ JSON Payload.
2. Authenticate the Databricks REST API.

JSON payload
Sample JSON payload:

POST /api/2.1/jobs/runs/submit HTTP/1.1Host:

xxxxxx.cloud.databricks.com\ `Content-Type: application/json`\

`Authorization: Bearer ~~xxxxxxxxxxxxx~~\ Cache-Control: no-cache\ Postman-
Token: xxxxxxxx`

dclxiii

https://docs.databricks.com/dev-tools/api/latest/jobs.html
http://dbc-9a4426da-9755.cloud.databricks.com/

{
 "tasks": [

{
 "task_key": "CDQ-SparkSubmitCallFinal",
 "spark_submit_task": {
 "parameters": [
 "--class",
 "com.owl.core.cli.OwlCheck",
 "dbfs:/FileStore/cdq/owl-core-2022.02-SPARK301-jar-
with-dependencies.jar",
 "-lib",
 "dbfs:/FileStore/cdq/owl/drivers/postgres",
 "-q",
 "select * from public.agent",
 "-bhlb",
 "10",
 "-rd",
 "2022-03-16",
 "-driver",
 "owl.com.org.postgresql.Driver",
 "-drivermemory",
 "4g",
 "-cxn",
 "metastore",
 "-h",
 "xxxs.amazonaws.com:xxx/postgres",
 "-ds",
 "public.agent_2",
 "-deploymode",
 "cluster",
 "-owluser",
 "admin"
]
 },
 "new_cluster": {
 "cluster_name": "",
 "spark_version": "7.3.x-scala2.12",
 "aws_attributes": {
 "zone_id": "us-east-1e",
 "first_on_demand": 1,
 "availability": "SPOT_WITH_FALLBACK",
 "spot_bid_price_percent": 100,
 "ebs_volume_count": 0
 },
 "node_type_id": "i3.xlarge",
 "spark_env_vars": {
 "SPRING_DATASOURCE_URL": "jdbc:postgresql://xxx-xx-
xxs.amazonaws.com:xx/postgres",

Chapter 17

dclxiv

Chapter 17

 "SPRING_DATASOURCE_PASSWORD": "xxx",
 "SPRING_DATASOURCE_USERNAME": "xxx",
 "SPRING_DATASOURCE_DRIVER_CLASS_NAME": "org.-
postgresql.Driver",
 "LICENSE_KEY": "xxxx"
 },
 "enable_elastic_disk": false,
 "num_workers": 8
 },
 "timeout_seconds": 0
 }
]
}

Values to be updated in above payload are:

Cluster variables:"SPRING_DATASOURCE_URL":"SPRING_DATASOURCE_
PASSWORD":"SPRING_DATASOURCE_USERNAME":"LICENSE_KEY": //CDQ License

key ``

CDQ variables\ Users can customize the variables based on the activity they choose from
CDQWeb. They can copy the variables from Run CMD option of their DQ job and paste it
in their Json message. ``

Authenticate the Databricks REST API
Here is the Databricks documentation about how to create a personal access token:
https://docs.databricks.com/dev-tools/api/latest/authentication.html

View the job's result in DQ web
You can view the result of your job run by navigating to the DQ Jobs page.

dclxv

https://docs.databricks.com/dev-tools/api/latest/authentication.html

Examples

Programmatic DQ

Don't like leaving your notebook? Want to build DQ into your in-house data quality
pipeline? Collibra DQ can do both!

Simple

Load Table use SparkJDBC

//--- Configure Table From Database ---//
val connProps = Map (

"driver" -> "org.postgresql.Driver",
"user" -> s"${user}",
"password" -> s"${pass}",
"url" ->

s"jdbc:postgresql://${host}:${port}/${database}",
"dbtable" -> "owl_test.nyse"

)

//--- Load Spark DataFrame ---//
val jdbcDF = spark.read.format("jdbc").options(connProps).load
jdbcDF.show

Configure Collibra DQ Options

Connect to DQ's Metadata Database and control DQ scan options. Wrap sparkDF with
DQ context.

Chapter 17

dclxvi

Chapter 17

import com.owl.common.options._
import com.owl.core.util.OwlUtils

val opt = new OwlOptions
//--- Owl Metastore ---//
opt.host = s"$owlHost"
opt.port = s"5432/postgres?currentSchema=public"
opt.pgUser = s"$owlUser"
opt.pgPassword = s"$owlPass"
//--- Run Options ---//
opt.dataset = "owl_test.nyse"
opt.runId = "2018-01-10"
opt.datasetSafeOff = true

val owl = OwlUtils.OwlContext(jdbcDF, opt)

Register with Catalog and Run Profile

//--- Register with Owl Catalog ---//
owl.register(opt)

//--- Profile Dataset ---//
val profile = owl.profileDF
profile.show

Notice that DQ returns results as Dataframes. This is a fantastic abstraction that allows
you to ignore all domain objects and custom types and interact with a scaleable generic
result set using common protocols like "where" or "filter" or "save" or "write" all with parallel
operations.

dclxvii

+--------------+-----+-------+-----------+---+---+--------+-----
------+------+----+------+-------+-------+------+----+---------+
| column|nulls|empties|cardinality|min|max|is_mixed|-
mixed_
ratio| Int|Long|String|Decimal|Boolean|Double|Date|Timestamp|
+--------------+-----+-------+-----------+---+---+--------+-----
------+------+----+------+-------+-------+------+----+---------+
| tenant_
id|
0
|
0
|
60
|
0
|
9
|
false
|
0.0|100000| 0| 0| 0| 0| 0| 0| 0|
| a11|
0
|
0
|
1
|a11|a11|
false
|
0.0| 0| 0|100000| 0| 0| 0| 0| 0|
| a10|
0
|
0
|
1
|a10|a10|
false
|
0.0| 0| 0|100000| 0| 0| 0| 0| 0|
| account_type| 0| 0| 3| 02|
06
|
false
|
0.0|100000| 0| 0| 0| 0| 0| 0| 0|

Chapter 17

dclxviii

Chapter 17

| a13|
0
|
0
|
1
|a13|a13|
false
|
0.0| 0| 0|100000| 0| 0| 0| 0| 0|
|security_
alias|
0
|
0
|
3
|
0
|
2
|
false
|
0.0|100000| 0| 0| 0| 0| 0| 0| 0|
| a12|
0
|
0
|
1
|a12|a12|
false
|
0.0| 0| 0|100000| 0| 0| 0| 0| 0|
+--------------+-----+-------+-----------+---+---+--------+-----
------+------+----+------+-------+-------+------+----+---------+

Profile UI
While the spark DF.show() is a nice and convenient output format, you may prefer a rich UI
visual that tracks the data tests over time. The UI provides trend analysis, data drift, data
relationships and more.

dclxix

Duplicates

Take duplicate detection for example. A common use case where a business wants to
make sure they do not have repeated or duplicate records in a table. Set the lowerBound
to the percent fuzzy match you are willing to accept, commonly 87% or higher is an
interesting match. You might also want to target a single day or week or month that you
shouldn't have dupes within. Notice the .where function and then pass in a custom
dataframe to the DQ context.

opt.dupe.on = true
opt.dupe.lowerBound = 99
opt.dupe.include = Array("SYMBOL", "EXCH")

val df1Day = jdbcDF.where("TRADE_DATE = '2018-01-10' ")
val owl = OwlUtils.OwlContext(df1Day, opt)

val dupes = owl.dupesDF
dupes.show

// rdd collect
dupes.rdd.collect.foreach(println)

// records linked together for remediation
owl.getDupeRecords.show

Chapter 17

dclxx

Chapter 17

Outliers

Gaining and understanding of your outliers is a commonly desired DQ function. DQ has
several configurations to help find the most meaningful outliers in your dataset and over
time. Below compares the current day to a baseline of days in the historical dataframe.

opt.outlier.on = true
opt.outlier.lookback = 6
opt.outlier.dateColumn = "TRADE_DATE"
opt.outlier.timeBin = OutlierOpt.TimeBin.DAY
opt.outlier.key = Array("SYMBOL")

val df1Day = jdbcDF2.where("TRADE_DATE = '2018-01-10' ")
val owl = OwlUtils.OwlContextWithHistory(dfCurrent = df1Day,
dfHist = jdbcDF2, opt = opt)
val outliers = owl.outliersDF
outliers.show

Advanced

Programmatic DQ

Don't like leaving your notebook? Want to build data quality into your in-house data quality
pipeline? Collibra DQ can do both!

Real World Examples

Rules
Let's assume we were provided a file named "atm_cust_file" and want to load it into a
database table as well as scan it for all possible errors. We want to provide a couple levels
of protection. 1) A business rule checking if a customer joined before before the company
was founded. 2) Check if the file 100%matches to the DataFrame or db table we've
created. 3) Check for all possible outliers or anomalies in the dataset. Each one of these 3
issues had a different impact to the business and causes a different flow to trigger in our
pipeline.

dclxxi

Add Rule
Let's create a simple rule and assign points to the overall scoring system for later
delegation.

val rule = new domain2.Rule
 rule.setRuleNm("customer_before_company")
 rule.setRuleValue("customer_since_date < '1956-11-01'")
 rule.setPerc(1.0)
 rule.setPoints(1)
 rule.setIsActive(1)
 rule.setUserNm("Kirk")
 rule.setDataset("ATM_CUSTOMER3")

Util.addRule(rule=rule)

Now let's chain together the remaining two items that were part of our original requirement.
Note that DQ has six additional ML DQ features that we did not turn on in this case.

val owl = Util.OwlContext(df, atmCustFile, props)

// first register with catalog if not registered
owl.register(props)

// Check if dataframe matches the source file 'atm_cust_file'
val source = owl.validateSrcDF
if (source.count() > 1) {

// create service now ticket and exit with fail based on not
matching to original file
}

owl.addAdHocRule(rule)
val ruleBreaks = owl.rulesDF
if (ruleBreaks.count() > 1) {

if (ruleBreaks.where($"score" > 5).count > 1) {
// create service now ticket and exit with fail based on

rules
 }
}

val outliers = owl.outliersDF
if (outliers.where($"confidence" < 10).count > 3) {

// Owl email Alert to business group for attention
// where 3 outliers have a confidence below 10

}

Chapter 17

dclxxii

Chapter 17

Ingesting Intraday Files
Here we illustrate an example of how to work with files when using DQ programmatically.
This can be implemented in both a Notebook setting and in your own codebase.

dclxxiii

//-
///////////

// USE CASE - Ingesting Intraday
Files //

//-
///////////

// Part of your pipeline includes the ingestion of files
that have the date

// and hour encoded in the file name. How do you process
those files using Owl?

//
// Format: <name>_<year>_<month>_<day>.csv
//
// Build up a data structure containg the files you want to

process (here we
// just use a simple list, but you may want to be pulling

from a pubsub
// queue, AWS bucket, etc...). Here we just use a simple

file list of 6
// hours of trade position data.
val position_files = List(

new File(getClass.getResource("/position_file_2019_11_03_
08.csv").getPath),

new File(getClass.getResource("/position_file_2019_11_03_
09.csv").getPath),

new File(getClass.getResource("/position_file_2019_11_03_
10.csv").getPath),

new File(getClass.getResource("/position_file_2019_11_03_
11.csv").getPath),

new File(getClass.getResource("/position_file_2019_11_03_
12.csv").getPath),

new File(getClass.getResource("/position_file_2019_11_03_
13.csv").getPath),

new File(getClass.getResource("/position_file_2019_11_03_
14.csv").getPath))

// Create your spark session.
val spark = SparkSession.builder

 .master("local")
 .appName("test")
 .getOrCreate()

// Configure Owl.
val opt = new OwlOptions

 opt.dataset = "positions"
 opt.load.delimiter = ","

Chapter 17

dclxxiv

Chapter 17

 opt.spark.master = "local[1]"
 opt.dupe.on = true
 opt.dupe.include = Array("ticker", "cid")
 opt.outlier.on = true
 opt.outlier.key = Array("cid")
 opt.outlier.timeBin = TimeBin.HOUR

// Customize this to only process a subset of the data.
 opt.load.fileQuery = "select * from dataset"

 position_files.foreach { file: File =>
// Tell Owl where to find the file.

 opt.load.filePath = file.getPath

// Parse the filename to construct the run date (-rd) that
will be passed

// to Owl.
val name = file.getName.split('.').head
val parts = name.split("_")
val date = parts.slice(2, 5).mkString("-")
val hour = parts.takeRight(1).head

// Must be in format 'yyyy-MM-dd' or 'yyyy-MM-dd HH:mm'.
val rd = s"${date} ${hour}"

// Tell Owl to process data
 opt.runId = rd

// Create a DataFrame from the file.
val df = OwlUtils.load(opt.load.filePath, opt.-

load.delimiter, spark)

// Instantiate an OwlContext with the dataframe and our
custom configuration.

val owl = OwlUtils.OwlContext(df, spark, opt)

// Make sure Owl has catalogued the dataset.
 owl.register(opt)

// Let Owl do the rest!
 owl.owlCheck()

 }

dclxxv

All Pipeline Activities in One Line
For brevity and convenience, DQ allows a DF to be loaded in the constructor and in one
line run all nine dimensions of data quality "owl.owlcheck". To adjust the DQ dimensions
you simply set the properties in the props object.

val owl = Util.OwlContext(df, atmCustFile, props)
owl.owlCheck

Chapter 17

dclxxvi

Chapter 17

Example of some common property settings

val props = new Props()
props.filePath = s"${filePath}/atm_customer_${rd.replace("-","_
")}.csv"
props.runId = rd
props.dateCol = "OWL_RUN_ID"
props.dataset = "ATM_CUSTOMER3"
props.del = ","
props.datasetSafety = false
props.calculateBoundaries = true
props.fileLookBack = true
props.timeBin = "DAY"

// outlier, missing records
props.dl = true
props.dlKey = "customer_id"
props.dlLb = 4

// pattern mining
props.freqPatternMiningByKey = true
props.fpgKey = "customer_id"
props.fpgLookback = 4
props.fpgDateCol = "OWL_RUN_ID"
props.fpgCols = "card_number,first_name,last_name,checking_sav-
ings"
props.fpgLowFreq = true

// validate Src
props.validateSrc = true
props.valSrcKey = "customer_id"

// fuzzy match
props.isDupe = true
props.dupeCutOff = 88
props.depth = 3
props.dupeExcludeCols = "customer_id,card_number,customer_since_
date,OWL_RUN_ID"

dclxxvii

Using Notebooks to build DQ Pipelines
For examples on how to do this, see our Notebook repository below.

GitHub - kirkhas/owl-notebooks: Owl Spark DQ Pipelines

Collibra Data Quality & Observability Rules

Chapter 17

dclxxviii

https://github.com/kirkhas/owl-notebooks

Chapter 17

Global rules

Distributed with the application by default and you can use them from UI/CLI/Notebooks.

Rule types
l Invalid_Email_Check
l Invalid_Phone_Num_Check
l Invalid_Zip_Code_Check
l Invalid_SSN_Check
l Invalid_IP_Address_Check
l Invalid_Gender_Check
l Invalid_EIN_Check
l Invalid_State_Check
l Invalid_Credit_Card_Check
l Valid_Email_Check
l Valid_Phone_Num_Check
l Valid_Zip_Code_Check
l Valid_SSN_Check
l Valid_IP_Address_Check
l Valid_Gender_Check
l Valid_EIN_Check
l Valid_State_Check
l Valid_Credit_Card_Check
l Percent_Move_5 Percent_Move_10
l Percent_Move_20 Percent_Move_50
l Not_In_Previous_run
l Not_In_Current_run
l Having_Count_Greater_Than_One

dclxxix

SQL based rules

Simple rule

Rule Type - SQLG
Simple rule

Freeform SQL

RuleType - SQLF
Freeform SQL

Chapter 17

dclxxx

Chapter 17

Simple rule
Simple rules would be applied to filter a condition on a single column in a single table.

Example #1
In this example you can see how to create a simple SQL rule, with name simple_sql_rule.

Code Description

rule.setRuleNm("simple_sql_rule") Adding the name of the given rule

rule.setRuleValue("startDate < '2011-11-01'")
Setting the simple SQL expression.
No JOIN allowed between tables!

rule.setRuleType("SQLG") Setting the rule type

Code
example_simple_sql_rule.scala

import com.owl.core.Owl
import com.owl.core.util.OwlUtils
import com.owl.common.bll.{RuleBll, RuleTemplateBll}
import com.owl.common.domain2.Rule
import com.owl.common.options.{LoadOpt, OwlOptions}

import org.junit.{Assert, Test}

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._

val loadOptions = new LoadOpt {
pghost = "localhost:5432/postgres"
pguser = "username"
pgpassword = "password"

}

//----- Init Spark ----- //
def sparkInit(): SparkSession = {

val sparkSession = SparkSession.builder
.master("local")
.appName("test")
.getOrCreate()

dclxxxi

sparkSession
}

@Test def simpleRule(): Unit = {

// Arrange
val spark = sparkInit()
import spark.implicits._

val headers = "firstName,lastName,startDate"
val source = Seq(

("Thomas", "Martinez", "2010-11-01"),
("Harry", "Williams", "2012-05-01"),
("Ethan", "Davis", "2009-08-01")

)
val arr = headers.split(",")
val df = source.toDF(arr: _*)

val opt = new OwlOptions {
runId = "2019-09-20"
dataset = "simple_sql_rule_ds"
onReadOnly = false
load = loadOptions

}

val rule = new Rule {
setDataset(opt.dataset)
setRuleNm("simple_sql_rule")
setRuleValue("startDate < '2011-11-01'")
setRuleType("SQLG")
setPerc(1.0)
setPoints(1)
setIsActive(1)
setUserNm("admin")

}

val owl = OwlUtils.OwlContext(df, opt)
.register(opt)

OwlUtils.addRule(rule)

// Act
owl.owlCheck()

// Assert
import scala.collection.JavaConversions
val hootRule = JavaConversions.asScalaBuffer

(owl.hoot.rules).find(x => rule.getRuleNm.equals
(x.getRuleNm)).orNull

Chapter 17

dclxxxii

Chapter 17

Assert.assertNotNull(hootRule)
Assert.assertEquals(66, hootRule.getScore)

}

// Execute notebook
simpleRuleNotebook()

Result

via Code
You can do multiple assertion on the result of the OwlCheck process.
Using owl.hoot parameter will provide access to the execution results, in this case for the
rule.

via UI

dclxxxiii

Example #2
In this example you can see how to create a simple SQL with rule with templates, with
name simple_sql_rule_with_template.

Steps

1. Create the rule template, where the template column name should be marked with
$colNm string.\

val ruleTemplate = RuleTemplateBll.createRuleTemplate(
"not_null_or_empty",
"Column cannot contain null or empty values",
" $colNm is null or $colNm = \'\' or $colNm = \'null\'

"
)

2. Create the Rule instance, where value of RuleValue will be used to replace $colNm
in the template expression.\

val rule = RuleBll.createRule(opt.dataset)
rule.setRuleNm("is_city_not_null_or_empty")
rule.setRuleValue("city")
rule.setRuleType("CUSTOM") // legacy type required to look
into rule repo
rule.setRuleRepo("not_null_or_empty") // custom rule name
to pull rule value from rule repo
rule.setPerc(1.0)
rule.setPoints(1)
rule.setIsActive(1)
rule.setUserNm("admin")

Code

import com.owl.core.Owl
import com.owl.core.util.OwlUtils
import com.owl.common.bll.{RuleBll, RuleTemplateBll}
import com.owl.common.domain2.Rule

Chapter 17

dclxxxiv

Chapter 17

import com.owl.common.options.{LoadOpt, OwlOptions}

import org.junit.{Assert, Test}

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._

val loadOptions = new LoadOpt {
pghost = "localhost:5432/postgres"
pguser = "username"
pgpassword = "password"

}

//----- Init Spark ----- //
def sparkInit(): SparkSession = {

val sparkSession = SparkSession.builder
.master("local")
.appName("test")
.getOrCreate()

sparkSession
}

@Test def simpleRuleWithTemplate(): Unit = {

// Arrange
val spark = sparkInit()
import spark.implicits._

val headers = "firstName,lastName,city"
val source = Seq(

("Thomas", "Martinez", ""),
("Harry", "Williams", null),
("Ethan", "Davis", "Los Angeles")

)
val arr = headers.split(",")
val df = source.toDF(arr: _*)

val opt = new OwlOptions {
runId = "2019-09-20"
dataset = "simple_sql_rule_with_template_ds"
onReadOnly = false
load = loadOptions

}

val ruleTemplate = RuleTemplateBll.createRuleTemplate("not_
null_or_empty","Column cannot contain null or empty values", "
$colNm is null or $colNm = \'\' or $colNm = \'null\' ")

val rule = RuleBll.createRule(opt.dataset)

dclxxxv

rule.setRuleNm("is_city_not_null_or_empty")
rule.setRuleValue("city")
rule.setRuleType("CUSTOM") // legacy type required to look

into rule repo
rule.setRuleRepo("not_null_or_empty") // custom rule name to

pull rule value from rule repo
rule.setPerc(1.0)
rule.setPoints(1)
rule.setIsActive(1)
rule.setUserNm("admin")

val owl = OwlUtils.OwlContext(df, opt)
.register(opt)

OwlUtils.addRuleTemplate(ruleTemplate)
OwlUtils.addRule(rule)

// Act
owl.owlCheck()

// Assert
import scala.collection.JavaConversions
val hootRule = JavaConversions.asScalaBuffer

(owl.hoot.rules).find(x => rule.getRuleNm.equals
(x.getRuleNm)).orNull

Assert.assertNotNull(hootRule)
Assert.assertEquals(66, hootRule.getScore)

}

// Execute notebook
simpleRuleWithTemplate()

Chapter 17

dclxxxvi

Chapter 17

Result

via UI

dclxxxvii

Freeform SQL
It would be used when applying a complex condition across multiple tables/columns and
generally when more flexibility/customization is desired.

Individual statement

Syntax

SELECT * FROM @<dataset_name> <table_alias>
WHERE <filter_expression>
GROUP BY <group_by_expression>
HAVING <having_expression>

The base of the statement is given with @<dataset_name> style. In general the <dataset_
name> is the same, where the rule is attached to, but basically you can use any valid
dataset name in the expression.

Examples
Simple rule expression

opt.dataset = "example_ds"

val rule = RuleBll.createRule(opt.dataset)
rule.setRuleNm("is_city_not_null_or_empty")
rule.setRuleValue("select * from @example_ds t where t.amount >
'5000'")
rule.setRuleType("SQLF")
rule.setPerc(1.0)
rule.setPoints(1)
rule.setIsActive(1)
rule.setUserNm("admin")

Complex rule expression

Chapter 17

dclxxxviii

Chapter 17

opt.dataset = "unique_rule_ds"

val rule = RuleBll.createRule(opt.dataset)
rule.setRuleNm("unique_rule")
rule.setRuleValue("select * from (select count(*) as cnt, cus-
tomer_id from @unique_rule_ds group by customer_id) having cnt
> 1")
rule.setRuleType("SQLF")
rule.setPerc(1.0)
rule.setPoints(1)
rule.setIsActive(1)
rule.setUserNm("admin")

RegExp expression

opt.dataset = "regexp_rule_ds"

val rule = RuleBll.createRule(opt.dataset)
rule.setRuleNm("LIKE_rule")
rule.setRuleValue("select * from @regexp_rule_ds.SYMBOL rlike
'^ABB+' ")
rule.setRuleType("SQLG")
rule.setPerc(0.02)
rule.setPoints(1)
rule.setIsActive(1)
rule.setUserNm("admin")

Join statements

Available join types between multiple data sets
l WHERE tableA.id = tableB.id style
l INNER JOIN
l LEFT <OUTER> JOIN
l RIGHT <OUTER> JOIN

dclxxxix

Joining other data sets
l Getting historical state of the same data set

Syntax: @t<n>,
where n parameter means, how many days should we go back in the past at the
base data set (marked with @<data set_name>)

Example:

o @t1, will point to the data which was used at yesterday's run
o @t4, will point to the data which was used 4 days ago

l Getting different data set
Syntax: @<other_data set_name>\

WHERE style
Look-back dataset

SELECT * FROM @<dataset_name> <table_alias>, @t1 [<history_
table_alias>]
WHERE <join_expression> AND <filter_expression>

Example

opt.dataset = "example_ds"

val rule = RuleBll.createRule(opt.dataset)
rule.setRuleValue("select * from @example_ds t, @t1 where t.cus-
tomer_id = t1.customer_id and t.card_number <> t1.card_number
")
rule.setRuleType("SQLF")

Different data set

SELECT * FROM @<dataset_name> <table_alias>, @<other_dataset_
name> [<other_alias>]
WHERE <join_expression> AND <filter_expression>

Chapter 17

dcxc

Chapter 17

Example

opt.dataset = "example_ds"
opt2.dataset = "other_ds"

val rule = RuleBll.createRule(opt.dataset)
rule.setRuleValue("select * from @example_ds t, @other_ds ds2
where t.customer_id = ds2.customer_id and t.card_number <> ds2.-
card_number ")
rule.setRuleType("SQLF")

LEFT JOIN
Example

opt.dataset = "example_ds"

val rule = RuleBll.createRule(opt.dataset)
rule.setRuleNm("not_back2back_days")
rule.setRuleValue(" select * from @example_ds A LEFT OUTER JOIN
@t1 B ON A.customer_id = B.customer_id where A.customer_id is
not null and B.customer_id is null ")
rule.setRuleType("SQLF")
rule.setPerc(1.0)
rule.setPoints(1)
rule.setIsActive(1)
rule.setUserNm("admin")

Data type based rules

Simple check for individual columns.

Rule types

Empty check
Rule type: EMPTYCHECKDescription: Checking whether the target column has empty
values or not.

dcxci

Null check
Rule type: NULLCHECKDescription: Checking whether the target column has NULL
values or not.

Date check
Rule type: DATECHECKDescription: Checking whether the target column has only
DATE values or not.

Integer check
Rule type: INTCHECKDescription: Checking whether the target column has only
INTEGER values or not

Double check
Rule type: DOUBLECHECKDescription: Checking whether the target column has only
DOUBLE values or not.

String check
Rule type: STRINGCHECKDescription: Checking whether the target column has only
STRING values or not.

Mixed datatype check
Rule type: DATATYPECHECKDescription: ---

Syntax
l <rule_type> - Fixed key to the rule type
l <column_name> - Column to apply the rule
l <rule_name> - Custom name of the rule

Chapter 17

dcxcii

Chapter 17

opt.dataset = "example_ds"

val rule = RuleBll.createRule(opt.dataset)
rule.setRuleNm("<rule_name>")
rule.setRuleValue("<column_name>")
rule.setRuleType("<rule_type>")
rule.setPerc(1.0)
rule.setPoints(1)
rule.setIsActive(1)
rule.setUserNm("admin")

Outliers

This real life use-case is when you have a large file or data frame with many days of data
but you want the run profile to be the current day so that it trends properly overtime.
Another nuance to this use-case is that the customer_id is a unique field to the user and it
should not show up in the analytics i.e. an outlier. But the customer_id should be available
when the user wants to query the rest api end points. The customer_id is then used to link
back the users original dataset. A bloomberg_Id (BB_ID) is a common example.

CSV File

fname,app_date,age,customer_id
Kirk,2018-02-24,18,31
Kirk,2018-02-23,11,4
Kirk,2018-02-22,10,3
Kirk,2018-02-21,12,2
Kirk,2018-02-20,10,1

dcxciii

Notebook Code (Spark Scala)

val filePath = getClass.getResource("/notebooktest.csv").getPath

val spark = SparkSession.builder
 .master("local")
 .appName("test")
 .getOrCreate()

val opt = new OwlOptions()
opt.dataset = "dataset_outlier"
opt.runId = "2018-02-24"
opt.outlier.on = true
opt.outlier.key = Array("fname")
opt.outlier.dateColumn = "app_date"
opt.outlier.timeBin = OutlierOpt.TimeBin.DAY
opt.outlier.lookback = 5
opt.outlier.excludes = Array("customer_id")

val dfHist = OwlUtils.load(filePath = filePath, delim = ",",
sparkSession = spark)
val dfCurrent = dfHist.where(s"app_date = '${opt.runId}' ")

val owl = OwlUtils.OwlContextWithHistory(dfCurrent=dfCurrent,
dfHist=dfHist, opt=opt)
owl.register(opt)
owl.owlCheck()

Collibra DQWeb UI
Score drops from 100 to 99 based on the single outlier in the file. Row count is 1 because
there is only 1 row in the current data frame. The historical data frame was provided for
context and you can see those rows in the outlier drill-in. The customer_id is available in
the data preview and can be used as an API hook to link back to the original data set.

Chapter 17

dcxciv

Chapter 17

After you run an DQcheck using owl.owlcheck you might want to check individual scores to
see what type of issues were in the data. Collibra DQ sends back the records with issues
in the format of a DataFrame using the notebook cmds or JSON from the REST api.

val hoot = owl.hoot

println(s"SHAPE ${hoot.shapeScore} ")
println(s"DUPE ${hoot.dupeScore} ")
println(s"OUTLIER ${hoot.outlierScore} ")
println(s"PATTERN ${hoot.patternScore} ")
println(s"RECORD ${hoot.recordScore} ")
println(s"SCHEMA ${hoot.schemaScore} ")
println(s"BEHAVIOR${hoot.behaviorScore} ")
println(s"SOURCE ${hoot.sourceScore} ")
println(s"RULES ${hoot.ruleScore} ")

if (hoot.shapeScore > 0) {
 owl.getShapeRecords.show
}
if (hoot.dupeScore > 0) {
 owl.getDupeRecords.show
}

dcxcv

+-------+---------+--------------------+--------+-----------+---
----+------+
|row_cnt|obs_score| row_key|obs_type|customer_
id| fname|owl_id|
+-------+---------+--------------------+--------+-----------+---
----+------+
| 21| 46|afa89984ce472a409...| DUPE| 32| -
Kirk| 1|
| 22| 46|afa89984ce472a409...| DUPE| 31|Kir-
k's.| 2|
| 23| 60|41ea2d828b1a5fbf2...| DUPE| 30| -
 Dan| 3|
| 24| 60|41ea2d828b1a5fbf2...| DUPE| 27| -
 Dan| 6|

+---------------+--------------------+--------+----------+------
--------+--------+-------+-------+---+--------------------+-----
------+-------+------+--------+
| dataset| run_id|col_name|col_format|col_
format_cnt|owl_rank|row_cnt|row_key|age| app_date|-
customer_id| fname|owl_id|time_bin|
+---------------+--------------------+--------+----------+------
--------+--------+-------+-------+---+--------------------+-----
------+-------+------+--------+
|dataset_outlier|2018-02-24
00:00:...| fname| xxxx'x.| 1| 1| 2|xx-
xx'x.| 18|2018-02-24
00:00:...| 31|Kirk's.| 2| null|
+---------------+--------------------+--------+----------+------
--------+--------+-------+-------+---+--------------------+-----
------+-------+------+--------+

http://$host/v2/getoutlier?dataset=dataset_outlier&runId=2018-02-24

GetOutlier

Parameters

Path

data set string name of data set

data set string yyyy-MM-dd format can include time and timezone

Responses

Chapter 17

dcxcvi

Chapter 17

200

{
 confidence: 77
 dataset: "dataset_outlier"
 keyArr: null
 lb: 0
 outColumn: "age"
 outKey: "Kirk"
 outMedian: "10.5"
 outValue: "18.0"
 runId: "2018-02-24T05:00:00.000+0000"
 ub: 0
 }

http://$host/v2/getdatashapes?dataset=dataset_outlier&runld=2018-02-24

GetShape

Parameters

Path

data set string name of data set

runId string yyyy-MM-dd format can include time and timezone

Responses

200

Column Match

This example shows how one can get column level match statistics across datasources in
an Owl Notebook. Supports exact and fuzzy matching.

dcxcvii

Set ColMatch Parameters

 %spark
import com.owl.common.domain._
import com.owl.common.Props
import com.owl.core.util.OwlUtils
import scala.collection.JavaConverters._
import com.owl.common.Utils
val c1 = new Connection()

 c1.dataset = "silo.account"
 c1.user = "user"
 c1.password = "pass"
 c1.query = "select id, networth, acc_name, acc_branch from
silo.account limit 200000"
 c1.url = "jdbc:mysql://<db url>:3306"

val c2 = new Connection()
 c2.dataset = "silo.user_account"
 c2.user = "user"
 c2.password = "pass"
 c2.query = "SELECT acc_name, acc_branch, networth FROM
silo.account limit 200000"
 c2.url = "jdbc:mysql://<db url>:3306"

val c3 = new Connection()
 c3.dataset = "silo.user_account"
 c3.user = "user"
 c3.password = "pass"
 c3.query = "SELECT acc_name as acc_name2, acc_branch, net-
worth FROM silo.account limit 100000"
 c3.url = "jdbc:mysql://<db url>:3306"

 props.dataset = "colMatchTest1"
 props.runId = "2017-02-04"
 props.connectionList = List(c1,c2,c3).asJava
 props.colMatchBatchSize = 2
 props.colMatchDurationMins = 3

val owl = OwlUtils.OwlContext(spark.emptyDataFrame, props)

Exact Match

%spark
props.colMatchLevel = "exact"
owl.register(props)
owl.colMatchDF().show

Chapter 17

dcxcviii

Chapter 17

Sample Result

dcxcix

+------------+-----------------+----------+----------+----------
-----+
| dataset_1| dataset_2| col_1| col_2|matchPer-
centage|
+------------+-----------------+----------+----------+----------
-----+
|silo.account|silo.user_account| id| acc_
name| 0|
|silo.account|silo.user_account| id|acc_
branch| 0|
|silo.account|silo.user_
account| id| networth| 0|
|silo.account|silo.user_account| id| owl_
id| 0|
|silo.account|silo.user_account| networth| acc_
name| 0|
|silo.account|silo.user_account| networth|acc_
branch| 16|
|silo.account|silo.user_
account| networth| networth| 100|
|silo.account|silo.user_account| networth| owl_
id| 0|
|silo.account|silo.user_account| acc_name| acc_
name| 87|
|silo.account|silo.user_account| acc_name|acc_
branch| 0|
|silo.account|silo.user_account| acc_
name| networth| 0|
|silo.account|silo.user_account| acc_name| owl_
id| 0|
|silo.account|silo.user_account|acc_branch| acc_
name| 0|
|silo.account|silo.user_account|acc_branch|acc_
branch| 87|
|silo.account|silo.user_account|acc_
branch| networth| 12|
|silo.account|silo.user_account|acc_branch| owl_
id| 0|
|silo.account|silo.user_account| owl_id| acc_
name| 0|
|silo.account|silo.user_account| owl_id|acc_
branch| 0|
|silo.account|silo.user_account| owl_
id| networth| 0|
|silo.account|silo.user_account| owl_id| owl_
id| 0|
+------------+-----------------+----------+----------+----------
-----+
only showing top 20 rows

Chapter 17

dcc

Chapter 17

Fuzzy Match

%spark
props.colMatchLevel = "fuzzy"
props.colMatchFuzzyDistance = 4
owl.register(props)
owl.colMatchDF().show

dcci

Sample Result

Chapter 17

dccii

Chapter 17

+------------+-----------------+----------+----------+----------
-----+
| dataset_1| dataset_2| col_1| col_2|matchPer-
centage|
+------------+-----------------+----------+----------+----------
-----+
|silo.account|silo.user_account| id| acc_
name| 5|
|silo.account|silo.user_account| id|acc_
branch| 27|
|silo.account|silo.user_
account| id| networth| 22|
|silo.account|silo.user_account| id| owl_
id| 0|
|silo.account|silo.user_account| networth| acc_
name| 100|
|silo.account|silo.user_account| networth|acc_
branch| 233|
|silo.account|silo.user_
account| networth| networth| 200|
|silo.account|silo.user_account| networth| owl_
id| 0|
|silo.account|silo.user_account| acc_name| acc_
name| 162|
|silo.account|silo.user_account| acc_name|acc_
branch| 262|
|silo.account|silo.user_account| acc_
name| networth| 75|
|silo.account|silo.user_account| acc_name| owl_
id| 0|
|silo.account|silo.user_account|acc_branch| acc_
name| 262|
|silo.account|silo.user_account|acc_branch|acc_
branch| 612|
|silo.account|silo.user_account|acc_
branch| networth| 175|
|silo.account|silo.user_account|acc_branch| owl_
id| 0|
|silo.account|silo.user_account| owl_id| acc_
name| 0|
|silo.account|silo.user_account| owl_id|acc_
branch| 0|
|silo.account|silo.user_account| owl_
id| networth| 0|
|silo.account|silo.user_account| owl_id| owl_
id| 0|
+------------+-----------------+----------+----------+----------
-----+
only showing top 20 rows

dcciii

AWS DataBricks

Getting started

First use vanilla spark code to setup connection properties and access a database table
via spark jdbc. Entire code example available at the end for copy paste.

Schema output, Row Count and Runtime

root
 |-- EXCH: string (nullable = true)
 |-- SYMBOL: string (nullable = true)
 |-- TRADE_DATE: date (nullable = true)
 |-- OPEN: decimal(9,3) (nullable = true)
 |-- HIGH: decimal(9,3) (nullable = true)
 |-- LOW: decimal(9,3) (nullable = true)
 |-- CLOSE: decimal(9,3) (nullable = true)
 |-- VOLUME: integer (nullable = true)
 |-- PART_DATE_STR: date (nullable = true)

Row Count: 102,817
Runtime: 00:00:03

Next Configure Owl Options and Point to Owl Metastore

This requires that you have imported the Collibra DQ libraries into your notebook or
databricks env.

Chapter 17

dcciv

Chapter 17

Next Run a Profile

dccv

+-------------+-----+-------+-----------+--------+-----------+--
----+----+------+-------+-------+------+------+---------+
| column|nulls|empties|cardinality|is_mixed|mixed_
ratio|
Int|Long|String|Decimal|Boolean|Double| Date|Timestamp|
+-------------+-----+-------+-----------+--------+-----------+--
----+----+------+-------+-------+------+------+---------+
|
HIGH
|
0| 0| 19159| false| 0.0| 0| 0| 0|
102817| 0| 0| 0| 0|
|
SYMBOL
|
0
|
0
|
3137
|
false
|
0.0| 0| 0|102817| 0| 0| 0| 0| 0|
|
LOW
|
0| 0| 18845| false| 0.0| 0| 0| 0|
102817| 0| 0| 0| 0|
|
VOLUME
|
0
|
0
|
25856
|
false
|
0.0|102817| 0| 0| 0| 0| 0| 0| 0|

Chapter 17

dccvi

Chapter 17

| TRADE_
DATE
|
0
|
0
|
33
|
false
|
0.0| 0| 0| 0| 0| 0| 0|102817| 0|
|
EXCH
|
0
|
0
|
2
|
false
|
0.0| 0| 0|102817| 0| 0| 0| 0| 0|
|
CLOSE
|
0| 0| 15781| false| 0.0| 0| 0| 0|
102817| 0| 0| 0| 0|
|PART_DATE_
STR
|
0
|
0
|
33
|
false
|
0.0| 0| 0| 0| 0| 0| 0|102817| 0|
|
OPEN
|
0| 0| 16013| false| 0.0| 0| 0| 0|
102817| 0| 0| 0| 0|
+-------------+-----+-------+-----------+--------+-----------+--
----+----+------+-------+-------+------+------+---------+

dccvii

Next Check for Duplicates

Notice there is a duplicate discovered. NYSE AAN record exists twice in the 10/1/2018.
This should not happen as end of day stock data should only have 1 record per stock
symbol. Great DQ finding.

Next Scan for Outliers

Notice that KOD.w the camera company Kodak commonly trades at less than 2 pennies
and jumps to $2.35. Absolutely an outlier. This was a news event named Kodak coin,

Chapter 17

dccviii

Chapter 17

google it.

+-----+------+---------+----------+----------+
| key|column| value|prediction|confidence|
+-----+------+---------+----------+----------+
TPG.E	VOLUME	23400.0	0.0	0
MTB-C	VOLUME	0.0	100.0	0
KOD.W	OPEN	2.35	0.015	1

dccix

Entire Code Snippet

Chapter 17

dccx

Chapter 17

//--- GCP Postgres Connection ---//
val url = "jdb-
c:postgresql://${host}:5432/postgres?currentSchema=owl_test"
var connectionProps = new java.util.Properties()
connectionProps.setProperty("driver", "org.postgresql.Driver")
connectionProps.setProperty("user", "${user}")
connectionProps.setProperty("password", "${pass}")
connectionProps.setProperty("connectionUrl", url)

//--- Load DataFrame From GCP Postgres ---//
val jdbcDF2 = spark.read.jdbc(url, "owl_test.nyse", con-
nectionProps)
jdbcDF2.printSchema
jdbcDF2.cache
jdbcDF2.count

//--- Owl Library Imports ---//
import com.owl.common.options._
import com.owl.core.Owl
import com.owl.core.util.OwlUtils

val opt = new OwlOptions()
//--- Owl Metastore ---//
opt.host = s"${host}"
opt.port = s"5432/postgres?currentSchema=public"
opt.pgUser = s"$user"
opt.pgPassword = s"$pass"

//--- Run Options ---//
opt.dataset = "nyse_notebook_pipeline"
opt.runId = "2018-01-10"
opt.datasetSafeOff = true

opt.dupe.on = true
opt.dupe.lowerBound = 99
opt.dupe.include = Array("SYMBOL", "EXCH")

opt.outlier.on = true
opt.outlier.lookback = 6
opt.outlier.dateColumn = "TRADE_DATE"
opt.outlier.timeBin = OutlierOpt.TimeBin.DAY
opt.outlier.key = Array("SYMBOL")
opt.outlier.measurementUnit = "VOLUME-
E=100000000,HIGH=0.1,LOW=0.1,OPEN=0.1,CLOSE=0.1"

//--- Initialize Owl ---//
val currentDay = jdbcDF2.where(s"TRADE_DATE = '${opt.runId}' ")
val owl = OwlUtils.OwlContextWithHistory(dfCurrent = currentDay,

dccxi

 dfHist = jdbcDF2, opt = opt)

//--- Pipeline Cmds ---//
owl.register(opt)
val profile = owl.profileDF
val outliers = owl.outliersDF
val dupes = owl.dupesDF

Required configuration
l DataBricks Runtime: 5.4 (includes Apache Spark 2.4.3, Scala 2.11)
l Python Version: 3

Required libraries
l DQ jar fileExample: owl_core_trunk_jar_with_dependencies.jar __
l JDBC driver: org.springframework:spring-jdbc:4.3.16.RELEASE\
l Database specific JDBC connector driversExample#1: mysql:mysql-connector-
java:8.0.17Example#2: org.postgresql:postgresql:jar:42.2.8

Azure DataBricks

Run a Collibra DQ check on any file in Azure
Blob
Read the File by setting up the azure key.

spark.conf.set("fs.azure.ac-
count.key.abcCompany.blob.core.windows.net"
,"GBB6Upzj4AxQld7cFv7wBYNoJzIp/WEv/5NslqszY3nAAlsalBNQ==")

val df = spark.read.parquet("wasbs://company-abc@-
abceCompany.blob.core.windows.net/FILE_NAME/20190201_FILE_NAME.-
parquet")

Process the file using Collibra DQ

Chapter 17

dccxii

Chapter 17

// register in Owl Catalog, Optional
val owl = new Owl(df).register

// run a full DQ Check
owl.owlCheck()

Additional imports and input options

import com.owl.core._
import com.owl.common._

val props = new Props()
props.dataset = datasetName
props.runId = 2019-03-02
props..... // look at the many input options

Give your data a little quality time.

Options (base)

API documentation for Java Class DQOptions.

The Class properties are laid out in the following format headers to allow Gitbook indexing.

ClassName field_name
field type | default __Description

DQOptions data set

String | _StringUtils.Empty _ __Unique string ID for the DQCheck Data set. Cannot
contain ".", "-", "#", "@" \

dccxiii

https://owl-analytics.com/Create-a-Data-Quality-Pipeline-using-Owl.html
https://owl-analytics.com/Create-a-Data-Quality-Pipeline-using-Owl.html

Example Code

Initializing
Scala

import com.owl.common.options.OwlOptions

val opts = new OwlOptions()

Java

import com.owl.common.options.OwlOptions

OwlOptions opts = new OwlOptions();

{% endtab %} {% endtabs %}

Options API

Field mappings

Field name CLI prop Description

dataset ds dataset name, example: userTable or users or user_file

rundId rd run date, must be in format yyyy-MM-dd or for incremental use
Hours or Minutes yyyy-MM-dd HH:mm

rundIdEnd rdEnd end date for query ranges t_date >= $ and t_date < $, must be in
format yyyy-MM-dd or for incremental use Hours or Minutes
yyyy-MM-dd HH:mm

passFail passfaillimit Limit for passing or failing runs

jobId

onReadOnly readonly Do not persist results to the DQmetastore - useful during testing.

Chapter 17

dccxiv

Chapter 17

Load Options

Field name CLI prop Description

fullFile fullfile use entire file for lookbacks instead of just filequery

fileQuery

header

headerSrc

hasHeader

isParallel

isJson

isMixedJson

isMapsJson

flatten

isMultiLine

sparkprinc

sparkkeytab

jdbcprinc

jdbckeytab

srcpwdmgr

pwdmgr

pguser pguser

pgpassword pgpassword

dccxv

Field name CLI prop Description

pghost host

pgport port

executorcores

isParquet

isAvro

avroSchema

isXml

xmlRowTag

isOrc

dateFmt

timeFmt

datasetSafety

filePath

delimiter

fileLookBack

dbLookBack

connectionURL

userName

password

sqlQuery

connectionProps

Chapter 17

dccxvi

Chapter 17

Field name CLI prop Description

zkHost ~~~~ Deprecated

zkPort ~~~~ Deprecated

zkPath ~~~~ Deprecated

Outlier Options

Field name CLI prop Description

on dl Deep learning.

lookback dllb A deep learning lookback. For example, a value 5 for a lookback of 5 days.

Note Lookback periods directly correlate to -dllb.

key dlkey A comma-delimited deep learning key. comma delim key ex: sym-
bol,date

dateField

bin

includes dlinc A deep learning col limit. For example, open,close,high,volume.

excludes dlexc A deep learning col exclusion. For example, open,close,high,volume.

categorical

by

limit

historyLimit

dccxvii

Field name CLI prop Description

minhistory dlminhist An automatically generated flag based on the outlier lookback setting -

dllb that defines the minimum number of days before DQ flags data as

potential outliers. -dlminhistensures that the number of days in the

algorithm is relative to the total scope of the lookback period.

It is not recommended that you override this flag from the command line.

Note Lookback periods do not directly correlate to -dlminhist.

score

FPG Options

Field name CLI prop Description

on fpgon pattern mining

lookback fpglb lookback interval for pattern mining. Ex: -fpglb 5

key fpgkey natural key for pattern mining activity

dateField fpgdc date column for pattern mining. Ex: -fpgdc date_col

lowFreq Deprecated

includes fpginc pattern mining is expensive use this input to limit the observed
cols

excludes fpgexc pattern mining is expensive use this input to limit the observed
cols

timeBin fpgtbin time bin for pattern mining. Ex: -fpgtbin DAY

score fpgscore score for pattern mining records

minSupport fpgsupport

confidence fpgconfidence

Chapter 17

dccxviii

Chapter 17

Dupe Options

Field name CLI prop Description

on dupe duplicate record detection

includes dupeinc duplicate record detection, column inclusion list

excludes dupeexc duplicate record detection, column exclusion list

depth

lowerBound dupelb duplicate lower bounds on percent match default [85]

upperBound

blocksize

useCache

checkHeader

exactMatch

ignoreCase dupenocase duplicate record detection, column exclusion list

score dupescore

limit dupelimit Limit for dupe rows stored

Profile Options

Field name CLI prop Description

on

includes

excludes

dataShapeOn

dccxix

Field name CLI prop Description

statsOn

correlationOn

histogramOn

cardinalityOn

dataShapeColsInc

dataShapeColsExc

Source Options

Field name CLI prop Description

on

includes

excludes

key

fileQuery

map

score

datasetSrc

driverSrc

userNameSrc

passwordSrc

connectionURLSrc

Chapter 17

dccxx

Chapter 17

Field name CLI prop Description

sqlQuerySrc

connectionPropsSrc

Rule Options

Field name CLI prop Description

on

rulesOnly

semantic

ColMatch Options

Field name CLI prop Description

colMatchParallelProcesses

colMatchDurationMins

colMatchBatchSize

connectionList

Spark Options

Field name CLI prop Description

numExecutors

executorMemory

driverMemory

dccxxi

Field name CLI prop Description

executorCores

master

jars

libs

driver

Misc Options

Field name CLI prop Description

obslimit

nullValue

Chapter 17

dccxxii

Chapter 17

Classes

dccxxiii

Load

Chapter 17

dccxxiv

Chapter 17

package com.owl.common.options;

import org.apache.commons.lang3.StringUtils;

import java.util.Properties;

/**
 * Owl Options related to data loading
 */
public class LoadOpt {

// Options order: "unsorted",
// "dataset scope columns", "dataset scope rows", "look

back",
// "common options for both data sources", "file as data

source", "db as data source"

public static final String SINGLE_QUOTE = "'";
public static final String DOUBLE_QUOTE = "\"";
public static final String BACK_TICK = "`";

/**
 * If true, don't save any metadata
 * TODO confirm if this is correct
 */

public Boolean readonly = false;

/**
 * The Password manager.
 */

public String passwordManager = null;

/**
 * Catalog alias (Catalog name)
 */

public String alias = StringUtils.EMPTY;

// --- Dataset Scope Column specifications ------- //
// Properties that select columns for Dataset activities or

modifies (data type or new columns)
// prior and/or during loading into Spark DF
/**

 * Dataset scope query. (IMPORTANT)
 * The query should contain all the columns necessary to run
the activities.
 * TODO: figure out if this gets used when using files
 */

public String query = StringUtils.EMPTY;

dccxxv

/**
 * Concatenated column names (sep = ",") for columns that
are keys
 * TODO: confirm
 */

public String key = StringUtils.EMPTY;

/**
 * SELECT expression to transform expressions with assign-
ment by "=" and delimited by "|".
 * e.g. colname=cast(colname as string)|colname2=colname2
(cast as date)
 */

public String expression = StringUtils.EMPTY;

/**
 * Add "OWL_RUN_ID" UNIX timestamp (s) column to Spark DF
usng the OwlOptions.runId.
 * Does not obey timeStampDivisor (timestamp in seconds
because Spark)
 */

public Boolean addDateColumn = false;

/**
 * Fill null values in Spark DF with 0 (numeric columns
only)
 */

public Boolean zeroFillNull = false;

/**
 * A string that indicates a null value; any value matching
this string will be set as nulls in the Spark DF
 * Default: "" -> NULL
 * Example: 'null' -> NULL
 * --
 * Note: to emptyStirngFillNull (replace String column null
-> "", use expression
 */

public String replaceNulls = StringUtils.EMPTY;

/**
 * All data types forced to strings for type safe pro-
cessing.
 * Not implemented in activity (yet)
 */

public Boolean stringMode = false;

// --- Dataset Scope Row specifications ------- //

Chapter 17

dccxxvi

Chapter 17

// Properties that filter rows for Dataset activities
// prior and/or during loading into Spark DF
/**

 * Convert row into string and only use rows containing this
value.
 * Strict matching only.
 */

public String filter = StringUtils.EMPTY;

/**
 * Convert row into string and only use rows containing this
value.
 * Strict matching only.
 */

public String filterNot = StringUtils.EMPTY;

// --- Look back ------- //
// For Look back feature
/**

 * Build up history of OwlChecks. Does not include current
OwlCheck.
 * TODO: Document the relationship with unionLookBack
 */

public Integer backRun = null;

/**
 * Whether to load data for looking back in history.
 * How much historical data to load is based on Out-
lierOpt.lookback and PatternOpt.lookback.
 */

public Boolean unionLookBack = false;

// --- Shared Data Loading Options ------- //
// Properties that affect data loading & pre-processing for

both files and db as source
/**

 * Whether to use cached data for activities
 */

public Boolean cache = true;

/**
 * The year, month, and day format of date columns in the
dataset for loading the data only.
 * Default = "yyyy-MM-dd"
 */

public String dateFormat = "yyyy-MM-dd";

/**

dccxxvii

 * The hour, minute, second, and milisecond format of date
columns in the dataset for loading the data only/
 * Default = "HH:mm:ss.SSS"
 * Not used. Questionably why separate timeFormat variable
exists when dateFromat can represent hms as well.
 */

public String timeFormat = "HH:mm:ss.SSS";

/**
 * Whether to convert date columns (specified by activity
opts) in dataset
 * into timestamp in ms (to make it seconds, set Props.-
timeStampDivisor = "s")
 * TODO: Needs LoadOpt.timeStampDivisor and fix Utils.scala
date2Timestamp
 */

public Boolean timestamp = false;

/* TODO add timeStampDivisor here and map between owl props?
 public String timeStampDivisor = "ms"
 */

// --- Using file as data source ------- //
// Properties that control where & how static file is read
/**

 * Full path to the file.
 * If hdfs, then "hdfs://...".
 * If s3, then "s3://...", "s3a://...", or "s3n://...".
 * If parquet, then "...parquet" or "...PARQUET"
 */

public String filePath = StringUtils.EMPTY;

/**
 * SQL query used on file.
 * owl_id is added if not included in select clause.
 * If empty, then defaults to full file query.
 * (Does not update LoadOpts.fullFile to true).
 */

public String fileQuery = StringUtils.EMPTY;

/**
 * Whether to use full file (i.e. use all columns) on data
load
 */

public Boolean fullFile = false;

/**
 * File column names, comma separated

Chapter 17

dccxxviii

Chapter 17

 */
public String fileHeader = null;

/* TODO checkHeader needs to be moved here from DupeOpt
 public Boolean checkHeader = true;*/

/**
 * Whether to have Spark infer the schema of data source
 * If props.profile2 == true, this is overwritten to false!
 * If xml file, this is ignored and schema is always
inferred by Spark on xml data load.
 * If avro file, this value is respected (but may get over-
written by props.profile2)
 * (see activity2.Load.file)
 */

public Boolean inferSchema = true;

/**
 * Sample without replacement from file. Valid value is a
fraction [0, 1.0].
 * Only affects when filetype is xml or unspecified (and
therefore assumed to be delimited table)
 */

public Double sample = 1.0;

/**
 * Filetype (avro, json, orc, parquet, xml). Unspecified
file
 */

public FileType fileType = null;

/**
 * Delimiter for file. If number of characters after repla-
cing "\" with "" is 2 or more character
 * (e.g. compound delimiters like \t\t), then defaults to
"\t" and attempts to read file as tsv
 * See Activity2.load.file for details
 */

public String delimiter = ",";

/**
 * File character encoding
 */

public String fileCharSet = "UTF-8";

/**
 * The Avro schema for relevant avro file. Ignored if empty
string

dccxxix

 */
public String avroSchema = StringUtils.EMPTY;

/**
 * The Xml row tag for xml file. Ignored if empty string.
 */

public String xmlRowTag = StringUtils.EMPTY;

/**
 * Whether to flatten arrays in nested schema
 * TODO explain better. Does this only affect JSON file?
 */

public Boolean flatten = false;

/**
 * Whether data contains maps in json that requires extra
handling"
 * TODO explain better. Does this only affect JSON file?
 */

public Boolean handleMaps = false;

/**
 * Whether to handle mixed json.
 * TODO explain better. Does this only affect JSON file?
 */

public Boolean handleMixedJson = false;

/**
 * Spark.read option multiline, for JSON file only
 */

public Boolean multiLine = false;

// --- Using database as data source ------ //
/**

 * Path to DB Driver. (e.g. /opt/owl/driver/postgres)
 */

public String lib = StringUtils.EMPTY;

/**
 * DB Driver name (Java namespace, e.g. org.-
postgresql.Driver).
 * Leave as null (default) and LoadOpts.connectionURL will
resolve the driver name.
 */

public String driverName = null;

/**

Chapter 17

dccxxx

Chapter 17

 * Connections name in metastore DB (pub-
lic.connections.aliasname).
 * Does not refer to the "name" of the database. Refers to
"aliasname" that the user set when
 * uploading connection config to Owl.
 */

public String connectionName = StringUtils.EMPTY;

/**
 * The Connection url, prefixed by jdbc.
 * e.g. "jdbc:postgresql://localhost:5432"
 */

public String connectionUrl = StringUtils.EMPTY;

/**
 * DB username
 */

public String userName = StringUtils.EMPTY;

/**
 * DB password
 */

public String password = StringUtils.EMPTY;

/**
 * JDBC Connection properties (e.g. fetchsize)
 */

public Properties connectionProperties = null;

/**
 * Whether data source is Hive Native (not using JDBC)
 * TODO: Why is the default null as opposed to false?
 */

public Boolean hiveNative = null;

/**
 * Whether data source is Hive Hadoop Web Cluster (not using
JDBC)
 */

public Boolean hiveNativeHWC = false;

// --- Parallel JDBC ------- //
/**

 * When running parallel JDBC, use LoadOpts.query and OwlOp-
tions.dataset as base table
 */

public Boolean useSql = true;

dccxxxi

/**
 * When running parallel JDBC, specify column name
 * ?? Activity2.Load and web has hard-coded magic string
"OWLAUTOJDBC"
 */

public String columnName = null;

/**
 * When running parallel JDBC, the upper bound for partition
column.
 * (e.g. "1000000")
 */

public String lowerBound = null;

/**
 * When running parallel JDBC, the upper bound for partition
column.
 * (e.g. "5000000")
 */

public String upperBound = null;

/**
 * When running parallel JDBC, the number of partitions
used.
 * If 0, then numPartitions used is based on the number of
available Spark Executor (1/2 ~ 2/3)
 * If > 20, then overwritten to 20 (no more than 20 con-
current connections to a database on a single dataset)
 */

public Integer numPartitions = 0;

// --- SQL Query properties ---------- //
// TODO: does this effect DB as source or file as source as

well?
/**

 * Whether the escape character would be back tick (`).
 * Ignored if escapeCharacter is non-empty (if using
OwlCheck from Options).
 * Marked as true if props.escapeCharacter is a tick
 * (to preserve bijection between props and opts, and vice
versa).
 */

public Boolean escapeWithBackTick = false;
/**

 * Whether the escape character would be single quote (').
 * Ignored if escapeCharacter is non-empty (if using
OwlCheck from Options).
 * Marked as true if props.escapeCharacter is a tick

Chapter 17

dccxxxii

Chapter 17

 * (to preserve bijection between props and opts, and vice
versa).
 */

public Boolean escapeWithSingleQuote = false;
/**

 * Whether the escape character would be double quote (").
 * Ignored if escapeCharacter is non-empty(if using OwlCheck
from Options).
 * Marked as true if props.escapeCharacter is a tick
 * (to preserve bijection between props and opts, and vice
versa).
 */

public Boolean escapeWithDoubleQuote = false;

/**
 * Specify custom escape character. This takes precedence
over all other escapeWithXYZ options.
 * i.e. if non-empty, then other escapeWithXYZ options are
ignored.
 * If empty (default), no escaping attempt is made (and SQL
query may fail if it contains reserved word)
 *
 * @deprecated Access level of this field will be changed to
private. Please use {@link #setEscapeCharacter(String)} instead.
 */
 @Deprecated

public String escapeCharacter = StringUtils.EMPTY;

/**
 * The enum File type.
 */

public enum FileType {
/**

 * Avro file type.
 */
 avro,

/**
 * Json file type.
 */
 json,

/**
 * Orc file type.
 */
 orc,

/**
 * Parquet file type.
 */
 parquet,

dccxxxiii

/**
 * Xml file type.
 */
 xml

}
}

Profile

public class ProfileOpt {

public Boolean on = true; //Whether to run profile
public Boolean only = false; //Whether to run only pro-

file
public String[] include; //Which columns to include
public String[] exclude; //Which columns to exclude
public Boolean shape = true; //Disable shape detection
public Boolean correlation = null;//On/Off Pearsons Cor-

relation, null=auto
public Boolean histogram = null; //On/Off Histograming,

null=auto
public Boolean semantic = null; //On/Off Semantic dis-

covery, null=auto

public Integer limit = 300;
public Integer histogramLimit = 0;
public Double score = 1.0; //downscore points per

Shape issue
public Integer shapeTotalScore = 0;
public Double shapeSensitivity = 0.00;
public Integer shapeMaxPerCol = 0;
public Integer shapeMaxColSize = 0;
public String behavioralDimension = StringUtils.EMPTY;
public String behavioralDimensionGroup = StringUtils.EMPTY;
public String behavioralValueColumn = StringUtils.EMPTY;
public Boolean behaviorScoreOff = false; // disable beha-

vior scoring

Chapter 17

dccxxxiv

Chapter 17

Dupe

dccxxxv

package com.owl.common.options;

/**
 * Options for Dupe Activity
 */
public class DupeOpt {

/**
 * Whether to run Dupe Activity
 */

public Boolean on = false; // --dupe

/**
 * @deprecated Unused for Activity2
 */

public Boolean only = false; // --dupeonly

/**
 * Column names to include Dupe Activity
 */

public String[] include; // -dupeinc

/**
 * Column names to exclude Dupe Activity
 */

public String[] exclude; // dupeexc

/**
 * Indicator for complexity. See Activ-
ity2.Dupe.Scala.execute()
 * depth == 0 : exact match (sets props.dupeExactMatch =
TRUE downstream)
 */

public Integer depth = 2; // -depth

/**
 * The minimum dupe scores between two duplicates. (cur-
rently calculated as "edit distance", out of upperBound)
 * Two values with dupe score less than this is lowerBound
are not duplicates (i.e. "truly" different values)
 */

public Integer lowerBound = 80; // -dupelb, -dupecutoff

/**
 * The maximum possible dupe score for duplicate records
(for a given dupe detection method).
 * Currently assumed to be 100.
 */

Chapter 17

dccxxxvi

Chapter 17

public Integer upperBound = 100; // -dupeub, -dupeper-
matchupperlimit

/**
 * Approximate dupe score used to create block index (when
DF is large)
 */

public Integer approximate = 1; // -dupeapprox

/**
 * Number of observations per unique duplicate
 */

public Integer limitPerDupe = 15;

/**
 * Whether to process column headers when data load uses
manual column names (LoadOpts.fileHeader)
 * TODO this belongs in LoadOpts, not DupeOpts
 */

public Boolean checkHeader = true;

/**
 * TODO remove
 *
 * @deprecated not used;
 */

public String filter;

/**
 * If true, dupe activity is case insensitive. If false,
dupe activity is case sensitive.
 * Convenience feature for upper and lower set to 100
 */

public Boolean ignoreCase = false; //-dupenocase

/**
 * Number of points each duplicate contributes to the total
schema score (in Hoot)
 */

public Double score = 1.0; //-
dupescore points per duplicate found default 1

/**
 * Number of unique duplicates to compute during dupe activ-
ity
 */

public Integer limit = 300; //-
dupelimit default 300

dccxxxvii

Source

public class SourceOpt {

public Boolean on = false; //-vs
public Boolean only = false; //-sourceonly
public Boolean validateValues = false; //-validatevalues
public Boolean matches = false; //-matches

public String[] include; //-valinc
public String[] exclude; //-valexc
public String[] key; //valkey
public Map<String, String> map; //
public Double score = 1.0; // points per val-

idate source found, default 1-5
public Integer limit = 30; //-valsrclimit
public String delimiter = ","; //-srcdel
public String fileCharSet = "UTF-8"; //-srcencoding
public String filePath = StringUtils.EMPTY; //--srcfile

public String header = null; //-srcheader
public String dataset = StringUtils.EMPTY;
public String driverName = StringUtils.EMPTY;
public String user = StringUtils.EMPTY;
public String password = StringUtils.EMPTY;
public String passwordManager = StringUtils.EMPTY;
public String connectionName = StringUtils.EMPTY;
public String connectionUrl = StringUtils.EMPTY;
public String query = StringUtils.EMPTY;
public String fileQuery = StringUtils.EMPTY;
public String lib = StringUtils.EMPTY;
public Properties connectionProperties;

FAQs

How to specify OWL database connection properties

OwlOptions

Chapter 17

dccxxxviii

Chapter 17

import com.owl.common.options.OwlOptions

val opt = new OwlOptions()
opt.dataset = "<dataset_name>"
opt.runId = "<date>" // YYYY-MM-DD
opt.load.pguser = "<db_username>"
opt.load.pgpassword = "<db_password>"
opt.load.pghost = "<ip>:<port>/<database_name>"

Props

import com.owl.common.Props

val props = new Props()
props.dataset = "<dataset_name>"
props.runId = "<date>" // YYYY-MM-DD
props.pguser = "<db_username>"
props.pgpassword = "<db_password>"
props.host = "<ip>:<port>/<database_name>"

Command Line

Scale + Data Science

Where Scale meets Data Science. Scale linearly with your data by adding executors
and/or memory.

-f "file:///Users/home/salary_data.csv" \
-d "," \
-rd "2018-01-08" \
-ds "salary_data"
-numexecutors 2 \
-executormemory 2g

Yarn Master

If CollibraDQ is run on an edge node on a popular hadoop distribution such as HDP, CDH,
EMR it will automatically register the jobs with Yarn Resource Manager.

dccxxxix

Spark Master

DQ also runs using spark master by using the -master input and passing in spark:url.

Spark Standalone

DQ runs in standalone most but naturally will not distribute the processing beyond the
hardware it was activated on.

Options Description

deploymode spark deploymode option

drivermemory driver memory example 3G for local space

executorcores spark executor cores

executormemory spark executor memory option example 3G

master overrides local[*], i.e. spark://myhost:7077, yarn-client, yarn-cluster

sparkprinc kerberos principal name ex: owl@OWL.COM

Use Spark-Submit directly bypassing DQCheck

spark-submit \
--driver-class-path /opt/owl/drivers/postgres42/postgresql-
42.2.4.jar \
--driver-library-path /opt/owl/drivers/postgres42/postgresql-
42.2.4.jar \
--driver-memory 3g --num-executors 2 --executor-memory 1g \
--master spark://Kirks-MBP.home:7077 \
--class com.owl.core.cli.OwlCheck /opt/owl/bin/owl-core-trunk-
jar-with-dependencies.jar \
-u user -p pass -c jdbc:postgresql://xyz.chzid9w0hpyi.us-east-
1.rds.amazonaws.com/postgres \
-ds accounts -rd 2019-05-05 -dssafeoff -q "select * from
accounts"
-driver org.postgresql.Driver -lib /opt/owl/drivers/postgres42/

Chapter 17

dccxl

Chapter 17

Parallel JDBC Spark-Submit

spark-submit \
--driver-class-path /opt/owl/drivers/postgres42/postgresql-
42.2.4.jar \
--driver-library-path /opt/owl/drivers/postgres42/postgresql-
42.2.4.jar \
--conf spark.driver.extraJavaOptions=-Dlo-
g4j.configuration=file:///opt/owl/config/log4j-TRACE.properties
\
--conf spark.executor.extraJavaOptions=-Dlo-
g4j.configuration=file:///opt/owl/config/log4j-TRACE.properties
\
--files /opt/owl/config/log4j-TRACE.properties \
--driver-memory 2g --num-executors 2 --executor-memory 1g --mas-
ter spark://Kirks-MBP.home:7077 \
--class com.owl.core.cli.OwlCheck /opt/owl/bin/owl-core-trunk-
jar-with-dependencies.jar \
-u us -p pass -c jdbc:postgresql://xyz.chzid9w0hpyi.us-east-1.rd-
s.amazonaws.com/postgres \
-ds aumdt -rd 2019-05-05 -dssafeoff -q "select * from aum_dt" \
-driver org.postgresql.Driver -lib
/opt/owl/drivers/postgres42/ \
-connectionprops fetchsize=6000 -master spark://Kirks-
MBP.home:7077 \
-corroff -histoff -statsoff \
-columnname updt_ts -numpartitions 4 -lowerbound 1557597987353 -
upperbound 1557597999947

DQ Job JDBC
Connect to any database via JDBC.

-q "select * from lake.stock_eod where date = '2017-01-20' " \
-u username -p password \
-c "jdbc:mysql://instance.chzid9w0hpyi.us-east-1.rd-
s.amazonaws.com:3306" \
-rd "2017-01-20" \
-dc "date" \
-ds "stocks" \
-driver com.mysql.jdbc.Driver \
-lib "/home/ec2-user/owl/drivers/mysql/"

dccxli

Password Manager

You can configure Collibra DQ to call a script file to retrieve a password from a password
manager vault or other storage container. The customer is responsible for generating a
script to pull just the password and DQ uses that value dynamically when the connection is
needed for the UI or when kicking off an DQCheck.

Chapter 17

dccxlii

Chapter 17

In the connection dialog, select Password Manager from the Auth Type dropdown, and
supply a user name. The script is the path to the .sh script on the machine where the web
application is running, and the user account that runs DQ-web should be allowed to
execute the script. You can either use the optional parameters or pass any parameters
your script needs directly inline on the Script value.

Fetch Size

It is important to consider the drivers fetch size when loading greater than 1 Million rows
across the network. DQ allows you to set this driver property in the WebApp but this is only
for web interaction therefore "fetchsize" will not help here. DQ also allows fetchsize in the
DQCheck by passing in a connection property.

CMD line

-connectionprops "fetchsize=3000"

Notebook

props.connectionProps.put("fetchsize", "3000")

Parallel JDBC

For greater performance or moving large datasets across a network DQ supports parallel
JDBC, which can be enabled by passing numpartitions to DQCheck. This can be a 2-
5X improvement in many cases.

dccxliii

-lib "/opt/owl/drivers/mysql8/"
-cxn mysql
-q "select * from lake.nyse where trade_date = '${rd}' "
-rd 2018-01-01
-ds nyse
-columnname volume
-numpartitions 4
-lowerbound "0"
-upperbound "5000000000"
-usesql

DQ also supports auto parallelization, which will configure the numPartitions parameter
for you based on the size of your data. This is enabled in the UI when you create a dataset
using the DQCheck wizard.

Chapter 17

dccxliv

Chapter 17

DQ Job BigQuery

Example CMD Line

-lib "/opt/owl/drivers/bigquery/bigquery/core/" \
-h <IP_ADDRESS>:5432/postgres \
-master spark://<SPARK_MASTER>:7077 \
-ds samples.loan_customer \
-deploymode client \
-q "select * from samples.loan_customer" \
-rd "2021-08-02" \
-driver "com.simba.googlebigquery.jdbc42.Driver" \
-cxn BigQuery

Steps for the BigQuery Connection

1. We would use this Simba driver: com.simba.googlebigquery.jdbc42.Driver.
2. We would make an owl-gcp.json (your org auth key in JSON format).
3. We would create a JDBC connection (for example only do not use this JDBC URL):

jdb-
c:bigquery://ht-
tps://www.-
googleapis.-
com/bigquery/v2:443;Pro-
jectId=;OAuthType=0;OAuthServiceAcctEmail=<1234567890>-
compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/owl-
gcp.json;Timeout=86400

4. Requires a path to a JSON file that contains the service account for authorization.
That same file is provided to the Spark session to make a direct to storage con-
nection for maximum parallelism once Core fires up.”

The above and explained there are actually a number of others steps which must be
performed to achieve success:

1. Password for the BigQuery Connector form in Collibra DQ must be a base64
encoded string created from the json file (see step 3. above) and input as pass-
word. For example: base64 your_json.json -w 0 or cat your_json.json |

dccxlv

mailto:-compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/owl-gcp.json;Timeout=86400
mailto:-compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/owl-gcp.json;Timeout=86400
mailto:-compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/owl-gcp.json;Timeout=86400

base64 -w 0

2. Check that this JARs exists and is on the path of the Collibra DQ Web UI server
(eg. <INSTALL_PATH>/owl/drivers/bigquery/core). Look at your driver directory loc-
ation which contains this BigQuery JAR: spark-bigquery_2.12-0.18.1.jar

3. Make sure there are all the needed JARs present in <INSTALL_
PATH>/owl/drivers/bigquery/: ****animal-sniffer-annotations-1.19.jargoogle-api-ser-
vices-bigquery-v2-rev20201030-1.30.10.jargrpc-google-cloud-bigquerystorage-
v1beta1-0.106.4.jarlistenablefuture-9999.0-empty-to-avoid-conflict-with-
guava.jarannotations-4.1.1.4.jargoogle-auth-library-credentials-0.22.0.jargrpc-
google-cloud-bigquerystorage-v1beta2-0.106.4.jaropencensus-api-0.24.0.jarapi-
common-1.10.1.jargoogle-auth-library-oauth2-http-0.22.0.jargrpc-grpclb-
1.33.1.jaropencensus-contrib-http-util-0.24.0.jarauto-value-annotations-
1.7.4.jarGoogleBigQueryJDBC42.jargrpc-netty-shaded-1.33.1.jarperfmark-api-
0.19.0.jaravro-1.10.0.jargoogle-cloud-bigquery-1.125.0.jargrpc-protobuf-
1.33.1.jarprotobuf-java-3.13.0.jarchecker-compat-qual-2.5.5.jargoogle-cloud-
bigquerystorage-1.6.4.jargrpc-protobuf-lite-1.33.1.jarprotobuf-java-util-
3.13.0.jarcommons-codec-1.11.jargoogle-cloud-core-1.93.10.jargrpc-stub-
1.33.1.jarproto-google-cloud-bigquerystorage-v1-1.6.4.jarcommons-compress-1.20.-
jargoogle-cloud-core-http-1.93.10.jargson-2.8.6.jarproto-google-cloud-bigquerystor-
age-v1alpha2-0.106.4.jarcommons-lang3-3.5.jargoogle-http-client-1.38.0.jarguava-
23.0.jarproto-google-cloud-bigquerystorage-v1beta1-0.106.4.jarcommons-logging-
1.2.jargoogle-http-client-apache-v2-1.38.0.jarhttpclient-4.5.13.jarproto-google-
cloud-bigquerystorage-v1beta2-0.106.4.jarconscrypt-openjdk-uber-2.5.1.jargoogle-
http-client-appengine-1.38.0.jarhttpcore-4.4.13.jarproto-google-common-protos-
2.0.1.jarcoregoogle-http-client-jackson2-1.38.0.jarj2objc-annotations-1.3.jarproto-
google-iam-v1-1.0.3.jarerror_prone_annotations-2.4.0.jargoogle-oauth-client-
1.31.1.jarjackson-annotations-2.11.0.jargrpc-alts-1.33.1.jarjackson-core-
2.11.3.jarslf4j-api-1.7.30.jarfailureaccess-1.0.1.jargrpc-api-1.33.1.jarjackson-data-
bind-2.11.0.jargax-1.60.0.jargrpc-auth-1.33.1.jarjavax.annotation-api-
1.3.2.jarthreetenbp-1.5.0.jargax-grpc-1.60.0.jargrpc-context-1.33.1.jarjoda-time-
2.10.1.jargax-httpjson-0.77.0.jargrpc-core-1.33.1.jarjson-20200518.jargoogle-api-cli-
ent-1.31.1.jargrpc-google-cloud-bigquerystorage-v1-1.6.4.jarjsr305-3.0.2.jar

4. You may get a CLASSPATH conflict regarding the JAR files.

Chapter 17

dccxlvi

Chapter 17

5. Make sure the BigQuery connector Scala version matches your Spark Scala. ver-
sion.

dccxlvii

Chapter 17

dccxlviii

https://discourse-static.influitive.net/uploads/db_033c9cc6_3cea_4623_b4a8_52ebc3f9e8a1/original/2X/d/dfca73373275afb5f063f192a3aa7105caa76bd8.png

Chapter 17

DQ Job Databricks

Lake vs Swamp

The difference between a business-critical lake and a swamp is quality. The accuracy and
cleanliness of data is directly proportional to the quality of insights end-users will derive.
Data lakes that gain broad adoption have strong governance programs. The challenge is,
adding a data quality program typically takes 6-12 months but the project never really ends
due to the volume, variety and velocity of incoming data. Collibra DQ uses autoML so
solve this problem. DQ constantly monitors the lake with native integration and unlimited
scale. Use DQ to generate the equivalent of 10K rules, while continuously adapting to the
natural variance in your data. When erroneous data enters your lake DQ alerts the data
steward and provide a rich visual displaying the break records and explainable AI
describing the issue. DQ's approach is to learn from data and become incrementally
smarter each day to ensure a statistically defensible data quality program.

Native Integration with Delta Lake (Databricks)

Out of the box DQ comes with a connection template for Databricks. To connect, simply
paste in your username, password and connection URL.

dccxlix

Explore Databricks Assets and Add DQ Checks

Quickly explore DB assets that are cataloged in Delta Lake the same way you would any
database (file tree explorer). Use DQ wizard to add data quality to any Databricks table or
file. Create a modern data quality program using machine learning in minutes.

Chapter 17

dccl

Chapter 17

9 dimensions of Data Quality

Use the wizard to apply DQ's autoML and predictive data quality features across all of your
assets in Delta Lake. Click Scan button to put every table in Delta Lake under DQ
management in 1 click. DQ creates a data quality program on all Delta Lake assets in a
matter of hours. With traditional technologies this task used to require domain experts, rule
writers and identification of critical elements.

Out of the Box DQmeasures

DQ Dimension Desc

Outliers numeric and categorical outlier detection

Shapes formatting and incorrect characters

Patterns relationship probabilities

Correlations strengths of relationships between columns

Duplicates fuzzy and exact matching

Schema Evolution schema drift

Rules ability to add your own business rules

Source Matching difference from source to target detection

DQ Job Hive
Run a data quality check on a Hive table. Use the -hive flag for a native connection via the
HCat, this does not require a JDBC connection and is optimized for distributed speed and
scale.

Hive Native, no JDBC Connection

Open source platforms like HDP, EMR and CDH use well known standards and because
of this DQ takes advantage of things like HCat and it removes the need for JDBC

dccli

connection details as well as offers optimum data read speeds. DQ recommends and
supports this with the -hive flag.

./owlcheck -ds hive_table -rd 2019-03-13 \
-q "select * from hive_table" -hive

Example output. A hoot is a valid JSON response

{
"dataset": "hive_table",
"runId": "2019-02-03",
"score": 100,
"behaviorScore": 0,
"rows": 477261,
"prettyPrint": true

}

Hive JDBC

1. You need to use the hive JDBC driver, commonly org.apache.hive.HiveDriver.
2. You need to locate your driver JDBC Jar with the version that came with your EMR,

HDP or CDH
a. This jar is commonly found on an edge node under /opt/hdp/libs/hive/hive-jdb-

c.jar etc...

./owlcheck -rd 2019-06-07 -ds hive_table \
-u <user> -p <pass> -q "select * from table" \
-c "jdbc:hive2://<HOST>:10000/default" \
-driver org.apache.hive.HiveDriver \
-lib /opt/owl/drivers/hive/ \
-master yarn -deploymode client

HDP Driver - org.apache.hive.HiveDriver

CDH Driver - com.cloudera.hive.jdbc41.Datasource
For CDH all the drivers are packaged under, HiveJDBC41_cdhversion.zip.

Chapter 17

dcclii

Chapter 17

Troubleshooting

A common JDBC connection is hive.resultset.use.unique.column.names=false.

This can be added directly to the JDBC connection url string or to the driver properties
section.

Test your hive connection via beeline to make sure it is correct before going further.

beeline -u 'jdb-
c:hive2://<HOST>:10000/default;principal=hive/cdh-instance1.us-
east1-b.c.company-hadoop-cdh.internal@CW.COM;useSSL=true' -d
org.apache.hive.jdbc.HiveDriver

Kerberos Example

jdbc:hive2://<HOST>:10000/default;principal=hive/cdh-
instance1.us-east1-b.c.company-hadoop-cdh.in-
ternal@CW.COM;useSSL=true

dccliii

Connecting DQWebApp to Hive JDBC

Notice the driver properties for kerberos and principals.

In very rare cases where you can't get the jar files to connect properly one workaround is to
add this to the DQ-web startup script.

$JAVA_HOME/bin/java -Dload-
er.path=lib,/home/danielrice/owl/drivers/hive/ \
-DowlAppender=owlRollingFile \
-DowlLogFile=owl-web -Dlog4j.configurationFile=file://$INSTALL_
PATH/config/log4j2.xml \
$HBASE_KERBEROS -jar $owlweb $ZKHOST_KER \
--logging.level.org.springframework=INFO $TIMEOUT \
--server.session.timeout=$TIMEOUT \
--server.port=9001 > $LOG_PATH/owl-web-app.out 2>&1 & echo $!
>$INSTALL_PATH/pids/owl-web.pid

Chapter 17

dccliv

Chapter 17

Class Not Found apache or client or log4j etc...

Any class not found error means that you do not have the "standalone-jar" or you do not
have all the jars needed for the driver.

Hive JDBC Jars
It is common for Hive to need a lot of .jar files to complete the driver setup.

Java jar cmds

Sometimes it is helpful to look inside the jar and make sure it has all the needed files.

dcclv

jar -tvf hive-jdbc.jar

DQ Job Files
For example, a large file transaction_2021-01-01.csvmight contain the following
transaction data with two transaction per day spanning all of January.

transaction_id account_id date amount

1 1 2021-01-01 100

2 2 2021-01-01 120

3 1 2021-01-02 90

4 2 2021-01-02 115

...

61 1 2021-01-31 100

62 2 2021-01-31 999

and this file might be located on the directory ~/customer/transaction-2021-01-
01/.

~/customer
 ├── transaction-2021-01-01
 │ └── transaction_2021-01-01.csv
 ├── transaction-2021-02-01
 │ └── transaction_2021-02-01.csv
 ... # folders for 2021-03-01 to 2021-11-01 ommitted
 ├── transaction-2021-12-01
 │ └── transaction_2021-12-01.csv

Other folders with similar pattern may exist in your directory, such as
~/customer/transaction-2021-02-1. Note that February data is located in a
separate directory with a similar pattern for all the months of 2021. This dataset could
similarly have 2 account IDs and 1 transaction per account per day (= 28 x 2 = 56 rows of
data). For this example, let's assume this is the case for all the files.

Chapter 17

dcclvi

Chapter 17

To run an DQCheck on this single file containing multiple dates, you have the following
choices.

DQChecks with file

1. Run an DQCheck on all the rows in a single file.

./owlcheck
 -ds DQCheck_transactions_jan21
 -rd "2021-01-01"
 -f "~/customer/transaction-2021-01-01/transaction_2021-01-
01.csv"
 -fq "select * from dataset"
 ... # other relevant options

Here we assume that run date (-rd) is "2021-01-01" because it is currently January 1,
2021. The above command would lead to an DQCheck on 62 rows of data spanning all of
January 2021 from a single file located at ~/customer/transaction-2021-01-
01/transaction_20210101.csv. If you were to schedule a job to run this job monthly
and next job ran on February 1st, 2021, then same DQ checks will be performed on the
same set of 62 rows with same score as your DQCheck run from January 1, 2021. For
example, the follow-up scheduled job running on February 1st, 2021 would be:

./owlcheck
 -ds DQCheck_transactions_jan21
 -rd "2021-02-01"
 -f "~/customer/transaction-2021-01-01/transaction_2021-01-
01.csv"
 -fq "select * from dataset"
 ... # other relevant options

This type of DQCheck on a single file is suitable if you are verifying a static file
~/customer/transaction-2021-01-01/transaction_20210101.csv that does not
change over time and expect the score to be the same every run. Hence, it is suggested to
name the dataset that reflect this, such as DQCheck_transaction_jan21 to reflect the
idea that this dataset is checking the Data Quality of transaction table containing January
2021 data. Similar DQCheck for February 2021 data would then be a separate and
independent dataset named DQCheck_transaction_feb21 This type of DQCheck can

dcclvii

also be used if ~/customer/transaction-2021-01-01/transaction_
20210101.csv is changing (the rows are changing values or new rows are being added)
and want to detect data quality changes. Transaction file doesn't fit with this scenario, but
the idea is that the above command specifies Data Quality DQChecks on the entirety of
the file. The run date is a date that you choose to assign for that DQCheck. It is
conventional to have one-to-one mapping between run date and the date corresponding to
the date that DQ checks are being performed. Run date does not have to match with the
data underlying the file.

2. Run an DQCheck on subset of rows from a single file

The single file contains daily data for January of 2021. To run Data Quality checks on
January 1st, January 2nd, ... , and January 31st, you need to run 31 DQChecks, each with
subset of rows from the file. Note the where clause in -fqmatching with the run date -rd

./owlcheck
 -ds DQCheck_transactions_jan21
 -rd "2021-01-01"
 -f "~/customer/transaction-2021-01-01/transaction_2021-01-
01.csv"
 -fq "select * from dataset where date = '2021-01-01'"
 ... # other relevant options

./owlcheck
 -ds DQCheck_transactions_jan21
 -rd "2021-01-02"
 -f "~/customer/transaction-2021-01-01/transaction_2021-01-
01.csv"
 -fq "select * from dataset where date = '2021-01-02'"
 ... # other relevant options

... # Owlchecks for -rd 2021-01-03 to 2021-01-30 ommitted

./owlcheck
 -ds DQCheck_transactions_jan21
 -rd "2021-01-31"
 -f "~/customer/transaction-2021-01-01/transaction_2021-01-
01.csv"
 -fq "select * from dataset where date = '2021-01-31'"
 ... # other relevant options

By using the same dataset name -ds, all 31 DQCheck will appear under one dataset
DQCheck_transaction_jan21 in the Hoot page.

Chapter 17

dcclviii

Chapter 17

A convenient way to parameterize this run date is to use ${rd} in the query.

./owlcheck
 -ds DQCheck_transactions_jan21
 -rd "2021-01-01"
 -f "~/customer/transaction-2021-01-01/transaction_2021-01-
01.csv"
 -fq "select * from dataset where date = '${rd}'"
 ... # other relevant options

A daily scheduled job starting on January 1st, 2021 to January 31, 2021 will automatically
replace the ${rd} with "2021-01-01", "2021-01-02", ... , and "2021-01-31" for the
respective run date.

3. Run an DQCheck on subset of rows from a single file with day lookback

For certain core components like Outlier, a set of rows corresponding to historical training
data can be used to establish a baseline. For example, the row with transaction_id 62
has amount of 999. This looks like an outlier that we want to catch. This value of 999
seems to be an outlier because past transaction amounts for account_id2 are in the
100s range. We can use historical data from January 15th to January 30th and use that
info to see if January 31st data contains any outliers. In this scenario, our single file
~/customer/transaction-2021-01-01/transaction_2021-01-01.csv contains
such historical data because that file contains all the data for all of January. How do we
use the same file for both current data (January 31st) and historical (January 15th to
January 30th) data? You do not have to split the files into two. You can simply do exactly
what you would do for DQCheck on "2021-01-31" with a -fullfile flag. The -fullfile
flag tells the DQCheck that "the file in -f contains the historical data. Construct a query
and subset those rows for me".

dcclix

./owlcheck
 -ds DQCheck_transactions_jan21
 -rd "2021-01-31"
 -f "~/customer/transaction-2021-01-01/transaction_2021-01-
01.csv"
 -fq "select * from dataset where date = '2021-01-31'"
 -fullfile

outlier options
 -dc "date"
 -dl
 -tbin "DAY" # look back time bin is day
 -dllb 15 # look back up to 15 days
 ... # other relevant options

DQChecks with multiple files

4. Run an DQCheck on a single file with lookback using series of file

Recall our folder structure:

~/customer
 ├── transaction-2021-01-01
 │ └── transaction_2021-01-01.csv
 ├── transaction-2021-02-01
 │ └── transaction_2021-02-01.csv
 ... # ommitted for space
 ├── transaction-2021-12-01
 │ └── transaction_2021-12-01.csv

If we want to run an DQCheck for December of 2021 and use July of 2021 to November of
2021 as our historical training dataset, how can we load multiple files? Just like how -

fullfile provides a convenient way to create historical training dataset on a single file, -
fllb (file lookback) provides a convenient way to load series of files with patterns while
still pointing to the target file (December file) in -f

Chapter 17

dcclx

Chapter 17

./owlcheck
 -ds DQCheck_transactions_dec21
 -rd "2021-12-01"
 -f "~/customer/transaction-2021-12-01/transaction_2021-12-
01.csv"
 -fq "select * from dataset"
 -fllb

outlier options
 -dc "date"
 -dl
 -tbin "MONTH"
 -dllb 5 # look back up to 5 months
 ... # other relevant options

One caveat to this -fllbmethod __ is that the DQCheck history must be "primed" first so
that the DQ knows the file path of the past series of files. In fact, -fllb does not use the
file path provided in -f and loads different files from different folders. It relies on the
DQCheck history under the same -ds name. -fllbmeans lookback up to N number of
past consecutive DQChecks. For each of those past DQCheck, look up the file path -f
used in the past and follow those paths. The number N is determined by the maximum
number of lookbacks from Outlier (-dllb) and Patterns (-fpglb). In the DQCheck above,
because -dllb 5 is provided along with -fllb, it means "Look up 5 past DQChecks and
load those files as historical dataset". In summary, in order to run an DQCheck on "2021-
12-01" and have that DQCheck for that date "look up" the files in
~/customer/transaction-2021-07-01/transaction_2021-07-01.csv ,
~/customer/transaction-2021-08-01/transaction_2021-08-01.csv ,
~/customer/transaction-2021-09-01/transaction_2021-09-01.csv ,
~/customer/transaction-2021-10-01/transaction_2021-10-01.csv , and
~/customer/transaction-2021-11-01/transaction_2021-11-01.csv , you need
to have ran DQChecks for "2021-07-01", "2021-08-01", ... , and "2021-11-01" under the
same dataset name. Therefore, it would be more logical, best-practice is to name the
dataset -ds DQCheck_transaction_2021 and run series of monthly owlchecks up to
"2021-12-01" (but the name of the dataset is up to you)/

dcclxi

Prime past Owlchecks so that "2021-12-01" knows the file path
of past months
./owlcheck
 -ds DQCheck_transactions_2021
 -rd "2021-07-01"
 -f "~/customer/transaction-2021-07-01/transaction_2021-07-
01.csv"
 -fq "select * from dataset"

./owlcheck
 -ds DQCheck_transactions_2021
 -rd "2021-08-01"
 -f "~/customer/transaction-2021-08-01/transaction_2021-08-
01.csv"
 -fq "select * from dataset"

./owlcheck
 -ds DQCheck_transactions_2021
 -rd "2021-09-01"
 -f "~/customer/transaction-2021-08-01/transaction_2021-09-
01.csv"
 -fq "select * from dataset"

./owlcheck
 -ds DQCheck_transactions_2021
 -rd "2021-10-01"
 -f "~/customer/transaction-2021-08-01/transaction_2021-10-
01.csv"
 -fq "select * from dataset"

./owlcheck
 -ds DQCheck_transactions_2021
 -rd "2021-11-01"
 -f "~/customer/transaction-2021-11-01/transaction_2021-11-
01.csv"
 -fq "select * from dataset"

Priming 5 past Owlchecks complete. Now run the 2021-12-01
./owlcheck
 -ds DQCheck_transactions_2021
 -rd "2021-12-01"
 -f "~/customer/transaction-2021-12-01/transaction_202-11-
201.csv"
 -fq "select * from dataset"
 -fllb

outlier options
 -dc "date"
 -dl

Chapter 17

dcclxii

Chapter 17

 -tbin "MONTH"
 -dllb 5 # look back up to 5 months
 ... # other relevant options

In this scenario, since the folder paths have a pattern, we can use -br for priming in one
command instead of writing five DQCheck commands. The flag -br runs DQChecks
consecutively from the past and increments by monthly if -tbin "MONTH" (by default -
tbin DAYso the default behavior is to increment daily). The different folder paths on each
past consecutive run dates are replaced with ${rd}. The below command is identical to
the above:

Prime past Owlchecks so that "2021-12-01" knows the file path
of past months
./owlcheck
 -ds DQCheck_transactions_2021
 -rd "2021-12-01"
 -f "~/customer/transaction-${rd}/transaction_${rd}.csv"
 -fq "select * from dataset"
 -br 5 # run 5 runs to in the past
 -tbin "MONTH" # <-- required since we want a MONTHLY back-
run. Default "DAY"

Priming complete. Now run the 2021-12-01
./owlcheck
 -ds DQCheck_transactions_2021
 -rd "2021-12-01"
 -f "~/customer/transaction-2021-12-01/transaction_2021-12-
01.csv"
 -fq "select * from dataset"
 -fllb

outlier options
 -dc "date"
 -dl
 -tbin "MONTH"
 -dllb 5 # look back up to 5 months
 ... # other relevant options

This pattern is designed so that a single DQCheck command can be scheduled and ${rd}
be used to replace the folder & file path. Your ~/customer folder could contain
transactions for all the years, spanning all the way back to 1992 and into the future like so:

dcclxiii

~/customer

 ├── transaction-1992-01-01
 │ └── transaction_1992-01-01.csv
 ├── transaction-1992-01-01
 │ └── transaction_1992-01-01.csv
 ... # ommitted for space
 ├── transaction-2021-01-01
 │ └── transaction_2021-01-01.csv
 ├── transaction-2021-02-01
 │ └── transaction_2021-02-01.csv
 ... # ommitted for space
 ├── transaction-2021-12-01
 │ └── transaction_2021-12-01.csv
 ... # hasn't happened yet!

In this scenario, a monthly scheduled job would get rid of the need to "prime" the DQCheck
history, since your past scheduled jobs would have already ran the past DQChecks.

DQ Job HDFS
Run data quality on a file in HDFS. Collibra DQ automatically infers the schema and create
an internal training model.

-f "hdfs:///demo/ssn_test2.csv" \
-d "," \
-rd "2018-01-08" \
-ds "ssn_hdfs_file" \
-master yarn \
-deploymode cluster \
-numexecutors 2 \
-executormemory 2g

DQ Job JSON

Files

Run against a file using -json. Additionally, options are available for -flatten and -multiline.
This is helpful for nested and various formats.

Chapter 17

dcclxiv

Chapter 17

-ds json_file_example \
-f s3a://bucket_name/file.json \
-h instance.us-east4-c.c.owl-node.internal:5432/postgres \
-master spark://instance.us-east4-c.c.owl-node.internal:7077 \
-json \
-flatten \
-multiline

Note Automatic flattening will infer schema and explode all structs, arrays, and
map types.

Using Spark SQL

-ds public.json_sample \
-lib "/opt/owl/drivers/postgres/" \
-h instance.us-east4-c.c.owl-node.internal:5432/postgres \
-master spark://instance.us-east4-c.c.owl-node.internal:7077
-q "select * from public.jason"
-rd "2021-01-17"
-driver "org.postgresql.Driver"
-cxn postgres-gcp
-fq "select \
get_json_object(col_3, '$.data._customer_name') AS `data_cus-
tomer_name` , \
get_json_object(col_3, '$.data._active_customer') AS `data_act-
ive_customer` , \
from dataset "

Note Pass in the path to Owls' -fq parameter. This is great for mixed data types
within a database. For example, if you store JSON data as a string or a blob among
other data.

// Flatten
val colArr = new JsonReader().flattenSchema(df.schema)
colArr.foreach(x => println(x))

dcclxv

Note This Owl utility traverses the entire schema and print the proper get JSON
object spark sql strings. You can use this instead of typing each query statement
into the command line -fq parameter as seen above.

Using DQ Libraries

import com.owl.common.options._
import com.owl.core.util.OwlUtils
import com.owl.core.activity2.JsonReader

val connProps = Map (
"driver" -> "org.postgresql.Driver",
"user" -> "user",
"password" -> "password",
"url" -> "jdbc:postgresql://10.173.0.14:5432/postgres",
"dbtable" -> "public.data"

)

// Spark
var rdd = spark.read.format("jdbc").options
(connProps).load.select($"col_name").map(x=>x.toString()).rdd
var df = spark.read.json(rdd)

// Flatten
val colArr = new JsonReader().flattenSchema(df.schema)
val flatJson = df.select(colArr: _*)
flatJson.cache.count

// Opts
val dataset = "json_example"
val runId = s"2021-01-14"
val opt = new OwlOptions()
opt.dataset = dataset
opt.runId = runId
opt.datasetSafeOff = true

// Owlcheck
OwlUtils.resetDataSource("instance.us-east4-c.c.owl-node.in-
ternal","5432/postgres","user","pass", spark)
val owl = OwlUtils.OwlContext(flatJson, opt)
owl.register(opt)
owl.owlCheck

Chapter 17

dcclxvi

Chapter 17

Note JsonReader()
This uses DQ's JsonReader to do the heavy lifting.

DQ Job MySql

Video Tutorial (MySQL)

Add automatic data quality to any database in 60 seconds. This example shows a single
table being selected for DQ, however Collibra DQ also provides the ability to scan all
schemas and tables at once.

JDBC Connect from Kirk Haslbeck on Vimeo.

Connect to any database using JDBC. Mysql example below.

-q "select * from lake.stock_eod where date = '2017-01-20' " \
-u username -p password \
-c "jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rd-
s.amazonaws.com:3306" \
-rd "2017-01-20" \
-dc "date" \
-ds "stocks" \
-driver com.mysql.jdbc.Driver \
-lib "/home/ec2-user/owl/drivers/mysql/"

DQ Job MongoDB

Browse MongoDB like any other relational database

Using Collibra DQ's file tree explorer browse Mongo "collections" like "tables". Then use
the wizard to create standard DQ scans.

dcclxvii

https://vimeo.com/372286610
https://vimeo.com/user14379541
https://vimeo.com/

CMD Line

Copy paste-able cmdline example for simple spark submit job.

Chapter 17

dcclxviii

Chapter 17

-lib "/opt/owl/drivers/mongodb/"
-h localhost:5432/postgres
-master local[*]
-ds tpch.lineitem_7
-br 10 -deploymode client
-q "select * from tpch.lineitem where l_shipdate between '${rd}
00:00:00.000+0000'
and '${rdEnd} 00:00:00.000+0000' "
-bhlb 10 -rd "1998-12-01"
-driver "mongodb.jdbc.MongoDriver"
-loglevel INFO -cxn MongoDB -rdEnd "1998-12-02"

Drivers and Config

In order to make this possible Collibra DQ requires two drivers, MongoDB driver and
UnityJDBC Driver. Out of the box DQ comes preconfigured with these drivers. You simply
open the MongoDB connection template and paste in your JDBC URL.

driverClass: mongodb.jdbc.MongoDriver

path: /opt/owl/drivers/mongodb/
 +-- mongoJdbc.jar
 +-- unityJDBC.jar

dcclxix

Simply paste in JDBC Info

Discover Correlations, Relationships, DQ issues and Much More...

Chapter 17

dcclxx

Chapter 17

The following table presents the various SQL statements related to table-level actions and
the corresponding MongoDB
statements.https://docs.mongodb.com/manual/reference/sql-comparison/

Limiting Collections in the JDBC URL

jdbc:mongodb://<dbuser>:<password>@datalake0-dza-
1q.a.query.-
mon-
god-
b.net/<mydata-
base>?ssl=true&authSource=admin&rebuildschema=true&tables=orders

dcclxxi

https://docs.mongodb.com/manual/reference/sql-comparison/

There are three collections in this mongodb atlas lake. By adding &tables=orders in the
URL params you can see only order collections show up in the explorer.

Three Collections in MongoDB Atlas

The total number of collections in mongodb atlas lake.

Chapter 17

dcclxxii

Chapter 17

DQ Job S3
S3 permissions need to be setup appropriately.

dcclxxiii

Note S3 connections should be defined using the root bucket. Nested S3
connections are not supported.

Example Minimum Permissions

{
 "Version": "2012-10-17",
 "Statement": [

{
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucketMultipartUploads",
 "s3:ListBucket",
 "s3:ListMultipartUploadParts",
 "s3:GetObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:athena:*:<AWSAccountID>:workgroup/prima-
ry",
 "arn:aws:s3:::<S3 bucket name>/*",
 "arn:aws:s3:::<S3 bucket name>",
 "arn:aws:glue:*:<AWSAccountID>:catalog",
 "arn:aws:glue:*:<AWSAccountID>:database/<databas-
e name>",
 "arn:aws:glue:*:<AWSAccountID>:table/<database
name>/*"
]
 }
]
}

(Needs appropriate driver) http://central.maven.org/maven2/org/apache/hadoop/hadoop-
aws/ Hadoop AWS Driver hadoop-aws-2.7.3.2.6.5.0-292.jar

-f "s3a://s3-location/testfile.csv" \
-d "," \
-rd "2018-01-08" \
-ds "salary_data_s3" \
-deploymode client \
-lib /home/ec2-user/owl/drivers/aws/

Chapter 17

dcclxxiv

http://central.maven.org/maven2/org/apache/hadoop/hadoop-aws/
http://central.maven.org/maven2/org/apache/hadoop/hadoop-aws/

Chapter 17

Databricks Utils Or Spark Conf

val AccessKey = "xxx"
val SecretKey = "xxxyyyzzz"
//val EncodedSecretKey = SecretKey.replace("/", "%2F")
val AwsBucketName = "s3-location"
val MountName = "kirk"

dbutils.fs.unmount(s"/mnt/$MountName")

dbutils.fs.mount(s"s3a://${AccessKey}:${SecretKey}@${AwsBuck-
etName}", s"/mnt/$MountName")
//display(dbutils.fs.ls(s"/mnt/$MountName"))

//sse-s3 example
dbutils.fs.mount(s"s3a://$AccessKey:$SecretKey@$AwsBucketName",
s"/mnt/$MountName", "sse-s3")

Databricks Notebooks using S3 buckets

val AccessKey = "ABCDED"
val SecretKey = "aaasdfwerwerasdfB"
val EncodedSecretKey = SecretKey.replace("/", "%2F")
val AwsBucketName = "s3-location"
val MountName = "abc"

// bug if you don't unmount first
dbutils.fs.unmount(s"/mnt/$MountName")

// mount the s3 bucket
dbutils.fs.mount
(s"s3a://${AccessKey}:${EncodedSecretKey}@${AwsBucketName}",
s"/mnt/$MountName")
display(dbutils.fs.ls(s"/mnt/$MountName"))

// read the dataframe
val df = spark.read.text(s"/mnt/$MountName/atm_customer/atm_cus-
tomer_2019_01_28.csv")

dcclxxv

DQ Job Snowflake

Example CMD Line

-h <IP_ADDRESS>:5432/postgres \
-drivermemory 4g \
-master spark://<SPARK_MASTER>:7077 \
-ds PUBLIC.TRANSLATION \
-deploymode client \
-q "select * from PUBLIC.TRANSLATION" \
-rd "2021-07-24" \
-driver "net.snowflake.client.jdbc.SnowflakeDriver" \
-cxn snowflake

Example JDBC Connection URL

jdbc:snowflake://<IP_
ADDRESS>.snowflakecomputing.com?db=DEMODB&warehouse=COMPUTE_
WH&schema=PUBLIC

Drive Name

net.snowflake.client.jdbc.SnowflakeDriver

Advanced
A Collibra DQ Check is a bash script that is essentially the launch point for any DQ Job to
scan a data set. A data set can be a flat file, such as textfile, json file, parquet file, etc, or a
table from any number of databases, such as Oracle, Postgres, Mysql, Greenplum, DB2,
SQLServer, Teradata, etc.

Example Run a data quality check on any file by setting the file path.

./owlcheck -ds stock_trades -rd 2019-02-23 -f /path/to/file.csv
-d ,

Example output below. A hoot is a valid JSON response

Chapter 17

dcclxxvi

Chapter 17

{
"dataset": "stock_trades",
"runId": "2019-02-03",
"score": 100,
"behaviorScore": 0,
"rows": 477261,
"passFail": 1,
"peak": 1,
"dayOfWeek": "Sun",
"avgRows": 0,
"cols": 5,
"activeRules": 0,
"activeAlerts": 0,
"runTime": "00:00:23",
"dqItems": {},
"datashapes": [],
"validateSrc": [],
"alerts": [],
"prettyPrint": true

}

Monthly Data

Sometimes you may want to run monthly profiles with aggregated data. In this case, the
scheduling tool can supply the $ as a variable such as $runDate and the end date as
$endDate. 1 line examples for bash or shell below.

echo "Hello World Owl"

runDate=$(date +"%Y-%m-%d")
endDate=$(date -d "$runDate +1 month" +%Y-%m-%d)

echo $runDate
echo $endDate

./owlcheck \
-q "select * from table where date >= '$runDate' and date <
'$endDate' " \
-ds example \
-rd $runDate \
-tbin MONTH

dcclxxvii

Monthly BackRun (Using Collibra Data Quality's built-in Monthly)

Collibra Data Quality has 2 convenient features here:

1. The use of built-in $ and $ removes the need for any shell scripting.
2. Using -br, DQ will replay 20 months of data using this template automatically.

./owlcheck \
-q "select * from table where date >= '${rd}' and date <
'${rdEnd}' " \
-ds example
-rd 2019-01-01
-rdEnd 2019-02-01
-tbin MONTH
-br 20

Daily Data

One of the most common examples is data loading or running once a day. A job control
framework can pass in this value or you can pull it from shell.

echo "Hello World Owl"

runDate=$(date +"%Y-%m-%d")
echo $runDate

./owlcheck \
-q "select * from table where date = '$runDate' " \
-ds example \
-rd $runDate \
-tbin DAY

Daily Data (Using Collibra Data Quality's built-in Daily)

./owlcheck \
-q "select * from table where date = '${rd}' " \
-ds example \
-rd 2019-03-14

Chapter 17

dcclxxviii

Chapter 17

Daily Data with Timestamp instead of Date

./owlcheck \
-q "select * from table where TS >= '${rd} 00:00:00' and TS <=
'${rd} 23:59:59' " \
-ds example \
-rd 2019-03-14

OR Timestamp using $

./owlcheck \
-q "select * from table where TS >= '${rd} 00:00:00' and TS <
'${rdEnd} 00:00:00' " \
-ds example \
-rd 2019-03-14 \
-rdEnd 2019-03-15 \
-tbin DAY

Hourly Data

./owlcheck \
-q "select * from table where TS >= '${rd}' and TS < '${rdEnd}'
" \
-ds example \
-rd "2019-03-14 09:00:00" \
-rdEnd "2019-03-14 10:00:00" \
-tbin HOUR

DQ Check Template with Service Hook

The best practice is to make a generic job that would be repeatable for every DQ Check.
Below is an example that first hits Collibra Data Quality using a REST call and then runs
the response.

dcclxxix

curl -X GET "http://$host/v2/-
getowlchecktemplate?dataset=lake.loan_customer" \
-H "accept: application/json"

The above REST call returns the below DQ Check. It is left up to the Job Control to replace
the $ with the date from the Job Control system. You can use Collibra DQ's built-in
scheduler to save these steps.

./owlcheck \
-lib "/home/danielrice/owl/drivers/mysql/" \
-cxn mysql \
-q "select * from lake.loan_customer where load_dt = '${rd}' " \
-key post_cd_num -ds lake.loan_customer \
-rd ${rd} \
-dc load_dt -dl -dlkey usr_name,post_cd_num -dllb 5 \
-tbin DAY -by DAY -dupe -dupeinc ip_address_home,usr_name -
dupecutoff 85 \
-fpgon -fpgkey usr_name,post_cd_num -fpgdc load_dt -fpglb 5 -
fpgtbin DAY \
-loglevel INFO \
-h $host:5432/owltrunk \
-owluser {user}

REST API End Point

The easiest option is to use the runtemplate end point API call to make requests to from
cmdLine or JobControl System. This endpoint gets the DQ Check saved in Collibra
instead of the client needing to know the DQ Check details.

https://$host/v2/runtemplate?dataset=lake.spotify

RunTemplate

Parameters

Path

dataset string name of dataset. -ds OR opt.dataset

Chapter 17

dcclxxx

Chapter 17

rd string yyyy-MM-dd format can add time or timezone. if note passed in it will use the
current day

rdEnd string yyyy-MM-dd format can add time or timezone. if not passed it will not be used

Responses

200

{
 "msg": "Success, Owl Check is Running as process 13996",
 "pid": "13996",
 "runid": "2017-01-01",
 "starttime": "Thu Oct 17 13:27:01 EDT 2019",
 "cmd": "cmd": "-ds lake.spotify -rd 2019-10-17 -q \"select *
from lake.spotify\" -cxn mysql -lib /opt/owl/drivers/mysql/ -
drivermemory 2G -histoff -owluser {user}",
 "dataset": "lake.spotify"
}

Curl example for the above Rest Call

TOKEN=$(curl -s -X POST http://$host/auth/signin -H "Content-
Type:application/json" -d "{\"username\":\"$username\", \"pass-
word\":\"$password\"}" | jq -r '.token')

curl -i -H 'Accept: application/json' \
 -H "Authorization: Bearer ${TOKEN}" \
 http://$host/v2/runtemplate?dataset=lake.spotify

Bash Script

A generic and repeatable DQCheck script for job schedulers, that hooks into Collibra to get
the template.

dcclxxxi

#1 authenticate
curl -sb -X POST -d username={user} -d password={password}
http://$OWL_HOST/login -c cookies.txt

#2 get template
owlcheck_args=$(curl -b cookies.txt -H "accept: applic-
ation/json" -X GET http://$OWL_HOST/v2/-
getowlcheckcmdlinebydataset\?dataset=insurance | sed 's/.*\[\
(.*\)\]/\1/' | sed -e "s/^\"//" -e "s/\"$//" | sed 's/\\\"\
(.*\)\\\"/\x27\1\x27/')

#3 replace ${rd} with job_run_date
job_run_date="2019-03-14 10:00:00"
owlcheck_args=${owlcheck_args//'${rd}'/$job_run_date}

#4 run owlcheck
eval owlcheck $owlcheck_args

For more Information on Collibra Data Quality's Scheduler, visit the DQ Job Cron page.

DQ Job Back Run

How to Replay a Data Test
Many times you will want to see how a dataset plays out over time. This could be five days
or five months. Using this slider the tool will automatically create training sets and profiles
as well as run any rules or outliers you've put in place.

Chapter 17

dcclxxxii

Chapter 17

Quickly Replay 30 days of data, -br 30
Add -br to any DQCheck and replay in time order. Jan 1st, Jan 2nd, Jan 3rd...To do this we
need to use the ${rd} variable that DQ provides as a run_date replacement for job control
and templates. Also note that if you run from the cmdline you need to escape "$"s. So use
\${rd}. If you are running from a Notebook or Java or Scala or the Rest API you do not need
to escape the ${rd} variable.

./owlcheck \
-ds OWLDB2.NYSE_STOCKS3 -rd "2018-01-14" \
-lib "/opt/owl/drivers/db2/" \
-cxn db2 \
-q "select * from OWLDB2.NYSE_STOCKS where TRADE_DATE =
'\${rd}'" \
-br 4

Replay 4 Months of data, -br 4 -tbin MONTH
In situations where your data rolls up into Months, you may want to re-run several months
of data but not a day at a time. In this case we will use -br with -tbin.

./owlcheck \
-ds OWLDB2.NYSE_STOCKS3 \
-rd "2018-01-01" \
-q "select * from OWLDB2.NYSE_STOCKS where TRADE_DATE =
'\${rd}'" \
-br 4 \
-tbin MONTH \
-lib "/opt/owl/drivers/db2/" \
-cxn db2

dcclxxxiii

Monthly using a range for the entire Month

./owlcheck \
-ds OWLDB2.NYSE_STOCKS3 \
-rd "2018-01-01" \
-rdEnd "2018-02-01" \
-q "select * from OWLDB2.NYSE_STOCKS where TRADE_DATE >= '${rd}'
and TRADE_DATE < '${rdEnd}'" \
-br 4 \
-tbin MONTH
-lib "/opt/owl/drivers/db2/" \
-cxn db2

DQ Job Cron

Template for Job Control

Cron / Autosys / Control M / Oozie
It is common for organization to need to run jobs on a schedule. Below are a few shell
tricks to get a date from bash and use an DQCheck with template variables.

Kinit and get run_date from shell or job control variable, pass it into Collibra DQ using
$run_date.

Chapter 17

dcclxxxiv

Chapter 17

%sh
run_date=$(date +%Y-%m-%d)
run_date=$(date '+%Y-%m-%d %H:%M')
echo $run_date

#kinit
echo "password" | kinit userabc@CW.COM

~/owl/bin/owlcheck -q "select * from lake.stock_eod where date =
'$run_date' " \
-u user -p pass \
-c "jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rd-
s.amazonaws.com:3306" \
-rd "$run_date" \
-dc "date" \
-dl \
-dllb 7 \
-dlminhist 2 \
-tbin DAY \
-dlkey sym,exch \
-ds "lake.stock_nasdaq" \
-driver "com.mysql.jdbc.Driver" \
-lib "/home/ec2-user/owl/drivers/mysql/" \
-master yarn -deploymode client -numexecutors 1 -executormemory
1g \
-loglevel DEBUG

Template
You can also use -template to use DQ as a service hook and remove the need to pass in
almost anything. In this case, DQ looks up the template automatically from either a
previous run or if you've saved a template, and use these variables. Any variable at the
cmdline will override and win/replace. This is a great way to remove connection and other
information from being hard coded into the job control framework and allows edit ability
from DQ Webapp.

%sh
~/owl/bin/owlcheck -usetemplate -ds lake.stock_nasdaq -rd $run_
date

dcclxxxv

Owl Scheduler - Built In
A quick option is to use DQ's built in scheduler. DQ automatically substitutes the runtime
variables like $ into the job. This also gives you control to edit the DQCheck.

The schedule is based on the DQCheck Template. This way the runtime variables are
replaced in each run. Notice the $ below.

All Scheduled Jobs in One Place
Under the jobs dashboard you can see an overview schedule with all running jobs and
their status.

Chapter 17

dcclxxxvi

Chapter 17

DQ Job Kafka

Kafka Requires Zookeeper
Apache Kafka typically requires zookeeper. This file and cmd can be run from inside
/kafka/bin.

Start the ZooKeeper service
Note: Soon, ZooKeeper will no longer be required by Apache
Kafka.
$ bin/zookeeper-server-start.sh config/zookeeper.properties

Start a Kafka Server
Precursor step to Collibra DQ (you likely already have this step completed if you use
Kafka).

bin/kafka-server-start.sh config/server.properties

Start a Kafka Topic
Precursor step to DQ (you likely already have this step completed if you use Kafka).

dcclxxxvii

bin/kafka-topics.sh --create --bootstrap-server localhost:9092 -
-replication-factor 1 --partitions 1 --topic test

prefered cmd is below
bin/kafka-topics.sh --create --zookeeper localhost:2181 --rep-
lication-factor 1 --partitions 1 --topic test

Put a msg on "test" Topic

bin/kafka-console-producer.sh --broker-list localhost:9092 --
topic test

Kafka Consumer or DQ Consumer
Kafka works as a topic so you can have many consumers. Here is a basic cmdline
consumer but we can add DQ as a second consumer.

bin/kafka-console-consumer.sh --bootstrap-server localhost:9092
--topic test --from-beginning

/opt/owl/bin/owlcheck.sh
 -kafkatopic test
 -ds machine1
 -streamformat csv
 -kafkaport 9092
 -kafkabroker localhost
 -streaminterval 60
 -stream -kafka
 -header first_name
 -master local

Chapter 17

dcclxxxviii

Chapter 17

Streams vs Sensors
Technically speaking anything moving in real-time is a stream of data but DQ classifies
streams and IoT sensors as slightly different for the following reasons:

Sensors
Sensors are commonly a standard time-series. Signal, Time, Value.

Signal Time Value

device1-CPU 2019-02-11 13:40:55 4

dcclxxxix

Signal Time Value

device1-CPU 2019-02-11 14:33:20 2

Streams
Streams commonly look like messages, jsons, avro or batch data but constantly flowing.
Another way to think of it is a multiple time-series.

[
 trade: {
 price: 23.75,
 qty: 20,
 symbol: HDP
 },
 trade: {
 }
]

fname age networth email

Joe 45 $130,000 joe@yahoo.com

Mark 33 $125,000 mark@yahoo.com

The difference between a Sensor and a Stream in the above example is that in the case of
the sensor the user is primarily concerned with the actual value of the "Value". Meaning a
spike in temperature or a drop in CPUs. But in a stream of customer data there isn't a time
"X" and value "Y" there are many values "Y" and you a user is interested in the overall
quality of both the entire stream and the individual values. Relationship analysis and other
correlative functions apply here. If you were to chart a "stream" what would you chart? The
row count volume or just one of the columns or the count of something? But if you were to
chart a sensor you know exactly what you would chart... the "Value" over "Time".

Fortunately DQ has already thought and worked through the many nuances required to
understand, monitor and predict accurately for all of these use-case. All that is required is
to subscribe the stream.

Chapter 17

dccxc

Chapter 17

DQ Job LinkID

Link ID is an out-of-the-box feature that lets you link the findings of a DQ Job back to the
source record, or key, for remediation outside the application. The link ID should be unique
and is most commonly the primary key. Composite primary key is also supported.

Collibra Data Quality supports one or many primary key columns in your data sets for
record linkage to your original table, file, or data frame. If your primary key column contains
many columns, use a comma to delineate.

Providing the link ID

There are two ways to provide the link ID:

1. From the command line using -linkid.
2. In a notebook via opt.linkId.

Combining link ID and Run Discovery

To combine the features of link ID and Run Discovery, first enable link ID and then use
Run Discovery. This lets you apply sensitivity labels to data classes and trigger breaks for
all the records that do not match your link ID.

Link ID and the DQMetastore
No personal data is stored in the Metastore when using link ID. The Metastore only stores:

l The rule that is applied to your DQ Job.
l The data set used for your DQ Job.
l The column of reference.
l The link ID.

For further reading on sensitive information, refer to Data Discovery in the Rule Discovery
section.

dccxci

https://dq-docs.collibra.com/dq-visuals/rules/data-concepts-and-semantics#run-discovery
https://dq-docs.collibra.com/dq-visuals/rules/data-concepts-and-semantics#data-discovery-the-power-of-combining-all-three-into-one-domain

Viewing break records

To view rule break records, navigate to the Breaks tab on the Rule Builder page. Rules
with break records have associated link IDs that link back to the original data set. All
remediation for data quality issues is performed outside the Collibra Data Quality app.

Steps

1. In Explorer, select a table and create a DQ Job. >> The DQ Job page opens.

2. In the Scope section, select the Add Link Back to Source checkbox. >> A new
column, Link ID, appears.

3. Select the columns that represent the primary key(s) of your data set. >> By select-
ing multiple checkboxes, you can create a composite key.

4. Run your DQ Job.
a. Click Build Model.
b. Click Save/Run.
c. Verify the information on the Register page.
d. Click Estimate Job and then click Run. >> Your DQ Job is sent to the Jobs

page.
5. Open your DQ Job.

a. Open the Jobs page.
b. Select your DQ Job from the list. >> Your DQ Job opens.

6. Apply a rule.
a. In the metadata box, click Rules. >> The Rule Builder opens.
b. Select a rule type. Note: All Simple and Freeform rules are eligible for Link ID.

7. Re-run your DQ Job.
a. On the Findings page, click the DQ Job tab.
b. Verify the run command.
c. Click Run DQ Job. >> Your DQ Job is submitted to the Jobs queue.

8. Open your DQ Job.
a. Open the Jobs page.
b. Select your DQ Job from the list. >> Your DQ Job opens.

9. View your rule breaks.
a. In the metadata box, click Rules. >> The Rule Builder opens.

Chapter 17

dccxcii

Chapter 17

b. Click the Breaks tab. >> A table displays a row for each record in violation of
the rule you set. The Link ID column lets you identify broken records within
your data set and mark them for remediation outside the DQ application.

c. Export the break records. Supported file formats include Excel and CSV.

Notebook

val opt = new OwlOptions()
opt.runId = "2018-02-24"
opt.dataset = "orders"
opt.linkId = Array("transaction_id", "trans_time")

Command Line

./owlcheck -ds orders \
-rd "2018-02-24" \
-linkid transaction_id,trans_time

Note For rules to use linkID, the columns need to be present in the select
statement (either select * or select specific column names). All Simple rules are
eligible for linkID and Freeform rules need to contain the columns in the projection
part of the SQL statement.

Activity Usage

Activity Supported Description

SHAPE YES One example of each shape issue will have a link back to the cor-
rupt record for remediation.

OUTLIER YES Each outlier will have a link back to the detected record for remedi-
ation. If you apply a limit you will only get the limited amount. Not
on categorical.

dccxciii

Activity Supported Description

DUPE YES Each duplicate or fuzzy match will have a link back to the record for
remediation.

SOURCE PARTIAL Each source record that has a cell value that doesn't match to the
target will have a link for remediation. SOURCE will not have links
for row counts and schema as these are not record level findings.

RULE YES Break records for Freeform and Simple rule types will be stored
(any records that did not meet the condition of the RULE will be
provided with the linkID columns). These are stored as delimited
strings in the rule_breaks table along with the dataset, run_id and
rule name. Please note when using Freeform SQL the linkID
columns should be part of the select statement. LinkID columns
should be unique identifiers.

BEHAVIOR NO This class of data change is when a a section of your data is drifting
from its normal tendency there is no 1 record to link.

SCHEMA NO This class of data change is at a schema/data set level there are no
records to link.

RECORD PARTIAL In some cases when a record is added or removed it may be avail-
able for linking.

PATTERN NO Patterns are not always a direct link. This item is still under per-
formance review.

Notebook API Example

+------------+----------+-------+-------+-----+-----------------
+---------------+
| dataset| runId|fieldNm|
format|count| percent| transaction_id|
+------------+----------+-------+-------+-----+-----------------
+---------------+
| order |2018-02-
24| fname|xxxx'x.| 1|7.142857142857142|t-1232 |
+------------+----------+-------+-------+-----+-----------------
+---------------+

Chapter 17

dccxciv

Chapter 17

owl.getShapesDF

Rest API Example
When supplying a linkID, Collibra naturally excludes this field from most activities,
meaning a unique ID or primary key column can not be duplicative or it would not be the
primary key. Because of this, it is not evaluated for duplicates. The same is true for
Outliers and Shapes, as a large sequence number or other variations might trigger a false
positive when this column is denoted to be simply for the purpose of linking uniquely back
to the source. If you also want to evaluate this column and link it, create a derived column
with a different name and Collibra Data Quality will naturally handle both cases.

owl.getShapes
owl.getDupes
owl.getOutliers
owl.getRuleBreaks
owl.getSourceBreaks

dccxcv

getRules()

----Rules----
+-----------------+----------+--------------------+-------------
-----+------+
| dataset| runId| ruleNm| rule-
Value|linkId|
+-----------------+----------+--------------------+-------------
-----+------+
|dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like
'Kirk' | c-41|
|dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like
'Kirk' | c-42|
|dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like
'Kirk' | c-43|
|dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like
'Kirk' | c-44|
|dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like
'Kirk' | c-45|
|dataset_outlier_3|2018-02-24|if_email_is_
valid...| email| c-31|
|dataset_outlier_3|2018-02-24|if_email_is_
valid...| email| c-33|
|dataset_outlier_3|2018-02-24|if_zip_is_valid_
Z...| zip| c-40|
+-----------------+----------+--------------------+-------------
-----+------+

getDupes()
First split on ~~ then if you have a multiple part key split on ~|.

Chapter 17

dccxcvi

Chapter 17

----Dupes----
+-----------------+----------+-----+--------------------+-------
---+
| dataset| runId|score| key| lin-
kId|
+-----------------+----------+-----+--------------------+-------
---+
|dataset_outlier_3|2018-02-24| 100|9ec828d5194fa397b...|c-
45~~c-36|
|dataset_outlier_3|2018-02-24| 100|1f96274d1d10c9f77...|c-
45~~c-35|
|dataset_outlier_3|2018-02-24| 100|051532044be286f99...|c-
45~~c-44|
|dataset_outlier_3|2018-02-24| 100|af2e96921ae53674a...|c-
45~~c-43|
|dataset_outlier_3|2018-02-24| 100|ad6f04bf98b38117a...|c-
45~~c-42|
|dataset_outlier_3|2018-02-24| 100|1ff7d50a7a9d07d02...|c-
45~~c-41|
|dataset_outlier_3|2018-02-24| 100|6ed858ed1f4178bb0...|c-
45~~c-40|
|dataset_outlier_3|2018-02-24| 100|d2903703b348fb4cb...|c-
45~~c-39|
|dataset_outlier_3|2018-02-24| 100|24bf54412de1e720d...|c-
45~~c-38|
|dataset_outlier_3|2018-02-24| 100|7a7ce0beb41b39564...|c-
45~~c-37|
+-----------------+----------+-----+--------------------+-------
---+

getRuleBreaks()
The getRuleBreaks endpoint retrieves all broken records within your data set. There is no
size limit to this API.

dccxcvii

----Rule-Breaks----
+-----------------+----------+--------------------+------+
| dataset| runId| ruleNm|linkId|
+-----------------+----------+--------------------+------+
dataset_outlier_3	2018-02-24	fname_like_Kirk	c-41
dataset_outlier_3	2018-02-24	fname_like_Kirk	c-42
dataset_outlier_3	2018-02-24	fname_like_Kirk	c-43
dataset_outlier_3	2018-02-24	fname_like_Kirk	c-44
dataset_outlier_3	2018-02-24	fname_like_Kirk	c-45
dataset_outlier_3	2018-02-24	if_email_is_valid...	c-31
dataset_outlier_3	2018-02-24	if_email_is_valid...	c-33
dataset_outlier_3	2018-02-24	if_zip_is_valid_Z...	c-40
+-----------------+----------+--------------------+------+

DQ Job Validate Source

Reconciliation
Commonly data driven organizations have a need to ensure that two tables or a table and
file match. This match might be a daily reconciliation or any snapshot in time. Collibra DQ
calls this Source to Target or Left to Right matching. It covers row differences, schema
differences and all cell values.

Impala/Hive -> DB2
Below is an example of comparing a table in DB2 to the same table in Impala.

Chapter 17

dccxcviii

Chapter 17

./owlcheck \
-lib "/home/install/owl/drivers/db2" \
-cxn db2 \
-q "select * from OWLDB2.NYSE_STOCKS where TRADE_DATE = '${rd}'
" \
-ds NYSE_STOCKS_VS \
-rd "2018-01-10" \
-vs \
-valsrckey SYMBOL \
-validatevalues \
-h $host/owltrunk \
-srcq "select * from nyse where TRADE_DATE = '${rd}' " \
-srccxn impala-jdbcuser \
-libsrc /home/isntall/owl/drivers/hivedrivers \
-jdbcprinc jdbcuser@CW.COM -jdbckeytab /tmp/jdbcuser.keytab \
-owluser admin \
-executorcores 4 -numexecutors 6 -executormemory 4g -driver-
memory 4g -master yarn -deploymode cluster \
-sparkkeytab /home/install/owl/bin/user2.keytab \
-sparkprinc user2@CW.COM

DB2 -> Hive (Native)
Most databases only expose data through a JDBC connection but Hive offers a second
path which does not require a JDBC connection. Hive has the ability to push down its
processing to the local worker nodes and read directly from disk in the case when the
processing is happening locally on a cluster. If your processing is not happening local to
the cluster then you must use HiveJDBC. Take note of the -hive flag.

./owlcheck \
-hive \
-q "select * from nyse" \
-ds hiveNativeNyse \
-rd "2019-10-01" \
-vs \
-valsrckey exch,symbol,trade_date \
-validatevalues \
-srcq "select * from OWLDB2.NYSE_STOCKS" \
-srccxn db2 -libsrc /home/install/owl/drivers/db2 \
-numexecutors 2 -executormemory 5g -drivermemory 4g -master yarn
-deploymode cluster \
-sparkkeytab /home/install/owl/bin/user2.keytab -sparkprinc
user2@CW.COM

dccxcix

MySQL -> Oracle
This example compares the entire table instead of just a single day. Notice the 3 part
valsrckey EXCH,SYMBOL,TRADE_DATE. Adding the date field ensures our key is unique
and won't create a cartesian product. If the goal was to compare day over day with Oracle
make sure to add TO_DATE('YYYY-MM-DD', '2019-10-01') to the where clause.

./owlcheck \
-lib /home/install/owl/drivers/mysql/ \
-cxn mysql \
-q "select * from lake.nyse" \
-ds lake.nyse \
-rd 2019-10-01 \
-vs \
-valsrckey EXCH,SYMBOL,TRADE_DATE \
-validatevalues \
-sparkkeytab /home/install/owl/bin/user2.keytab \
-sparkprinc user2@CW.COM \
-srcq "select * from SYSTEM.NYSE" \
-srccxn oracle \
-libsrc /home/danielrice/owl/drivers/oracle/
-numexecutors 2 -executormemory 5g -drivermemory 4g -master yarn
-deploymode cluster \

File -> MySQL Table
Taking a file and loading it into a staging table or final table is a common part of every ETL
process. However it is extremely common that the file values do not match or coherence
into the table properly and these silent errors are usually not caught until a business user
sees the data far long down stream.

Chapter 17

dccc

Chapter 17

./owlcheck \
-ds lake.nyse \
-rd 2019-10-01 \
-cxn "mysql" \
-q "select * from lake.nyse" \
-vs \
-valsrckey EXCH,SYMBOL,TRADE_DATE \
-validatevalues \
-srcfile "hdfs:///user/source/nyse.csv" \
-srcd "," \
-lib /home/install/owl/drivers/mysql/ \
-sparkkeytab /home/install/owl/bin/user2.keytab \
-sparkprinc user2@CW.COM \
-numexecutors 2 -executormemory 5g -drivermemory 4g -master yarn
-deploymode cluster \

File -> File
DQ compares a File to a File. This is common in landing zones and staging areas where a
file might be moved or changed and you need to know if anything changed or is incorrect.

./owlcheck \
-ds lake.nyse \
-rd 2019-10-01 \
-f "hdfs:///user/target/nyse.csv" \
-d "," \
-vs \
-valsrckey EXCH,SYMBOL,TRADE_DATE \
-validatevalues \
-srcfile "hdfs:///user/source/nyse.csv" \
-srcd "," \
-sparkkeytab /home/install/owl/bin/user2.keytab \
-sparkprinc user2@CW.COM \
-numexecutors 2 -executormemory 5g -drivermemory 4g -master yarn
-deploymode cluster \

DQ Job 43M rows

Collibra DQ commonly benchmarks on large daily datasets. In this case, a 43 million row
table with 12 columns completes in under 6 mins (5:30). The best balance for this dataset
was 3 executors each with 10G of ram.

dccci

./owlcheck \
-u user -p password \
-c jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rd-
s.amazonaws.com:3306 \
-q "select * from silo.account_large where acc_upd_ts > '2018-
02-01 05:0:00'" \
-rd 2019-02-02 \
-ds account_large \
-dc acc_upd_ts \
-corroff \
-histoff \
-driver com.mysql.cj.jdbc.Driver \
-lib "/home/ec2-user/owl/drivers/mysql/" \
-master yarn \
-deploymode client \
-numexecutors 3 \
-executormemory 10g \
-histoff -corroff -loglevel DEBUG -readonly

Note Not all DQ features were turned on during this run. On large datasets it is
worth it to consider limiting the columns, DQ-features, or lookbacks if they are not of
interest.

Add Date Column

Example

./owlcheck \
-ds "datataset_date_column" \
-rd "2019-07-01" \
-f "/Users/Downloads/csv2/2019010.csv" \
-adddc

Note Add date column will use the run date supplied and add a date column named
DQ_RUN_ID.

-adddc

Chapter 17

dcccii

Chapter 17

This is used when you are using datasets that do not contain a date column or a
malformed date string.

Known Limitations
This feature is only available for files, not for database tables.

AutoProfile

AutoProfile allows you to select a set of databases and tables to quickly be cataloged.
Each selected table will be profiled and added to the Collibra DQ Catalog via the selected
agent. Various parameters like Alerts, Job Schedules, limits, and more can also be set.

When you expand a datasource in the Explorer page, you're given a list of possible
databases and their associated tables. AutoProfile is triggered when you select the ones
you want and hit scan. This will take you to a separate page that allows you to configure
the various AutoProfile parameters.

A SparkSubmit will be launched for each table, so make sure the agent configuration is
reasonable and the box has enough resources to handle each job.

Global Parameters

dccciii

Histogram and Correlation: Enable or Disable

PushDown: Set metrics that will be run against the entire table, ignoring limit values.

Default Limit: The default row limit to set for each table to be scanned.

Batch Size: The number of concurrent SparkSubmit jobs the agent will be allowed to run.

Scan and Schedule : Enable scheduling.

Alert: Enable email alerts.

Agent: The agent under which jobs will run.

Per Table Parameters

Chapter 17

dccciv

Chapter 17

Columns: The columns to select from (if none are specified, we assume all columns to be
selected).

Date Filter: The date column to be used as the runDate parameter when the job runs.

Default Limit: Per table limits.

Cloudera CLASSPATH

What is a CLASSPATH?

A CLASSPATH is essentially a list of jars that get injected into a JVM on the start of a job
execution. Like many applications, Spark can have jars injected when a job is run.
Cloudera has defined a list of predefined jars (rightfully called classpath.txt):

/etc/spark2/conf/classpath.txt

That will get injected whenever Spark is called. Here is an example list of jars as defined
within a cluster we have stood up@ Collibra DQ:

dcccv

[danielrice@cdh-edge ~]$ cat /etc/spark2/conf/classpath.txt
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/activation-1.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/aopalliance-1.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/apacheds-
i18n-2.0.0-M15.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/apacheds-
kerberos-codec-2.0.0-M15.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/api-asn1-
api-1.0.0-M20.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/api-util-
1.0.0-M20.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/asm-3.2.-
jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/avro-
1.7.6-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/aws-java-
sdk-bundle-1.11.134.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/azure-
data-lake-store-sdk-2.2.9.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
beanutils-1.9.2.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
beanutils-core-1.8.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
codec-1.4.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
codec-1.9.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
configuration-1.6.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
daemon-1.0.13.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
digester-1.8.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
el-1.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
logging-1.2.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
math-2.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
math3-3.1.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-
net-3.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/core-
3.1.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/curator-
client-2.7.1.jar

Chapter 17

dcccvi

Chapter 17

/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/curator-
framework-2.7.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/curator-
recipes-2.7.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/disruptor-3.3.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/findbugs-
annotations-1.3.9-1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/guava-
11.0.2.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/guava-
12.0.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/guice-
3.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
annotations-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
ant-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
archive-logs-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
archives-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
auth-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
aws-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
azure-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
azure-datalake-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
common-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
datajoin-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
distcp-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
extras-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
gridmix-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
hdfs-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
hdfs-nfs-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-client-app-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-client-common-2.6.0-cdh5.16.1.jar

dcccvii

/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-client-core-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-client-hs-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-client-hs-plugins-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-client-jobclient-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-client-nativetask-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-client-shuffle-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
mapreduce-examples-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
nfs-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
openstack-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
rumen-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
sls-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
streaming-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-api-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-applications-distributedshell-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-applications-unmanaged-am-launcher-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-client-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-common-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-registry-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-server-applicationhistoryservice-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-server-common-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-server-nodemanager-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-server-resourcemanager-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-
yarn-server-web-proxy-2.6.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hamcrest-
core-1.3.jar

Chapter 17

dcccviii

Chapter 17

/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
annotations-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-cli-
ent-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-com-
mon-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
examples-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
external-blockcache-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
hadoop-compat-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
hadoop2-compat-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-it-
1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-pre-
fix-tree-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-pro-
cedure-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-pro-
tocol-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
resource-bundle-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
rest-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
rsgroup-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
server-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
shell-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-
thrift-1.2.0-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/high-
scale-lib-1.1.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hsqldb-
1.8.0.10.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/htrace-
core-3.2.0-incubating.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/htrace-
core4-4.0.1-incubating.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/httpclient-4.2.5.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/httpcore-
4.2.5.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hue-plu-
gins-3.9.0-cdh5.16.1.jar

dcccix

/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-
annotations-2.2.3.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-
core-2.2.3.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-
core-asl-1.8.10.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-
databind-2.2.3-cloudera.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-
jaxrs-1.8.10.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-
mapper-asl-1.8.10-cloudera.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-
xc-1.8.10.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jamon-
runtime-2.4.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jasper-
compiler-5.5.23.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jasper-
runtime-5.5.23.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/java-xml-
builder-0.4.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/javax.inject-1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jaxb-api-
2.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jaxb-api-
2.2.2.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jaxb-
impl-2.2.3-1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jcodings-
1.0.8.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jets3t-
0.9.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jettison-
1.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jettison-
1.3.3.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jline-
2.11.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/joni-
2.1.2.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jruby-
cloudera-1.0.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsch-
0.1.42.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsp-2.1-
6.1.14.jar

Chapter 17

dcccx

Chapter 17

/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsp-api-
2.1-6.1.14.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsp-api-
2.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsr305-
3.0.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/leveldbjni-all-1.8.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/log4j-
1.2.16.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/log4j-
1.2.17.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/metrics-
core-2.2.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/metrics-
core-3.0.2.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/microsoft-windowsazure-storage-sdk-0.6.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/mockito-
all-1.8.5.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/netty-
3.10.5.Final.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/netty-
all-4.0.50.Final.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/okhttp-
2.4.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/okio-
1.4.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/paranamer-2.3.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/protobuf-
java-2.5.0.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/slf4j-
api-1.7.5.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/slf4j-
log4j12-1.7.5.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/snappy-
java-1.0.4.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/spark-
1.6.0-cdh5.16.1-yarn-shuffle.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/spymemcached-2.11.6.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/stax-api-
1.0-2.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/xercesImpl-2.9.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/xml-apis-
1.3.04.jar

dcccxi

/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/xmlenc-
0.52.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/jars/zookeeper-3.4.5-cdh5.16.1.jar
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/lib/hadoop/LICENSE.txt
/opt/cloudera/parcels/CDH-5.16.1-1.cd-
h5.16.1.p0.3/lib/hadoop/NOTICE.txt
/usr/java/jdk1.8.0_131/lib/tools.jar

At each execution of any Spark job (including the use of spark-submit) this list of jars
above will automatically get loaded.

What is a JAR?

A jar file is essential a compressed list of classes and methods. It is important to note that
when jar files are built they will typically have an associated version number.

Someone can look at the contents of a jar file by executing:

jar -tvf phoenix-4.13.1-HBase-1.3-client.jar

Or you can wrap the above in a for loop that will look at the contents of every jar that might
contain a method you are looking for.

for i in `ls -1 *.jar`;do jar -tvf $i | grep -i
htrace/trace;echo $i;done;

Chapter 17

dcccxii

Chapter 17

Common issues that can occur with CLASSPATH's

Note Caused by: java.lang.NoClassDefFoundError: org/apache/htrace/Trace at
org.apache.hadoop.hbase.zookeeper.RecoverableZooKeeper.exists
(RecoverableZooKeeper.java:218) at
org.apache.hadoop.hbase.zookeeper.ZKUtil.checkExists(ZKUtil.java:481) at
org.apache.hadoop.hbase.zookeeper.ZKClusterId.readClusterIdZNode
(ZKClusterId.java:65) at
org.apache.hadoop.hbase.client.ZooKeeperRegistry.getClusterId
(ZooKeeperRegistry.java:86) at
org.apache.hadoop.hbase.client.ConnectionManager$HConnectionImplementatio
n.retrieveClusterId(ConnectionManager.java:850) at
org.apache.hadoop.hbase.client.ConnectionManager$HConnectionImplementatio
n.<init>(ConnectionManager.java:635)

When a situation like this occurs it means that a method cannot be found in the classpath
for the job that is trying to execute. This can indicate a couple things:

1. The job cannot find a jar file that contains the method flagged (in the example above
the org/apache/htrace/Trace method).

2. Sometimes different versions of the same jar file gets loaded and the first jar loaded
will always win. Older jars that get loaded first may not have a method defined in new
jars.

At DQ, we have solved CLASSPATH / CLASSLOAD issues by automatically injecting jars
defined in our owl/libs directory, and allowing users the ability to simply toggle loading
them or not.

Column Matching

How much is your redundant data costing you?

Reclaim Gigabytes of Redundant Data
As data engineers, first we copy files into a landing zone, next we load the files into a
staging area. After that we transform (ETL) the data into the final table. Soon that same
data is copied to a lake for other groups to run analytics on. Eventually a group of analysts

dcccxiii

will need the data in another format and a data engineer will copy the data in a newly
joined or transposed fashion. Sounds familiar?

The result is the same data or similar columns of the same data being copied many times.
The answer: Buy more hardware... could be OR run a Collibra DQ health report and gain
an understanding of how much data could be removed, reclaiming disk space and
instantly seeing a return on investment after clicking the button.

Tabular breakdown of percentage of fingerprint
matches

Sometimes its not as simple as comparing two tables from the same database. DQ allows
a technical user to setup multiple DB connections before executing an owl health check.

Chapter 17

dcccxiv

Chapter 17

import com.owl.common.Props
import com.owl.core.Owl

val c1 = new Connection()
c1.dataset = "silo.account"
c1.user = "user"
c1.password = "pass"
c1.query = "select id, networth, acc_name, acc_branch from
silo.account limit 200000"
c1.url = "jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rd-
s.amazonaws.com:3306"

val c2 = new Connection()
c2.dataset = "silo.user_account"
c2.user = "user"
c2.password = "pass"
c2.query = "SELECT acc_name, acc_branch, networth FROM silo.ac-
count limit 200000"
c2.url = "jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rd-
s.amazonaws.com:3306"

val props = new Props()
props.dataset = "colMatchTest1"
props.runId = "2017-02-04"
props.connectionList = List(c1,c2).asJava
props.colMatchBatchSize = 2
props.colMatchDurationMins = 3

val matchDF = new Owl(props).colMatchDF
matchDF.show

matchDF.createOrReplaceTempView("matches")

High level view of data overlap

dcccxv

Date Time Variable Options

Date Time Variables can enhance your query and file date templating and variable
options. This allows easier scheduling and programmatic templating for common date
variables.

Key Function

${rd} Replaces with -rd values in CMD. For example, 2023-01-20.

${rdEnd} Replaces with -rdEnd values in CMD.

${yyyy} Replaces with 4-digit year portion of -rd values in CMD. For example, 2023.

${yy} Replaces with 2-digit year portion of -rd values in CMD. For example, 23.

${M} Replaces with 1-digit month portion of -rd values in CMD.

${MM} Replaces with 2-digit month portion of -rd values in CMD.

${MMM} Replaces with 3 letter month name portion of -rd values in CMD For example, Jan,
Jul, Dec.

${MMMM} Replaces with long month name portion of -rd values in CMD For example, January,
July, December.

${d} Replaces with 1 digit day portion of -rd values in CMD.

${dd} Replaces with 2 digit day portion of -rd values in CMD.

${HH} Replaces with 2 digit hour portion of -rd values in CMD.

${KK} Replaces with 1 digit hour portion of -rd values in CMD.

${mm} Replaces with 2 digit minute portion of -rd values in CMD.

${ss} Replaces with 2 digit second portion of -rd values in CMD.

Deploy Mode

Yarn and Cluster

Chapter 17

dcccxvi

Chapter 17

Deploy Mode Client

--deploy-mode client

Deploy Mode Cluster

--deploy-mode cluster

Job Stuck in ACCEPTED State
yarn.Client: Application report for application_1557720962505_0085 (state: ACCEPTED)
yarn.Client: Application report for application_1557720962505_0085 (state: ACCEPTED).

If running in cluster mode make sure you are passing in the below.

--deploy-mode cluster
--master yarn # or spark master
-h 123.45.6.77:2181 # host to owl metastore

Explorer (advanced)

Explore Database Connections and File Systems

Use the explorer tab to quickly see which tables are cataloged with Collibra DQ (the
square catalog icon) and which have DQ's quality protection (the DQ icon).

Below you will see 48/48 database tables have been cataloged with DQ but only 21/48
have an DQCheck. This means that this particular database schema is 44 percent
protected from future DQ issues.

dcccxvii

DQ coverage over time

As you add more datasets to Collibra DQ, you will see your bar chart increase over time
and the donut chart fill in with more coverage.

Job Estimator

Before firing off a large ML job it can be helpful to understand the amount of cores and ram
that the job requires to run efficiently. Right sizing jobs is often the best way to get the best
performance out of each run. Click the [Auto Estimate] button for quick stats for both sizing
and estimated runtime information.

Dynamic allocation
Many clusters offer the ability to scale up and down job containers. If Dynamic Allocation is
turned on you may not need or desire DQ's recommended num-executors or
executor-memory. However, in our testing right sizing the job before executing is both
faster and a healthy habit. Faster, because there is less orchestration and context
switching while the job is doing work; we've minimized time spent running out of space and

Chapter 17

dcccxviii

Chapter 17

having to reallocate and shuffle to a new container. Healthier, because it give the user
real-time feedback on the cost of each feature and the ability to control the cost benefit
analysis.

SQL Editor

Automatically tracks to the connection, database and table in the explorer and provides a
quick way to ask the database simple questions like, counts, groupings and specific
clauses.

File Look Back

As of 2021.11, this option is exposed in the Explorer under the Collibra DQ Job section.
Users can persist (save) this option by clicking the Union Lookback checkbox.

dcccxix

Union Lookback (-fllb)
Union Lookback, or File Lookback (-fllb) as it is also known, is used with deep learning or
pattern matching. In the example below, it is used with deep learning.

File Lookback is used to check DQ Check history for previous files.

-fllb

This is often used with files and in conjunction with -adddc in cases where a date
column is not in an ideal format or you do not have a date column on the given dataset.

Despite the name, this can be used with file or database storage formats.

Note File look back (-fllb) should only be used when a SQL layer is not available.
This is considered for advanced use cases, but may not be suitable for all file types
and folder structures. Best practice is to expose a date signature somewhere in the
file or directory naming convention.

Chapter 17

dcccxx

#numerical-outliers

Chapter 17

Example

-ds "demo_lookback" \
-rd "2017-07-29" \
-lib "/opt/owl/drivers/mysql" \
-cxn "mysql" \
-q "select * from lake.dateseries where DATE_COL = '2017-07-29'
" \
-dc DATE_COL \
-dl \
-dlkey sym \
-dllb 4 \
-fllb

Note This look back will load your past 4 runs as your historical training set

Fullfile Lookback (-fullfile)
Like Union Lookback, Fullfile Lookback (-fullfile) is used with deep learning and pattern
matching.

Fullfile Lookback uses the entire file for lookbacks instead of just filequery.

__

Filter & Filter Not

Filter & Filter Not is similar to a grep for limiting a dataframe to rows containing a substring.

Note This feature should only be used when -q (query) and -fq (filequery) are not
applicable. This feature is primarily used with raw files for limited filtering and not
advanced conditional logic.

dcccxxi

Example

./owlcheck \
-ds "dataset_name" \
-rd "2018-07-23 10" \
-d "," \
-f "/Users/Documents/file.csv" \
-filter "2018-07-23"

Note -filter "2018-07-23"
If file.csv contained multiple strings, but you only wanted rows containing "2018-07-
23".

The inverse

Note -filternot "2018-07-23"
To exclude rows containing "2018-07-23".

Header Check

Header Check lets you toggle column name detection on and off so column names
containing special characters are not detected as schema changes. This is configurable
with the Check Header checkbox or from the command line.

Configuring with the Check Header checkbox

The Check Header checkbox is checked by default. When it is checked, schema findings
do not display when detected.

To disable the header check, uncheck the Check Header checkbox. This allows the
schema findings to display when detected.

Chapter 17

dcccxxii

Chapter 17

Configuring from the command line

Header checks are enabled by default and do not appear in the command line when
enabled. To disable header checks from the command line, click the lock icon to unlock
the command line and use the -headercheckoff variable, as shown in the screenshot
below. When you are done editing the command line, click the lock icon again to lock the
command line; then, click Run.

dcccxxiii

Multiple Pattern Relationships

Run more than one relationship through pattern matching.

Example

./owlcheck \
-ds "fpg_multiple" \
-rd "2018-10-04" \

-cxn "postgres" \
-lib "/opt/owl/drivers/postgres/" \
-q "select * from public.fpg_accounts where d_date = '2018-10-
04'" \

-fpgon \
-fpgdc "d_date" \
-fpglb "4" \
-fpgmulti "id,ssn_num=first_name,email|id,ssn_num=first_name,-
gender|id,ssn_num=last_name"

Note Instead of -fpgkey and -fpgcol
key1=cols1|keys2=cols2
Enter multiple key=cols combinations separated by a pipe.

-fpgmulti "id,ssn_num=first_name,email|id,ssn_num=first_name,-
gender"

Nulls in Datasets

Example

./owlcheck \
-ds "datataset_date_column" \
-rd "2019-07-01" \
-f "/Users/Downloads/csv2/2019010.csv" \
-zfn \
-nulls "N.A."

Chapter 17

dcccxxiv

Chapter 17

Zero if null will replace null values with zero.

-zfn

To replace characters that represent a null to actual null values.

-nulls "N.A."

Spark-shell Sample

./bin/spark-shell --jars /opt/owl/bin/owl-core-trunk-jar-with-

dependencies.jar,/opt/owl/drivers/postgres/postgresql-42.2.5.jar --

deploy-mode client --master local[*]

Import lib’s, if you get a dependency error, please import a second time.

import com.owl.core.util.{OwlUtils, Util}

import com.owl.common.domain2.OwlCheckQ

import com.owl.common.options._

Set up connection parameters to the database we want to scan if you don’t already have a
dataframe.

val`` ``url`` ``=

"jdbc:postgresql://xxx.xxx.xxx.xxx:xxxx/db?currentSchema=schema"

val`` ``connProps``=``Map("driver" -> "org.postgresql.Driver","user"

-> "user","password" -> "pwd","url" ->`` ``url,"dbtable" ->

"db.table")

Create a new OwlOptions object so we can assign properties.

val opt = new OwlOptions()

Set up variables for ease of re-use.

val dataset = "nyse_notebook_test_final"

val runId = "2017-12-18"

dcccxxv

var date = runId

var query = s"""select * from <table> where <date_col> = '$date' """

val pgDatabase = "dev"val pgSchema = "public"

Set OwlOptions values to the metastore.

opt.dataset`` ``= datasetopt.runId`` ``= runIdopt.host`` ``=

"xxx.xxx.xxx.xxx"opt.pgUser`` ``= "xxxxx"opt.pgPassword`` ``=

"xxxxx"opt.port`` ``= s"5432/$pgDatabase?currentSchema=$pgSchema"

Create a connection, build the dataframe, register and run.

With inline processing you will already have a dataframe so you can skip down to setting
the OwlContext.

val conn =`` ``connProps`` ``+ ("dbtable" -> s"($query)``

``$dataset")val df =`` ``spark.read.format("jdbc").options

(conn).load

val owl = OwlUtils.OwlContext(df, opt)owl.register(opt)owl.owlCheck

Transform

Transform Date
During Collibra DQ setup, you can transform columns such as Dates and Numbers to
preferred formats. It is a common need to replace N.A. with nulls or empty white space.

Chapter 17

dcccxxvi

Chapter 17

Example

./owlcheck \
-ds "dataset_transform" \
-rd "2018-01-31" \
-f "/Users/Documents/file.csv" \
-transform "purch_amt=cast(purch_amt as double)|return_amt=cast
(return_amt as double)"

Note Submit an expression to transform a string to a particular type.
In this example, transform the purch_amt column to a double.

-transform "purch_amt=cast(purch_amt as double)"

Note Example of converting a string to a date.

-transform "RECEIVED_DATE=to_date(CAST(RECEIVED_DATE AS STRING),
'yyyyMMdd') as RECEIVED_DATE"

dcccxxvii

dcccxxviii

Collibra DQ Architecture

Chapter 18

Chapter 18

Architecture Diagram

Collibra DQ Architecture

dcccxxix

High-Level Diagram

1. Connect to data sources.
2. Build the DQ scan algorithm and submit the job.
3. Execute the Spark job.
4. Write the DQ results in the Metastore.
5. Browse the results of the DQ Scan with the management console.

Chapter 18

dcccxxx

Chapter 18

Collibra DQ Hadoop Deployment Diagram

dcccxxxi

Collibra DQ Kubernetes Deployment Diagram

Note For Kubernetes deployments of Collibra DQ should use Auto Scaling and
Spot instances to further increase efficiency and reduce cost.

Chapter 18

dcccxxxii

Chapter 18

Collibra DQ Standalone

The image above depicts owl-web, owl-core, Postgres and orient all deployed on the same
server. This can be an edge node of a Hadoop cluster or a server that has access to run
Spark-submit jobs to the Hadoop cluster. This server could also have JDBC access to
other DB engines interested in being quality scanned by Collibra Data Quality
& Observability. Looking at this depiction from left to right the client uses their browser to
connect to Collibra DQ's Web Application running on the default port 9000. The Collibra
DQWeb Application communicates with the metastore.. The Web Application can run a
local DQ check, or the Data script can be launched from the CLI natively. The DQ check
launches a job using Collibra DQ’s built in Spark Local DQ Engine. Depending on the
options supplied to the DQ check command, the Collibra DQ can scan a file or database
with JDBC connectivity.

dcccxxxiii

Collibra DQ Distributed

The image above depicts owl-web and owl-core deployed on different servers. In this
example Owl-web is NOT deployed on the edge node. Owl-core is installed on the edge
node and writes DQ check results back to the metastore that the DQWeb App points to.

Note In this scenario, the metastore and the web-app run on the same host.

The other change is that the DQ check distributes the work on top of a Hadoop cluster to
leverage Spark and use the parallel processing that comes with the Hadoop engine.

ERD
Please note there are over 110 tables in the underlying Postgres database and many are
for application settings.

Chapter 18

dcccxxxiv

Chapter 18

dcccxxxv

System Requirements
The following pages include the system requirements for installing Collibra Data Quality.

Supported Operating Systems

Note Only 64-bit Linux operating systems are supported.

Standalone operating systems

l Red Hat Enterprise Linux 7.x
l CentOS 7.x

Container operating system

l Red Hat Universal Base Image 8 Micro (ubi8-micro)

Hardware Sizing
Hardware Sizing (Standalone Install)

Small Tier - 16 Core, 128G RAM (r5.4xlarge / E16s v3)

Component RAM Cores

Web 2g 2

Postgres 2g 2

Spark 100g 10

Overhead 10g 2

Chapter 18

dcccxxxvi

Chapter 18

Medium Tier - 32 Core, 256G RAM (r5.8xlarge / E32s v3)

Component RAM Cores

Web 2g 2

Postgres 2g 2

Spark 250g 26

Overhead 10g 2

Large Tier - 64 Core, 512G RAM (r5.16xlarge / E64s v3)

Component RAM Cores

Web 4g 3

Postgres 4g 3

Spark 486g 54

Overhead 18g 4

Estimates

Sizing should allow headroom and based on peak concurrency and peak volume
requirements. If concurrency is not a requirement, you just need to size for peak volume
(largest tables). Best practice to efficiently scan is to scope the job by selecting critical
columns. See Performance Tuning for more information.

Bytes per Cell Rows Columns Gigabytes Gigabytes for Spark (3x)

16 1,000,000.00 25 0.4 1.2

16 10,000,000.00 25 4 12

16 100,000,000.00 25 40 120

dcccxxxvii

Bytes per Cell Rows Columns Gigabytes Gigabytes for Spark (3x)

16 1,000,000.00 50 0.8 2.4

16 10,000,000.00 50 8 24

16 100,000,000.00 50 80 240

16 1,000,000.00 100 1.6 4.8

16 10,000,000.00 100 16 48

16 1,000,000,000.00 100 1600 4800

16 100,000,000.00 100 160 480

16 1,000,000.00 200 3.2 9.6

16 10,000,000.00 200 32 96

16 100,000,000.00 200 320 960

16 1,000,000,000.00 200 3200 9600

Cluster

If your program requires more horsepower or (Spark) workers than the example tiers
above which is fairly common in Fortune 500 companies than you should consider the
horizontal and ephemeral scale of a cluster. Common examples include Amazon EMR and
Cloudera CDP. Collibra DQis built to scale up horizontally and can scale to hundreds of
nodes.

Minimum System Requirements

Hardware based on role

Standalone, distributed, or fully-distributed.

l Please see Hardware Sizing for minimum resources for each component.

Chapter 18

dcccxxxviii

Chapter 18

Java version

l Oracle JDK version 11.0.x
l Oracle JDK version 1.8.0_152.x
l Open JDK version 1.8.0.x

Encryption

l Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction

Postgres Version

l Collibra Data Quality comes prepackaged with version 11.4 of Postgres.
l Version 9.6.5 and above is supported if wanting to use an external metastore.

User Privileges

l Installation is completed via tarball.
l You must be able to create directories, launch scripts, and start processes (Java pro-
cesses).

l SUDO is not required.
l ULIMIT settings of 4096 or higher

o All owl services typically consume about 428 threads.
o During each DQ Job, about 400 additional threads are consumed.
o Thus 4096 threads can allow for about 9 concurrent DQ Jobs (on a standalone
install). If more are needed, plan accordingly.

Planning the installation

It is always best to consult the Collibra DQ team for more information about what options
make the most sense for your environment.

1. Determine how you plan to install Collibra DQ (standalone or distributed), as shown
in the Architecture Diagram.

2. Plan your infrastructure, scale, and HA.

dcccxxxix

3. Validate your system prerequisites.
4. Obtain the packages from Collibra DQ.

Installation Packages/Files (BOM)

l demoscripts.tar.gz
l log4j*
l owlcheck
l owl-core-2.1.0-jar-with-dependencies.jar
l owl-webapp-2.1.0.jar
l owl-agent-2.1.0.jar
l setup.sh
l owl-postgres.tar.gz
l notebooks.tar.gz
l owlmanage.sh

Default Ports used by Collibra DQ

l 5432 – Postgres
l 9000 – Owl-web

Supported Web Browsers

Browser Version

Google Chrome (recommended) 70.0.3538.102 or newer

Mozilla Firefox 52.8.0 or newer

Safari 12.0.1 or newer

Chapter 18

dcccxl

Chapter 18

Build Versions

Generally Available Build Versions
l Default Build = Spark 2.3.0
l Spark 2.4.5
l Spark 3.0.1
l HDP 3
l CDH5
l CDH6-NOLOG
l K8s

Diagrams

DQ Control to Compute to Data
As of March 2022, DQ Cloud is in private beta for select customers. General availability is
expected in Q4 2022. Available compute plane options will start with Collibra Edge
submitting jobs to Rancher K3s and Hadoop platforms (Cloudera, Dataproc, and EMR).
Additional compute plane options will be added over time.

dcccxli

Pushdown DQ Control to Data
As of Q3 2022, Steps is in private beta for select customers. Some features may be
limited.

Chapter 18

dcccxlii

Chapter 18

Databricks to Data to DQ Control
Running DQ jobs from Scala and Pyspark notebooks is generally available.

dcccxliii

dcccxliv

Collibra DQ Admin

Chapter 19

Chapter 19

Overview

Dashboard, Inventory, Connections, and Configuration are shortcut links to different
operations within Collibra Data Quality & Observability.

l Dashboard
o Shows an overall number of DQ Checks scanned the MB’s, total jobs, total
records scanned.

o Total number of data sets, including passing and failed jobs (quality fails), num-
ber of alerts, and number of rules.

o A list of messages on specific DQ Checks and what was found.

dcccxlv

l Inventory
o All DQ Jobs ever executed including Run Date, Data Set, Command Line,
Type, Query, and Connection.

l Connections
o Connect to a data source via the Admin Console.

l Configuration
o Apply administrative override limits. For example, you can limit the amount of
DataShapes recorded on a specific data set with the datashapelimit field.

o If a duplicate record is found have a 1 point (negative) score per record. Allows
administrators to increase or decrease the impact of different DQ issues found.

o Display limits in order to improve performance of the UI.
l Audit Trail

o List all security related changes by user, action, description and timestamp in a
searchable, sortable table.

Configuration

Multi-Tenancy
Divide and conquer your data quality.

Chapter 19

dcccxlvi

Chapter 19

MultiTenancy allows a company the ability to instantiate different organizations within one
entity. For example say your organization is called Acme and inside of Acme there are two
divisions AcmeTraders and AcmeInsurance and each organization is not allowed to see
one another's owlcheck results. You would simple segregate them into 2 different Tenants
within the overarching Collibra DQ web application.

Prerequisite(s)

l DNS entry for owl web server IP = example below we call it hub (existing for single
tenant setup)

l DNS entry for multiTenantSchemaHub = example below we call it owlhub.hub

Prerequisites For URL Based tenancy: tenant.host

A DNS entry for each tenant

l DNS entry for every tenant you want to create = example below we call it ten-
ant1.hub

Each record above points to the same IP address.

Setup

In order to setup multi-tenancy follow these steps

l If this is an upgrade please make sure to follow the steps outlined in the "Upgrading
to latest Version"

l Make sure the web application has started up one time and you successfully logged
into it with the default credentials.

l Then stop all the components using ./owlmanage.sh stop
l Modify the owl-env.sh file to include these to new parameters

a. export multiTenantSchemaHub=owlhub (this is a new schema that will get
created on owlweb start, note the name of the TenantSchemaHub can be
changed to the desired name at setup time)

b. export MULTITENANTMODE=TRUE (this enabled multi-tenancy to be used).
c. export URLBASEDMULTITENANTMODE=TRUE/FALSE

i. TRUE (default) means you are using the tenant name as a sub-domain
(see prerequisites)

ii. FALSE means you will let owl manage tenants via sessions/tokens
l If using agents as part of the operation of owl please be sure to modify the owl.-
properties file to include the following.

dcccxlvii

https://github.com/ernowlin/owluserdocs/blob/2022.07/admin/configuration/broken-reference/README.md
https://github.com/ernowlin/owluserdocs/blob/2022.07/admin/configuration/broken-reference/README.md

a. spring.agent.datasource.url=jdbc:postgresql://cdh-edge-dan.us-east4-c.c.owl-
hadoop-cdh.internal:5432/postgres**?currentSchema=owlhub** (matching the
name of the schema set on step 3-1 above).

b. jdbc:postgresql://cdh-edge-dan.us-east4-c.c.owl-hadoop-cdh.in-
ternal:5432/postgres**?currentSchema=owlhub** (matching the name of the
schema set on step 3-1 above).

l Once the settings have been configured for multi-tenancy please start up the owlweb
host first using ./owlmanage.sh start=owlweb. Once the web is up and you can hit
the page please start up the agents using ./owlmanage.sh start=owlagent.

l In order to use multi-tenancy in URLBASEDMULTITENANTMODE=TRUE you'll
have to make sure we have DNS entries to the tenant endpoints, otherwise click the
tenant management link from the login page. Example:
a. If I have a DNS alias named hub. I should be able to point me browser at

hub:9002 (or your respective owlweb port) to get to the main Multi-Tenant login
page as depicted below

l This is where DNS alias come into place. Assuming we left the owlhub as the mul-
tiTenantSchemaHub name we hit the drop down and select owlhub and click the
arrow it will place owlhub.hub into the url. This means there also has to be a DNS
Alias name for your selected multiTenantSchemaHub name. NOTE: Username and
password for tenant management is mtadmin / mtadmin123

Chapter 19

dcccxlviii

Chapter 19

l Now that you logged into the Tenant Management screen using the hub DNS alias
we can create our first tenant. In this example below I'm going to create a tenant
named tenant1. First click the "+ Add Tenant" button in the top right part of the
screen.

Click Save. Your tenant shows up in the list and now you can click the login button as
shown below.

dcccxlix

Clicking the Login button will redirect your browser to the tenant1.hub:9002 url (DNS entry
needs to be in place for tenant1 as shown below).

Enter the admin username and password that you created for the tenant1 (refer to figure 3
about) and login to the tenant as the admin.

Chapter 19

dcccl

Chapter 19

While logged in as a tenant admin the last step is to go to the Admin Console and click on
"Sync Schema" this will generate the tables under the tenant called tenant1.

At this point you are ready to start administrating your tenant1 as you did with the owl web
application in the past.

Supplemental: Adding and Editing a Tenant

In many cases it may make sense to have isolated environments to check data quality.
This need could be driven by a number of factors including data access rights,
organization and business models, reporting needs, and/or other security requirements.

Regardless of the need,Collibra DQ will support dynamically creating tenants via our
Collibra DQ Hub Management portal as part of the Collibra DQWeb Application. That's it,
there is nothing else to install, simply enable Multi-Tenant mode in the application
configuration properties and you are on your way.

Once enabled you will have a tenant selection screen prior to login where you can chose
any of your configured tenants or access the Owl Hub (with the TENANT_ADMIN role)

dcccli

After selecting the owlHub tenant, you will have the ability to manage each tenant, as well
as create new tenants from the management console.

All enabled tenants will be listed in the multi-tenant drop down menu. Access to tenants
are handled by the administrator(s) within each tenant individually.

Access to agents are also handled by the administrator(s) within each tenant individually.

Each agent is visible and editable as an Admin from the UI.

Chapter 19

dccclii

Chapter 19

Time-Based Data Retention

Setting up Retention Based Data Purge

Retention based purge of data can be turned on to allow data to automatically be cleaned
based on an organization's data retention policy.

Benefit

Once enabled, what type of data is removed?

l data_preview (Drill-in records for rules, outliers, shapes, etc.)
l dataset_field (profiling stats)
l rule_breaks (Rule Exception records)
l dataset_scan (Job Ledger)

Setup

In order to set up retention based data purge, three (3) environment variables need to be
set up in the owl-env.sh configuration script. Note: a restart of the webapp is required for
this configuration to take place.

l cleaner_retention_enabled
o TRUE or FALSE on whether this feature is enabled

l cleaner_retention_days
o Number of days to retain data

l cleaner_retention_field
o Controls which field to use to select eligible data set runs
o Potential values

n updt_ts: consider the last time a data set run was updated
n run_id: consider the run id field of the data set

Configuration

Example configuration in owl-env.sh

Organization wants to purge data where the updt_ts is more than 1 year old

dcccliii

In owl-env.sh, add the following lines

export cleaner_retention_enabled=TRUE
export cleaner_retention_days=365
export cleaner_retention_field="updt_ts"

Config Map

autoClean: "false"
cleaner_retention_days: "180"
cleaner_retention_field: updt_ts
cleaner_retention_enabled: "true"

Defaults for Auto Clean Process

Note This is a separate rolling purge that is distinct time-based retention. This is
on by default and uses the predefined limits below. You will see audit records for
this clean-up process in Audit History of the Admin Console.

Separate from the time-based retention there is also a default auto clean mechanism that
actively purges your old records. This is enabled by default and can be modified by use of
the autoClean (AUTOCLEAN) boolean parameter.

AUTOCLEAN=false or autoClean="false"

Depending whether this is part of owl-env.sh
or the configMap of the web pod

These are the defaults. The row count threshold is the global limit when this is triggered.
This is based on the records in the data_preview table. The runs threshold and the dataset
per row threshold are data set-level limits that require a data set to have at least 4 scans
and at least 1000 rows.

This is an example using the owl-env.sh file to control these settings.

Chapter 19

dcccliv

Chapter 19

export AUTOCLEAN=true
export DATASETS_PER_ROW=1000
export RUNS_THRESHOLD=4
export ROW_COUNT_THRESHOLD=200000

For example (using the settings above):

When data_preivew table has 200k rows
Look for data sets with 1000+ rows in data_prevew table
And have at least 4 scans
Then delete the oldest scan for those data sets

Auto clean and time-based retention run on a routine thread that triggers while the web
application is running. It looks for clean-up candidates every few minutes when
AUTOCLEAN=true or cleaner_retention_enabled=TRUE.

Set up SMTP
Simple Mail Transport Protocol, or SMTP, is an internet standard for email transmission.
Collibra DQ allows you to configure a single SMTP server to send alerts to the attention of
the data set owner in case a specific condition is met, such as:

l Data Quality Score is below a specific threshold.
l Row Count is below a specific threshold.
l If a rule is triggered.

Steps

1. In the Admin Console, click Alerts.
2. In the Configuration section, enter the required information:

Option Description

SMTP Host The name or the IP address of the SMTP server.

SMTP Port The port used by the SMTP server.

SMTP Username The username or the account that is configured on the SMTP server for use.

dccclv

Option Description

SMTP Password The password of the SMTP server username or account.

(Default) To Email The sender email address.

Reply Email The reply-to email address.

Save your changes.

See screenshot below for example of configuration.

When completed, click the Add button.

Once the information has been populated and added, the grey box above the form will get
populated with the content supplied. If the data ever has to be changed clicking the Alerts
icon will repopulate the form in order to be modified and re added.

Now that configuration of the SMTP Email Server has been completed let’s create an alert
and see that the alert triggers an email. In this example, we will use the dist_example
dataset that we ran earlier from the demo.sh script.

Chapter 19

dccclvi

Chapter 19

In the above screen shot we:

1. Searched for the “dist_example” dataset
2. Provided an alert named “score_lt_90”
3. Provided a condition that we know will be met “score < 90”
4. Provided who the recipient of this alert should be mailed to in this sample “user-

2@owl.net”
5. Custom Message = “score is below 90 for dist_exampe”

Clicking the “Save” button will move the contents of the form above to the List of Alerts for
this particular dataset.

From the terminal on this install if you run the below command (which is just an extract out
of the demo.sh file). We should see the alert get triggered

./owlcheck -ds dist_example -rd 2018-10-07 -d , -f /opt/owl/bin/demos/distribution_
change.csv -fq "select * from dataset where d_date ='2018-10-07'"

At the end of this command we should see the “Alert was triggered” as shown in the
screenshot below.

dccclvii

And the recipient <valued.user@example.com> received the email.

Advanced
Allow/Disallow Using the catalog feature fromWizard: BULK_CATALOG_ON =
TRUE/FALSE

Preset Wizard Config for showing views: DB_VIEWS_ON = TRUE/FALSE

Preset Wizard Config for showing stats: DB_STATS_ON = TRUE/FALSE

Chapter 19

dccclviii

Chapter 19

Set File Search Path FromWizard: UPLOAD_PATH = <Path on Web Server>

Set/Unset -p/-srcp masking in UI: MASK_P_FLAG = TRUE/FALSE

Allow/Disallow Zeppelin Notebooks: ZEPPELIN_ENABLED = TRUE/FALSE

Allow/Disallow Using the orient DB: ORIENT_ENABLED = TRUE/FALSE

Pendo

Warning The Pendo integration is active by default.

Note As of the 2022.06 release, all new customers receive a new license.

Pendo is an analytics application embedded in Collibra that helps us analyze, develop,
and improve our product. No sensitive information is ever collected, we only leverage high-
level usage statistics to improve our offerings. If no modifications are made to the default
settings, Pendo will not block or impair the intended functionality of Collibra Data Quality in
any way.

Pendo in a standalone environment

If you install a standalone environment, modify the <install-dir>/config/owl-env.sh file by
adding your license name
export DQ_INTEGRATION_PENDO_ACCOUNTID=<your-license-name>

Note For more information on Collibra's subprocessors, please review Collibra's
Subprocessors page.

Usage

Note You must have admin privileges to access usage metrics.

dccclix

https://www.collibra.com/us/en/collibra-subprocessors
https://www.collibra.com/us/en/collibra-subprocessors

The Usage page lets you analyze your monthly usage statistics from the Admin Console.
Key monthly metrics tracked on the Usage page include:

l Total number of users.
l Total number of DQ Jobs run.
l Total number of rules applied.
l Total number of data sets.
l Total number of columns.

Viewing the Usage page

To view the Usage page

1. Click the gear icon and then click Admin Console.
>> The Admin Console opens.

2. Click the Usage tile.
>> The Usage page opens.

3. Analyze your usage statistics if they are available.

License Management
This section shows you how to change your license information provisioned by Collibra.

Prerequisites

You have:

l Admin permissions.
l A license previously provisioned by Collibra.

Chapter 19

dccclx

Chapter 19

View and edit your license

From the Admin panel, select License to open the License Management page. The table
below shows the information available on this page.

Option Description Can
edit

Key Displays your current license key. Edit your license key by clicking into the
field and updating the text. Yes

Name Displays your current license name. Edit your license name by clicking into
the field and updating the text. Yes

Expiration Displays the expiration date of your license in a yyyy-mm-dd format. No

Status Displays the current status of your license as either Active or Expired. No

React

Note React MUI will be on by default in a future release.

You can toggle React MUI on or off, depending on your preference.

Toggling React MUI

1. Hover over the Admin Console icon and select Settings.
>> The Limit Settings page opens.

2. At the top right of the Settings page, select App Config.
>> The App Config page opens.

dccclxi

3. Enter the required information.

Option Description

REACT_MUI Enter TRUE to turn the React MUI on for all available React pages.
Enter FALSE to turn the React MUI off.

UX_REACT_
ON

This flag must be set to False

4. Click Save.

Warning UX_REACT_ONmust be set to False to ensure proper functionality of
Collibra DQ. Instead, if you want to view pages in the React MUI layout, set the
REACT_MUI to True.

Audit
Built-in auditing allows you to track usage and modifications across data set, security, and
user levels.

Dataset Audit Trail
Available Data

l User
l Data Set
l Selected Features
l runID
l Assignments
l Comments
l Timestamp

Chapter 19

dccclxii

Chapter 19

Security Audit Trail
Available Data

l User profile updates
l Role updates
l Reference table from metastore
l Data set deletion requests
l Job schedule attempts

When administrators modify roles mapped to data sets or data sets mapped to roles,
changes are documented automatically in the Audit Trail. The information in the entry log
includes

dccclxiii

l New and original data sets added or removed during the modification.
l New and original roles added or removed during the modification.
l A timestamp of when the modification occurs.
l Type of modification.
l Username by which the modifications are made.

User Audit Trail
Available Data

l Logins: Successful / Failed
l Privileged User Access
l User Actions / Activities
l Account Actions
l Source IP
l Timestamps

Chapter 19

dccclxiv

dccclxv

Collibra DQ Security Configuration

Chapter 20

Chapter 20

Overview
Collibra Data Quality offers multiple methods of user authentication, including a local user
store and Active Directory or generic LDAP integration.

Security can be configured to meet your needs. Advanced options to segment groups and
roles are available. Additionally, options for SAML and SSO are available.

You can control configurations at the Web (UI), Postgres, and Application layers
depending on your security requirements. Encryption is available for data in-transit or at-
rest.

Configuration

Configuring Active Directory (AD/LDAP)

Prerequisites

You have Admin permissions (ROLE ADMIN) assigned to your User Profile.

dccclxvi

Configure Connectivity from Collibra Data Quality to Active
Directory

Steps

1. From the Admin Console, click the AD Setup tile.
>> The Active Directory Security Settings page opens.

2. Check the AD Enabled checkbox.

Chapter 20

dccclxvii

Chapter 20

3. Enter the required information.
4. Setting Description

AD
Enabled

AD is enabled when checked.

LDAP
Enabled

LDAP is enabled when checked. In most cases, LDAP should be unchecked.

Page Size Set a value greater than 0 to control query page size. Since some
LDAP providers do not support page sizing, this field can either be left blank
or set to 0.

Host The hostname or URL of your LDAP or LDAPS server, for example,
ldap://12.345.678.90

Port The port to connect to your LDAP or LDAPS server. The default ports are 389
for LDAP and 636 for LDAPS.

Base Path The value entered is the base domain information, for example, DC=,DC=.

Group
Search
Path

The value entered is the domain object path where the groups are located, for
example, OU=OwlGroups,OU=Groups. A Group Search Path value should not
include the value of the Base Path.

Note After Group Search Path is configured, it is recommended that you
restart the DQWeb App.

Domain Optional. The domain name used to signify when non-local users log in. Only
used for AD configurations.

User
Search
Base

Optional. The base DN of where the LDAP users for Collibra DQare located, for
example, CN=Users. This is the lowest level container (OU) of user objects. When set,
it is used to narrow down user search at login. A User Search Base value should not
include the value of the Base Path.

Note In order to use User Search Base to properly sign in, it is required that
you restart the DQ Web App.

dccclxviii

Setting Description

User
Search Fil-
ter

Optional. When set, this LDAP filter is used to locate users at login. This filter is based
on your LDAP configurations.

Note In order to use User Search Filter to properly sign in, it is required that
you restart the DQ Web App.

Group
Search
Base

Optional. The base DN where all the groups are located. Only used for LDAP
configurations.

Group
Search Fil-
ter

Optional. The LDAP filter used to narrow down group objects located under a
base DN. Only used for LDAP configurations.

Bind User The DN of an admin user that is used for authentication, for example, admin@-
collibra.com.

Bind Pass-
word

The password of an admin user. Enter a Bind Password for the bind account.

Click Save.

Configuration / ENV settings within owl-env.sh
Be sure to add the following script settings when configuring LDAP and Active Directory.

Note This configuration occurs at start-up of the DQ web app. See Standalone
Install for a complete list of the owl-env.sh scripts.

Chapter 20

dccclxix

Chapter 20

OWL-ENV.SH Scripts Meaning

export LDAP_GROUP_RESULT_DN_ATTRIBUTE The attribute to the full path
of the group object, for
example,
CN=OwlAppAdmin
,
OU=OwlGroups
,OU=Groups,DC=owl,
DC=com.

Default is
distinguishedname.

export LDAP_GROUP_RESULT_NAME_ATTRIBUTE The attribute to the simple
name of the group, for
example, OwlAppAdmin.

Default is CN.

export LDAP_GROUP_RESULT_CONTAINER_BASE Property used in the scen-
ario where the LDAP_
GROUP_RESULT_DN_
ATTRIBUTE does not
return a value. In this
case, the LDAP_
GROUP_RESULT_
NAME_ATTRIBUTE pre-
pends to this value, which
creates a fully qualified
LDAP path. For example,
OU=OwlGroups
,
OU=Groups
,DC=owl,DC=com.
Default is <null>.

dccclxx

When binding to Active Directory, you do not need a special Bind User and Password.
Collibra Data Quality only requires an admin user account with which to bind in order to run
a read-only query on the groups. Collibra Data Quality uses AD credentials dynamically to
understand what groups you want to map, but the credentials are never stored.

See AD Group to Role Mapping to learn how to map an AD Group to a Collibra Data
Quality role.

Chapter 20

dccclxxi

Chapter 20

AD Group to Role Mapping

When you map an AD Group to a Collibra Data Quality role, you grant all users from the
selected AD Group role-based access to the selected Collibra Data Quality role outlined in
the steps below. You can find additional information on creating custom application roles
on the Role-Based Access Control page.

Application properties set in owl-env.sh can be set to determine which LDAP properties
correspond to LDAP query results. For group mapping, you need the full path (unique)
and the display name.

For example:

LDAP_GROUP_RESULT_DN_ATTRIBUTE=distinguishedname
LDAP_GROUP_RESULT_NAME_ATTRIBUTE=CN

1. Click the Role Mapping tab.
2. Select a role from the dropdown. Alternatively, you can add a new Collibra Data

Quality Role to map the AD Group(s) you want to include by clicking the Add Role
button.

3. Click Load Groups. The list box on the left will populate with roles in the group you
selected.

4. Click a role from the list box on the left to move it to the selection box on the right.

dccclxxii

You can use the Filter field to filter the lists in either box.
5. Click Save.

Once you successfully map an AD Group to an AD Role, log out of Collibra Data Quality
and log in again as a domain user.

Note You must restart Collibra Data Quality by running ./owlmanage.sh restart_
owlweb when toggling AD Enabled.

When logging into the Collibra Data Quality web application, make sure to append the
domain to the end of the username.

Chapter 20

dccclxxiii

Chapter 20

Connection Security
You can select and map roles to your connection on the Connection Manager page. Any
user with those mapped roles will then be able to see the connection in the UI.

Steps

To select and map roles to your connection, follow these steps.

dccclxxiv

1. Log in to the Collibra DQ instance and click the gear icon in the left navigation

pane.

2. Click Admin Console.

3. In Quick Links, click the Security tile and toggle on DB Connection Security.

4. Click Save.

5. Click Admin Console again.

6. Click DB Access.

7. From the Connection Name column, select your connection.
The Connection Manager displays the available roles.

8. Click the role(s) you want to map to your connection from the left column, which
moves the role(s) to the right column.

Note You can toggle the roles to select and deselect them in the Connection
Manager.

9. When you have completed your selection, click Update.

The role(s) you selected for the connection displays in the Roles column.

Chapter 20

dccclxxv

Chapter 20

Now, any user with those mapped roles will be able to see the connection in the UI.

Data Set Security Settings

Security

To configure Data Set Security settings, follow these steps.

Steps

1. Log into the Admin Console Page as an Administrator of Collibra Data Quality.
2. Click the Gear icon in the left navigation pane.
3. Click Admin Console.
4. Click Security on the Quick Links page and toggle on Dataset Security.
5. Click Save.
6. Click the Gear icon in the left navigation pane.
7. Click Admin Console.
8. Click Datasets on the Quick Links page.

dccclxxvi

Note all the Datasets from the demo script we launched at the beginning of this document
have been added to ROLE_PUBLIC ROLE defined in Collibra Data Quality except the
row_count Dataset. At this point, we already have the odemo@owl.com user created and
mapped to the ROLE_PUBLIC ROLE which has access to those Datasets. Lets login as
odemo@owl.com and try to access row_count DatasetStats page (for an understanding
on how to access the DatasetStats page see the section entitled “Understanding the DQ
DatasetStats Page” in this document…..doing so will result in the error message below.

However, the other DatasetStats that are part of the PUBLIC_ROLE as odemo@owl.com
is a member of that ROLE.

The last thing to notice is that, as the user odemo@owl.com cannot access the Admin
pages the AD Group odemo is a part of the ADMIN_ROLE.

Chapter 20

dccclxxvii

mailto:odemo@owl.com
mailto:odemo@owl.com
mailto:odemo@owl.com
mailto:odemo@owl.com

Chapter 20

ACL Security

When ACL is enabled/disabled, an administrator can configure the following options in the
Dataset Security pane to limit usage/permissions on data sets:

l Data_Preview role limit (role that can view source data)
l Dataset_train role limit (role that can train data sets)
l Dataset_rules role limit (role that can add / edit / delete rules)

Note This configuration is tied to data sets and not connections or jobs.

Data Set Masking

Add column level masking for sensitive data in a data set.

Masking from the UI

After an DQ check runs, you can perform column level masking from the findings page if
you have ROLE_ADMIN or ROLE_DATASET_MANAGER assigned to your user.

Note Masking updates will take effect for all existing and future runs of the selected
dataset.

Note ROLE_ADMIN and ROLE_DATASET_MANAGER also have the ability to
unmask.

dccclxxviii

Local User Store Authentication
Local user store authentication is enabled by default, and the Collibra Data Quality
& Observabilityships with a default user with admin privileges. If you should need to toggle
this mechanism on/off you can find the setting by navigating to the Admin Console and
clicking on the Security icon. The setting labeled Local User Store Enabled when
checked will allow your company to create and administer users stored in Collibra Data
Quality's internal database user store. Toggling this feature requires a restart of the web
application.

Adding Local Users

Users can request access to the application from the login page by clicking the register link
beneath the Sign in button.

Chapter 20

dccclxxix

Chapter 20

Application administrators can also create user accounts by navigating to the Admin
Console and clicking on the Users icon.

In either case, simply fill out the account form and a user record will be created. The user
account at this stage will not have access to the application until an application
administrator grants that user access to an owl role or multiple roles.

dccclxxx

Granting Local User Roles
Application administrators can manage user accounts and role access by navigating to the
Admin Console and clicking on the Users Icon. On that page locate the user you would like
to modify and click on their username in the table of users. This will load a pop-up window
that allows you to modify the user account including Enabled/Disabled as well as the roles
they belong to. Click on the Roles tab to begin granting roles to the selected user. The
available roles established will be listed on the left, click a role from the left-hand side to
apply that role to the user. You can also add all roles by clicking the double arrow icon
above the list. When you are satisfied with the role listings on the right-hand side for that
user, click the Update button. There will be more on creating custom application roles in
the RBAC Section of this document.

Role Based Access Control (RBAC)
The image below depicts Collibra Data Quality's security architecture.

Whether leveraging a Local User Store, Active Directory, or using the out of the box user
accounts that come with Collibra Data Quality & Observability via LDIF, security stays the
same. An admin can create many ROLEs. A user, whether local user, LDIF user, or AD

Chapter 20

dccclxxxi

Chapter 20

user can be part of one or many roles. And a ROLE maps to a data set within Collibra Data
Quality.

When dataset security is enabled and you want to access a dataset, or want to see, add, or
remove an existing business unit for a dataset, you must have a role that is attached to that
dataset.

For datasets, when dataset security and default dataset owner access is enabled, a user
with a role attached to a dataset or the dataset owner can:

l Add - User with no dataset access (with no role attached to any existing dataset) can
still create a dataset. After creating it, this user (who is the default dataset owner) can
see the dataset, profile, and business units, and add and remove business units to
their (owned) dataset.

l Retrieve/See - User can retrieve/see datasets, based on dataset access.
l Edit - User can edit datasets, based on dataset access.
l Remove - User can remove datasets, based on dataset access.

For business units, when dataset security and default dataset owner access is enabled, a
user can:

l Retrieve/See - User can retrieve/see business units, based on dataset access.
l Edit - User can edit business units, based on dataset access.
l Remove - User can remove business units, based on dataset access.

Note You must be an admin to create a business unit, which can then be added to
a dataset.

A unique feature within Collibra DQ is the fact that we do not store information about
external user accounts. This avoids the need to sync external users from an external user
store such as AD to Collibra DQ. Instead, Collibra DQ will map the external group to an
internal role. From here the ROLE can be mapped to the different functionality within
Collibra DQ whether they are Admins / Users / and have access to different datasets and
future functionality. The other benefit is that if a specific userid within the external user
store is terminated, when the user is purged from the external user store such as AD they
will immediately not have access to Collibra DQ’s web application. This is because when
the user logs into Collibra DQ’s web application that is backed by AD their login will

dccclxxxii

interrogate AD to authenticate the user account. See logical flow below for how the group
to role mappings work.

RBAC Usages

Collibra DQ supports RBAC configuration with both core roles and custom roles. The
following table shows the core roles of Collibra DQ's RBAC configuration:

Role Access Description

ROLE ADMIN Allows you to modify any access, config settings, connections,
and role delegation.

ROLE DATA GOVERNANCE
MANAGER

Allows you to manage (create / update / delete) Business Units
and Data Concepts.

ROLE USERMANAGER Allows you to create or modify users and add users to roles.

ROLE OWL ROLE
MANAGER

Allows you to create roles and edit role mappings to users, AD
groups, and datasets.

ROLE
CONNECTION MANAGER

Allows you to add, edit, and delete connections.

Chapter 20

dccclxxxiii

Chapter 20

Role Access Description

ROLE DATASET MANAGER Allows you to create or modify datasets to roles and mask dataset
columns.

ROLE OWL CHECK This is the only role that can run DQ scans when DQ Job Security
is enabled.

ROLE DATA PREVIEW This is the only role that can view source data if Data_Preview
security is enabled.

ROLE DATASET TRAIN This is the only role that can train datasets if Dataset_Train secur-
ity is enabled.

ROLE DATASET RULES This is the only role that can add / edit / delete rules if Dataset_
Rules security is enabled.

ROLE VIEW DATA Controls which users can access the DQ SQL editor to run the
SQL against the database.

ROLE PUBLIC Public: Access to scorecards, no dataset access when dataset
security is enabled.

ROLE USER Do not use.

ROLE SETUP Do not use.

Custom roles can be added via the Role Management page by navigating to the Admin
Console and clicking on the Roles Icon. Custom roles can also be added 'on the fly' during
the Active Directory Role Mapping step.

It is these custom roles that will determine the users that have access to data sets
(including profile/rules/data preview/scoring), and database connections

Additional information regarding setting up Dataset and Connection security can be found
in those documents respectively.

SAML Authentication
You can integrate Collibra DQ with an existing SAML solution and have your application
act as a service provider. Once you set up the environment variables, you can access and

dccclxxxiv

configure SAML security settings as an administrator in the SAML Setup section of the
Admin Console.

Set the SAML authentication properties

Before configuring SAML authentication, you must add the following required properties to
your configuration

Standalone installation

1. Add the properties as environment variables to your owl-env.sh file located in
<installation_directory>/owl/config/.

2. Prefix all properties with the export statement.
3. Restart the web app. {% endtab %}

Cloud native installation

1. Add the properties as environment variables to your owl-web ConfigMap.
2. Recycle the pod.

Required properties

Property Description

SAML_ENABLED Whether Collibra DQ uses SAML.

If set to false, users sign in with a username and password.

If set to true, SAML handles the authentication request.

SAML_ENTITY_
ID

The name of the application for the identity provider, for example Collibra DQ.

It is an immutable unique identifier of the service provider for the identity provider
(IDP).

Warning Please see CORS_ALLOWED_ORIGINS in the Optional properties
section below if you have SAML configured in DQ, or if the app sits behind a load
balancer.

Chapter 20

dccclxxxv

Chapter 20

Optional properties: general
You can further configure your SAML setup with the following optional properties.

Property Description

CORS_
ALLOWED_
ORIGINS

Allows cross-origin requests between DQ and SAML. Replace {IDP-BASE-URL} with the
value of the actual IdP URL. For example, https://ping.auth.com/ Replace with the value
of the actual DQ Base URL. For example, https://dq-env.com.

SAML_
ENTITY_
BASEURL

The base URL that is provided in the service provider metadata.

Set this property when you use DNS.

SAML_LB_
EXISTS

Whether the application needs to configure a load balancer.

You generally need this setting only when the Load Balancer is set for SSL Termination.

The default value is false.

If set to true, you must also provide a value for SAML_LB_SERVER_NAME.

SAML_
METADATA_
USE_URL

Whether Collibra DQ uses an URL or a file for the identity provider metadata.

The default value is true.

If set to false, the file must be accessible to the owl-web and the path provided in the

Meta-Data URL field of the Meta Data Configurations section under Admin Console -->
SAML Setup --> Connection.

SAML_
ROLES_
PROP_NAME

The attribute in which the identity provider stores the role of the user authenticating in the
SAML response.

The default value is memberOf.

SAML_
GRANT_ALL_
PUBLIC

Whether any user authenticated by the identity provider is allowed to login the Collibra
DQ application.

The default value is true.

SAML_USER_
NAME_PROP

The name of the attribute in the SAML response that contains the username of
the user who is authenticating.

dccclxxxvi

Property Description

SAML_
TENANT_
PROP_NAME

If using multi-tenant mode, the variable in which the identity provider stores the tenant
name of the user authenticating in the SAML response.

The app will attempt to use the RelayState parameter to identify the tenant and then

fall back on this property.

SAML_
KEYSTORE_
FILE

The path to the keystore for SSL validation.

The store should contain the keypair of the identity provider for SSL verification.

SAML_
KEYSTORE_
PASS

The password for the keystore provided in SAML_KEYSTORE_FILE.

SAML_
KEYSTORE_
ALIAS

The alias of the keypair (private and public) in the keystore used for SSL veri-
fication.

SAML_MAX_
AUTH_AGE

The number of seconds that an IdP authentication is accepted by the application. If the
IdP authentication occurred outside this time range, the application considers the value
too old to trust and the authentication is not accepted.

The default is 14400 seconds (4 hours).

Note While CORS is still an optional configuration, it is required if you have SAML
configured in DQ, or if you have DQ behind a load balancer.

Note CORS is also enforced for multi-tenancy.

Optional Properties: Metadata
When SAML_METADATA_USE_URL is set to true (default), the following additional
properties are available.

Chapter 20

dccclxxxvii

Chapter 20

Property Description

SAML_METADATA_
TRUST_CHECK

Whether to enable Collibra DQ to do trust verification of the identity provider.

The default value is false.

SAML_METADATA_
REQUIRE_SIGNATURE

Whether Collibra DQ signs authentication requests to the identity provider.

The default value is false.

SAML_INCLUDE_
DISCOVERY_
EXTENSION

Whether to enable Collibra DQ to indicate in the SAML metadata that it’s able
to consume responses from an IDP Discovery Service.

The default value is false.

Optional Properties: Load Balancer
When SAML_LB_EXISTS is set to true, the following additional properties are available.

Property Description

SAML_LB_INCLUDE_
PORT_IN_REQUEST

Whether to include the port number in the request.

The default value is false.

SAML_LB_PORT The port number of the load balancer.

The default value is 443.

SAML_LB_SCHEME The protocol of the load balancer.

The default value is https.

SAML_LB_SERVER_NAME The server or DNS name.

Usually, the same as SAML_ENTITY_BASEURL without specifying the
protocol, for example without https://.

This property is required and has no default.

SAML_LB_CONTEXT_PATH Any path that may be defined on the load balancer.

dccclxxxviii

Example

#enable SAML & show the SAML SSO option on the login page
SAML_ENABLED=true

#set SSL communication properties for SAML
SAML_KEYSTORE_FILE=/keystore.p12
SAML_KEYSTORE_PASS=****
SAML_KEYSTORE_ALIAS=****

#in multi-tenant mode set the name of the IDP variable to hold
the tenat name
SAML_TENANT_PROP_NAME=tenant

#set the name of the IDP variable to hold the user roles in the
response
SAML_ROLES_PROP_NAME=memberOf

#allow login if authenticated to the IDP
SAML_GRANT_ALL_PUBLIC=true

#set the EntityId of the application to be supplied to the IDP
SAML_ENTITY_ID=OwlOneLogin

#optinally set a property that contains the username in the
response
SAML_USER_NAME_PROP=""

#optionally use a file for the IDP metadata vs a URL (default
is true)
SAML_METADATA_USE_URL=false

#optional security settings to
SAML_METADATA_TRUST_CHECK=false
SAML_METADATA_REQUIRE_SIGNATURE=false
SAML_INCLUDE_DISCOVERY_EXTENSION=false

Download service provider metadata for the IDP

Once you have enabled and configured SAML authentication, you can download the
service provider metadata that is required by your identity provider from https://<your_

dq_environment_url>/saml/metadata.

Chapter 20

dccclxxxix

Chapter 20

Enable the SAML sign in option

When you are ready with your IDP settings, add the final configuration settings in the
Admin Console:

1. Sign in as an existing administrator with a username and password to the tenant you
want to configure.

2. In the Admin Console, click SAML Setup.
3. In the Connection tab, select the SAML Enabled checkbox.
4. In the Meta Data Configurations section, click +Add.
5. Enter the required information.

Option Description

Meta-
Data
URL

The URL of the identity provider metadata XML file or the location of the down-
loaded XML file, depending on how you configured the SAML_METADATA_
USE_URL property.

Meta-
Data
Label

The name for this specific configuration.

IDP URL The URL of the Collibra DQ application that is provisioned by the identity pro-
vider.

6. Click Save.

Tip Once you complete this setup, restart your application and sign in using the
SAML SSO option.

Note SAML SSO authentication via the /v3/auth/signin API is not supported.

Multi-tenancy support through SAML RelayState

As of Collibra DQ version 2021.11, in a multi-tenant environment, you can help route SSO
to the proper tenant with the SAML provided RelayState property.

dcccxc

When set, the property is sent to the IDP and then returned to the consumer service, such
as /saml/SSO. The application checks that value to ensure the correct tenant is set up.

You can set the RelayState property in the in the SAML Setup section of the Admin
Console.

Securing Passwords
Security is of the utmost importance for Collibra DQ and our customers. To avoid sending
plain text passwords when you run DQ Jobs from the command line, you can encrypt
passwords instead. To encrypt your password, execute the following command:

owlmanage.sh encrypt=password

The output password should look similar to the following example:

Q+Ri1S+ljpG+fDefXLY4/vXtUosspAoL

You can use this password in any DQ Job from the command line where you would
normally use a plain text password.

The following is an example of a DQ Job with an encrypted password instead of a plain
text password:

./owlcheck -q "SELECT id, browser->'$.name' browser FROM events"
-c "jdbc:mysql://54.212.36.218:2212/test" -u "owl" -p
"Q+Ri1S+ljpG+fDefXLY4/vXtUosspAoL" -driver "com.mysql.cj.jd-
bc.Driver" -lib "/opt/owl/drivers/mysql8" -ds jsonremotemysql -
rd "2022-07-25"

If you run a DQ Job from within the DQWeb UI, it automatically encrypts your password,
eliminating the need to manually encrypt it. For added security, all passwords are masked
in the logs and plain text passwords are never stored.

Chapter 20

dcccxci

Chapter 20

SSL Setup (HTTPS)
By Default Collibra DQ has plain HTTP enabled for testing. When you are ready to enable
SSL for the web application you can set the following environment variables in owl-env.sh
to enable HTTPS.

The settings listed at the bottom of this page will disable un-secure HTTP, enable secure
HTTPS, and allow you to point to your certificate key store + credentials. *A restart of the
web-application is required.

Before starting please have an accessible key store.

export SERVER_SSL_KEY_STORE: <path to your key store>

You can call Collibra DQ's built in 256-bit encryption for the SERVER_SSL_KEY_PASS
value from the bin directory: ./owlmanage.sh encrypt=<sensitive plain text string>

Use the response value instead of the plain text value to secure your password.

export SERVER_SSL_KEY_PASS:<secure result from owl encryption
script>

export SERVER_HTTP_ENABLED:false
export SERVER_HTTPS_ENABLED:true
export SERVER_REQUIRE_SSL:true

####START KEYSTORE SETTINGS####
export SERVER_SSL_KEY_TYPE:PKCS12
#SET PATH TO KEYSTORE
export SERVER_SSL_KEY_STORE:KeystorePathHere
export SERVER_SSL_KEY_PASS:*******
export SERVER_SSL_KEY_ALIAS:keystoreAliasNameHere

The most common SSL types are JKS and PKCS12

Warning Don't forget to restart the web application from the bin directory:
./owlmanage.sh restart=owlweb

dcccxcii

Collibra DQ Legal

Appendix 21

dcccxciii

Appendix 22

Agreements
This section contains legal agreements specific to Collibra.

Collibra Evaluation Agreement
For the full Collibra Evaluation Agreement document, follow the link below.

Collibra Click-Through Evaluation Agreement

BY ACCEPTING THESE TERMS OR OTHERWISE USING OR ACCESSING THE
EVALUATION OFFERINGS, YOU ACCEPT AND AGREE TO BE BOUND BY THE
TERMS AND CONDITIONS IN THIS COLLIBRA EVALUATION AGREEMENT
("EVALUATION AGREEMENT”). COLLIBRA GRANTS YOU ACCESS TO AND USE
OF THE EVALUATION OFFERINGS ONLY IF YOU ACCEPT THE TERMS AND
CONDITIONS OF THIS EVALUATION AGREEMENT. IF YOU ARE ENTERING INTO
THIS EVALUATION AGREEMENT ON BEHALF OF A COMPANY OR OTHER LEGAL
ENTITY, YOU REPRESENT THAT YOU HAVE THE AUTHORITY TO BIND SUCH
ENTITY TO THIS EVALUATION AGREEMENT, IN WHICH CASE THE TERMS “YOU,”
OR “YOUR” SHALL REFER TO SUCH ENTITY. IF YOU DO NOT HAVE SUCH
AUTHORITY, OR IF YOU DO NOT AGREE WITH THESE TERMS AND
CONDITIONS, YOU MAY NOT ACCESS OR USE THE EVALUATION OFFERING.

This Evaluation Agreement is entered into between you (the individual and any entity for
which you are acting, and your permitted successors and assigns) and Collibra, meaning
Collibra Inc., if you are located in the United States, Mexico or Canada; or Collibra UK
Limited, if you are located in a country other than the United States, Mexico or Canada (in
each case, referred to herein as “Collibra”).

1. Grant and Use Rights for Evaluation

1. Evaluation Grant. Subject to your compliance with this Evaluation Agreement,
Collibra grants you, at no cost, a non-exclusive, non-transferable, non-
sublicensable, temporary and limited (i) right to access and use Collibra’s software-
as-a-service cloud offering including any relevant accompanying software

dcccxciv

https://dq-docs.collibra.com/legal/agreements/collibra-evaluation-agreement

components and documentation (“Service”) and/or (ii) license to install, copy and
use the object code form of Collibra’s proprietary installed software product including
any relevant accompanying documentation (“Software”), as applicable to your
evaluation (“Evaluation Offering”), solely on an evaluation basis for non-production,
internal, test and demonstration purposes (the "Purpose") during the Evaluation
Term. There is no commitment to purchase the Evaluation Offering at the end of the
Evaluation Term. Collibra may provision the Evaluation Offering with the assistance
of its affiliates and suppliers, and during the Evaluation Term, Collibra may update
the Evaluation Offering and/or limit certain features and functionality of the
Evaluation Offering at its discretion.

2. Evaluation Term. You may use the Evaluation Offering subject to this Evaluation
Agreement only for a period of twenty (20) days (“Evaluation Term”). Any extension
of the Evaluation Term must be agreed to by both parties, in writing.

2. Restrictions

You will not (and will not permit anyone else to) do any of the following: (a) use the
Evaluation Offering for anything other than the Purpose; (b) use the Evaluation Offering
under this Evaluation Agreement to avoid incurring fees or exceeding any limitations
agreed to in an order form entered into by and between you and Collibra; (c) provide
access to, distribute or sublicense the Evaluation Offering to a third-party, (d) use the
Evaluation Offering on behalf of, or to provide any product or service to, third parties, (e)
use or reference the Evaluation Offering to develop a similar or competing product or
service, (f) reverse engineer, decompile, disassemble, or seek to access the source code,
algorithms, programming interfaces, or non-public APIs to the Evaluation Offering, except
to the extent expressly permitted by applicable law (and then only with prior notice to
Collibra), (g) circumvent any established usage limits, including restrictions on number of
authorized users, whether through the use of APIs or other means (h) modify or create
derivative works of the Evaluation Offering, or copy any element of the Service (other than
authorized copies of the software components), (i) remove or obscure any product
identification or proprietary notices in the Evaluation Offering, (j) publish benchmarks or
performance information about the Evaluation Offering, (k) interfere with the Service’s
operation, circumvent its access restrictions or conduct any security or vulnerability test of
the Service, or (l) transmit any viruses or other harmful materials to the Service.

Appendix 22

dcccxcv

Appendix 22

3. Ownership

You will retain all right, title and interest to, and all intellectual property rights in your
Content (as defined below) sent to the Evaluation Offering. Except for the limited right to
use the Evaluation Offering under this Evaluation Agreement, this Evaluation Agreement
does not give you any title, interest or rights, including intellectual property rights, in any
component of the Evaluation Offering. The Evaluation Offering and all copyright, patent,
and other proprietary rights therein are and shall remain the sole property of Collibra. This
includes any information that Collibra collects and analyzes in connection with the
Evaluation Offering, such as Usage Data (defined below), user feedback and other
information to improve and evolve Collibra’s products and services offerings.

4. Your Content

You are solely responsible for any and all applications, files, information, materials, data,
software, or other content uploaded to, stored, published or displayed by you through the
Service ("Content"). You acknowledge that the Service is provisioned for the Purpose
only, and therefore you will not use any production or regulated data (including personal
information) as part of your Content in the use of the Service. You are responsible for
protecting the security of your Content, including any access you might provide to your
Content by your employees, customers or other third parties. You will take and maintain
appropriate security, protection and backup for your Content. You are responsible for
complying with any laws or regulations applicable to your Content. You are solely
responsible for any consequences if your Content is inadvertently exposed or lost, whether
or not you have encrypted, backed up or otherwise taken steps required by the relevant
laws or regulations to protect your Content. To the extent Collibra process Personal Data,
as defined in the DPA, each party agrees to comply with the terms of the data processing
addendum, which can be found here: www.collibra.com/data-processing-addendum
(“DPA”), and which is hereby incorporated by reference.

5. Usage Data

Collibra collects information related to your use of the Services so that Collibra can
analyze usage, support the Service, and maintain and improve its products and services,
and for other lawful business purposes (“Usage Data”). Collibra may also use and store

dcccxcvi

https://www.collibra.com/data-processing-addendum

this Usage Data in an aggregated, anonymized form for Collibra’s own purposes. You
hereby expressly agree that Collibra may collect Usage Data during the Evaluation Term.

6. Support Services

Collibra does not provide support services or service level commitments of any kind in
connection with the Evaluation Offering.

7. Term and Termination; Suspension

1. Term. This Evaluation Agreement and your use to the Evaluation Offering will
commence when you click to accept it as part of the sign-up process or, if earlier,
when you use any of the Evaluation Offering (the “Effective Date”), and will be
effective through the Evaluation Term, unless terminated earlier as permitted under
this Section 7.

2. Termination for Convenience. This Evaluation Agreement may be terminated
effective immediately by Collibra or you for any or no reason and at any time by
providing notice of termination to the other party.

3. Suspension. Collibra may temporarily suspend your use of the Evaluation Offering if
Collibra determines in its sole discretion: (i) you or your use of the Evaluation
Offering is in breach of this Evaluation Agreement; (ii) Your use of the Evaluation
Offering poses a security risk to the Evaluation Offering, or interferes with, disrupts,
damages, or accesses in an unauthorized manner the servers, networks, or other
properties or services of any other party; or (iii) suspension is required pursuant to
Collibra’s receipt of a subpoena, court order or other request by a law enforcement
agency.

4. Effect of Termination or Suspension. Upon the termination or suspension of this
Evaluation Agreement for any reason: (i) all rights and licenses granted to you under
this Evaluation Agreement, including your ability to access any of your Content, will
immediately terminate; (ii) you must promptly discontinue all access or use of the
Evaluation Offering and delete or destroy any of Collibra’s Confidential Information;
and (iii) Collibra will have no obligation to retain your Content or configurations
generated during the Evaluation Term by your use of the Evaluation Offering.

Appendix 22

dcccxcvii

Appendix 22

8. Disclaimer of Warranty

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, COLLIBRA
PROVIDES THE EVALUATION OFFERING AS-IS WITHOUT ANYWARRANTIES OF
ANY KIND, EXPRESS, IMPLIED, STATUTORY, OR IN ANY OTHER PROVISION OF
THIS EVALUATION AGREEMENT OR COMMUNICATIONWITH YOU, AND COLLIBRA
SPECIFICALLY DISCLAIMS ANY IMPLIEDWARRANTIES OR CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, TITLE, AND ANYWARRANTIES ARISING FROM THE COURSE OF
DEALING OR COURSE OF PERFORMANCE REGARDING OR RELATING TO THE
EVALUATION OFFERING, THE DOCUMENTATION, OR ANY MATERIALS
FURNISHED OR PROVIDED TO YOU UNDER THIS EVALUATION AGREEMENT.
COLLIBRA DOES NOTWARRANT THAT THE EVALUATION OFFERINGWILL
OPERATE UNINTERRUPTED, OR THAT IT WILL BE FREE FROM DEFECTS OR THAT
THE EVALUATION OFFERINGWILL MEET (OR IS DESIGNED TOMEET) YOUR
REQUIREMENTS.

9. Limitation of Liability

TO THE MAXIMUM EXTENT MANDATED BY LAW, IN NO EVENT SHALL COLLIBRA
BE LIABLE FOR ANY LOST PROFITS OR BUSINESS OPPORTUNITIES, LOSS OF
USE, LOSS OF REVENUE, LOSS OF GOODWILL, BUSINESS INTERRUPTION, LOSS
OF DATA, INABILITY TO USE THE EVALUATION OFFERING, INCLUDING AS A
RESULT OF ANY TERMINATION, DISCONTINUATION, MODIFICATION OR
SUSPENSION OF THIS EVALUATION AGREEMENT OR THE EVALUATION
OFFERING, OR ANY OTHER INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES UNDER ANY THEORY OF LIABILITY, WHETHER
BASED IN CONTRACT, TORT, NEGLIGENCE, PRODUCT LIABILITY OR OTHERWISE.
COLLIBRA’S LIABILITY UNDER THIS EVALUATION AGREEMENT SHALL NOT, IN
ANY EVENT, EXCEED USD $100. THE FOREGOING LIMITATIONS SHALL APPLY
REGARDLESS OFWHETHER COLLIBRA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES AND REGARDLESS OFWHETHER ANY REMEDY FAILS OF ITS
ESSENTIAL PURPOSE. YOUMAY NOT BRING A CLAIM UNDER THIS EVALUATION
AGREEMENT MORE THAN EIGHTEEN (18) MONTHS AFTER (i) THE END OF THE

dcccxcviii

EVALUATION TERM, OR (ii) THE DATE THE CLAIM FIRST ARISES, WHICHEVER IS
EARLIEST.

10. Confidentiality

1. Confidential Information. Each party acknowledges that it or its employees may, in
the course of performing its responsibilities under this Evaluation Agreement, be
exposed to or acquire information which is proprietary or confidential to the other
party. “Confidential Information” means information disclosed under this Evaluation
Agreement that is designated by the disclosing party as proprietary or confidential or
that should be reasonably understood to be proprietary or confidential due to its
nature and the circumstances of its disclosure. Collibra’s Confidential Information
includes any technical or performance information about the Evaluation Offering.
Confidential Information excludes information that the receiving party can document
(a) is or becomes public knowledge through no fault of the receiving party, (b) it
rightfully knew or possessed prior to receipt under this Evaluation Agreement, (c) it
rightfully received from a third-party without breach of confidentiality obligations or
(d) it independently developed without using the disclosing party’s Confidential
Information. As receiving party, each party will (a) hold in confidence and not
disclose Confidential Information to third parties except as permitted in this
Evaluation Agreement, and (b) only use Confidential Information to fulfill its
obligations and exercise its rights in this Evaluation Agreement. Each party will use
reasonable care to protect the Confidential Information in the same manner as it
would protect its own Confidential Information of a similar nature, but in no event with
less than reasonable care. The receiving party may disclose Confidential Information
to its employees, agents, contractors and other representatives having a legitimate
need to know, provided it remains responsible for their compliance with this Section
10 and they are bound to confidentiality obligations no less protective than this
Section 10. Unauthorized use or disclosure of Confidential Information may cause
substantial harm for which damages alone are an insufficient remedy. Each party
may seek appropriate equitable relief, in addition to other available remedies, for
breach or threatened breach of this Section 10.

2. Required Disclosures. Nothing in this Evaluation Agreement prohibits either party
from making disclosures, including Content and other Confidential Information, if
required by applicable law, subpoena or court order, provided (if permitted by

Appendix 22

dcccxcix

Appendix 22

applicable law) it notifies the other party in advance and reasonably cooperates in
any effort to obtain confidential treatment at disclosing party’s expense.

11. General

1. Governing Law, Jurisdiction and Venue. This Evaluation Agreement is governed
by the laws of the State of New York without regard to conflicts of laws provisions
and without regard to the United Nations Convention on the International Sale of
Goods, and the jurisdiction and venue for actions related to this Evaluation
Agreement will be the state and United States federal courts located in New York,
New York, and both parties submit to the personal jurisdiction of those courts.

2. Compliance with Laws. You will comply with all applicable laws and regulations in
the use of the Evaluation Offering under this Evaluation Agreement.

3. Assignment. You may not assign this Evaluation Agreement without Collibra’s prior
written consent, and any such action in violation of this provision, is null and void,
and a breach of this Evaluation Agreement. Collibra may assign or transfer this
Evaluation Agreement to an affiliate or in connection with a merger, reorganization,
acquisition or other transfer of all or substantially all its assets or voting securities.
This Evaluation Agreement will bind and inure to the benefit of the party’s permitted
successors and assigns.

4. Independent Contractors. The parties are independent contractors, not agents,
partners or joint venturers.

5. Third-Party Beneficiaries. Except as expressly provided in this Evaluation
Agreement, this Evaluation Agreement does not create or establish any rights or
beneficiaries for any person or entity that is not a party to this Evaluation Agreement.

6. Export. You acknowledge that the Evaluation Offering is subject to export control
and economic sanctions restrictions imposed by the U.S. government and import
restrictions by certain foreign governments (collectively “Trade Laws”). In using or
accessing the Evaluation Offering, you will not and will not allow any third party to
use the Evaluation Offering in violation if any Trade Laws or remove or export from
the U.S. or allow the export or re-export of any part of the Evaluation Offering or any
direct product thereof to any location, party or end-use which the U.S. government or

cm

any agency thereof requires an export license or other governmental approval at the
time of export or re-export without first obtaining such license or approval. You
represent and warrant that you and any of your users: (i) are not listed on any U.S.
government list of prohibited or restricted parties, including the U.S. Treasury
Department list of Specially Designated Nationals and Blocked Persons, or the U.S.
Commerce Department Denied Persons List or Entity List; (ii) are not an entity or
person who is organized under the laws of, ordinarily resident in, or controlled by the
government of, any country or region (1) that is subject to a U.S. government
embargo or comprehensive sanction, (2) to which the U.S. has prohibited export
transactions or (3) that has been designated by the U.S. government as a “terrorist
supporting” country; (iii) will not use the Evaluation Offering for the manufacture,
design or development of nuclear, chemical or biological weapons or missile
technology, or for terrorist activity; and (iv) will not submit to the Evaluation Offering
any information controlled under the U.S. International Traffic in Arms Regulations or
listed on the Commerce Control List unless approved in writing by Collibra. You will
notify Collibra promptly if you or your users become subject to any order or restriction
listed in this Section.

7. Government End-Users. Elements of the Evaluation Offering are commercial
computer software. If the user or licensee of the Evaluation Offering is an agency,
department, or other entity of the United States Government, the use, duplication,
reproduction, release, modification, disclosure, or transfer of the Evaluation Offering
or any related documentation of any kind, including technical data and manuals, is
restricted by the terms of this Evaluation Agreement in accordance with Federal
Acquisition Regulation 12.212 for civilian purposes and Defense Federal Acquisition
Regulation Supplement 227.7202 for military purposes. The Evaluation Offering was
developed fully at private expense. All other use is prohibited.

8. Amendments. Except as otherwise provided herein, any amendments, modifications
or supplements to this Evaluation Agreement must be in writing and signed by each
party’s authorized representatives or, as appropriate, agreed through electronic
means provided by Collibra.

9. Waivers and Severability. Waivers must be signed by the waiving party’s authorized
representative and cannot be implied from conduct. If any provision of this
Evaluation Agreement is held invalid, illegal or unenforceable, it will be limited to the

Appendix 22

cmi

Appendix 22

minimum extent necessary, so the rest of this Evaluation Agreement remains in
effect.

10. Entire Agreement. This Evaluation Agreement is the parties’ entire agreement
regarding its subject matter and supersedes any prior or contemporaneous
agreements or communications regarding its subject matter, whether written or oral.
Notwithstanding the foregoing, to the extent a separate written agreement has been
signed between you and Collibra in connection with the subject matter hereof, such
separate written agreement will supersede this Evaluation Agreement. In this
Evaluation Agreement, headings are for convenience only and “including” and
similar terms are to be construed without limitation.

cmii

	 ContentsContents Introducing Collibra Data Quality Getting Started Release Notes Builds APIs Collibra DQ Installation Collibra DQ Connections Collibra DQ Features Cross-Data Set Rules In-Clause (Single Column) Except (Multi-Column) Referencing secondary data sets Joins Sample Results Data Type Features Limitations Steps Shapes Replay Outliers Running a Full Scan Prerequisites Steps What's next? Running a Partial Scan Prerequisites Steps Time Slice Row Filter Limit What's next? Scanning with SQL Query Prerequisites Steps What's next? Collibra DQ Scorecards Collibra DQ Scheduler Collibra DQ Alerts Collibra DQ Reports Collibra DQ Workflows Collibra DQ DIC Integration Collibra DQ Catalog Collibra DQ Solutions Background What Did We Notice? Traditional Approach What Did We Need? DQ is the difference What is CDQ 8 Ways to Add Value Using CDQ What Savings Does CDQ Provide? How Can CDQ Help? What makes CDQ unique? Why? Collibra DQ Benchmarks Collibra DQ APIs Rule types Simple rule Freeform SQL Simple rule Example #1 Example #2 Freeform SQL Individual statement Join statements Rule types Syntax Collibra DQ Architecture Collibra DQ Admin Collibra DQ Security Configuration Collibra DQ Legal Introducing Collibra Data QualityAutomatic data quality without the need for rules. Collibra Data Quality & Observability provides a fast and elegant way to manage your datasets by learning through observation rather than human input. Collibra DQ applies the latest advancements in data science and machine learning to the problem of data quality, surfacing data issues in minutes instead of months.Getting Started with Collibra DQA Pluggable and Complete Data Quality FrameworkIf you are adding data quality to your data pipelines the below visual illustrates the number of products and pieces you will need consider to successfully complete your overall governance program. The Collibra DQ suite allows you to use either native Collibra DQ components or integrate the 3rd party components of your choice. By using our best practice guide and framework you can easily complete the DQ lifecycle.Data Pipelines that Tie into the DQ FrameworkCollibra DQ offers a coding framework for developers or ETL designers that want to built real-time data quality into their broader data pipeline. This provides the same algos and DQ checks as the Collibra DQ UI Wizard but with direct access into your code points. Consistency is a must to have a program you trust.Getting StartedStandardThe install script for a standard install.All software and data resides in your VPC.Install time: 7 minutes Click Here ContainerizedUses Helm Charts and K8s. For users who want WebApp and Compute components in containers. Compute pools are supported.All software and data resides in your VPC.Install time: 12 minutesClick HereEdgeProvides a cloud application in Collibra Cloud but an Edge component on your premise to safeguard your data.Customer data and connection credentials residste in your VPC. Application data is stored on Collibra Cloud.Install time: 1 hourClick HereMarketplaceThe Google Marketplace option is a simple, 1-click image installation. This is the quickest option for single-server install in GCP.All software and data resides in your VPC.Install time: 5 minutesClick HereGoogle Cloud Deployment ManagerHooks into GCP cloud services like GKE for ephemeral compute and RDS for cloud database.All software and data resides in your VPC.Coming soonMarketplaceThe Amazon Marketplace option is a simple, 1-click image installation. This is the quickest option for single-server install in AWS Cloud.All software and data resides in your VPC.Install time: 5 minutesClick HereCloudFormationHooks into AWS cloud services like EKS for ephemeral compute and RDS for cloud database.All software and data resides in your VPC.Install time: 12 minutesClick Here Please see the Agreements for the terms and conditions on Collibra's evaluation offerings. For more information, please contact info@collibra.comRelease NotesDisclaimer - Failure to upgrade to the most recent release of the Collibra Service may adversely impact the security, reliability, availability, integrity, performance or support (including Collibra’s ability to meet its service levels) of the Service. Collibra hereby disclaims all liability, express or implied, for any reduction in the security, reliability, availability, integrity, performance or support of the Service to the extent the foregoing would have been avoided had you allowed Collibra to implement the most current release of the Service when scheduled by Collibra. Further, to the extent your failure to upgrade the Service impacts the security, reliability, availability, integrity or performance of the Service for other customers or users of the Service, Collibra may suspend your access to the Service until you have upgraded to the most recent release..2023.01New FeaturesAdminAdmin users can now view and modify the DQ license key and license name from the new License page.PlatformYou can now deploy new Helm charts on new and existing releases of Collibra DQ Cloud Native deployments without encountering character size limitations.ReportsFour new reports are now available by default:The Missing Jobs Report shows jobs that were expected to run but didn't run as scheduled.The Hardware Usage Report shows the datasets that required the most total cores to run and more general hardware usage statistics.The Observability Score Roll-Up Report shows the aggregated scores of all AdaptiveRules (all datasets + all columns) and averages passing and breaking for all columns over 30 days.The Rules Passing Fraction Roll-Up Report shows all the passing rows and total rows scanned for user-defined rules aggregated by dimensions over the past 30 days.EnhancementsRulesThe Export LinkIds button is now displayed within the Rules tab of the Findings page. This button was previously only available under the Breaks tab on the Rule Builder page.You can enable LinkIDs from the Scope workflow on the Explorer page to export LinkIds for rule break records.The Copy Rules API (/v3/rules/copy) now has the following enhancements:Copied rules now copy to a new dataset correctly regardless of their rule type.Security logs for every rule copy request are now available for admin users to review in the Audit Trail section of the Admin Console.ExplorerWhen creating a DQ Job for a table with no rows, the columns are now shown in the Scope section.PlatformA new property, LOCAL_REGISTRATION_ENABLED, in the owl-env.sh script and K8s config map is now available to display or hide the registration link on the Sign in page for local users.For owl-env.sh:The command export LOCAL_REGISTRATION_ENABLED=true allows the registration link to display on the Sign in page.Because the registration link is visible by default, this property is also set to true by default.The command export LOCAL_REGISTRATION_ENABLED=false hides the registration link from the Sign in page.For K8s:The configuration LOCAL_REGISTRATION_ENABLED:true allows the registration link to display on the Sign in page.Because the registration link is visible by default, this property is also set to true by default.The configuration LOCAL_REGISTRATION_ENABLED:false hides the registration link from the Sign in page.ConnectionsSPARK322 and SPARK320 are now shipped with a Spark JDBC connection provider for Standalone deployments.When you bring Collibra DQ jars into Databricks, you are now required to set the property spark.sql.sources.disabledJdbcConnProviderList='basic,oracle,mssql' at either the Spark Cluster-level or the SparkSession-level before using Collibra DQ's set of functions for Spark profiles 3.2.1 and onwards.AdminYou can now sort the Date column on the Usage page. Dates now appear in descending order by default.FixesRulesFixed an issue that prevented the descriptions of saved rules from being edited when the rule name contained a greater than symbol after a single quote. (ticket #100114)Fixed an issue with rule builder validation that caused a rule syntax exception message to throw. (tickets #99735, 101165)Fixed an issue with rules with complex conditions (multiple rlike strings) for Freeform SQL rules that resulted in an exception message. (ticket #100116)DQ JobFixed an issue where behavioral observations made for a dataset did not subtract points from the data quality score. (ticket #98539)AlertsFixed an issue that limited the ability to edit or delete alerts with names containing apostrophes from the UI. (ticket #98864)OutliersFixed an issue where recalibrating an outlier would bulk apply downtrain labeling to it. (ticket #100085)ReportsFixed an issue where Completeness Reports were not generated when the Custom Range filter was used. (ticket #99786)DQ ConnectorFixed an issue with the Collibra DQ - Collibra Data Intelligence Cloud integration that prevented Rules and Charts from importing. (ticket #104872)AdminFixed an issue with time-based data retention when using linkId that caused too many break records to store in the metastore. (ticket #99072, 102900)Known LimitationsRulesThe new Export LinkIds button generates a CSV file limited to viewing only via a spreadsheet program, like Excel.A workaround is to Save/Export the CSV file from the spreadsheet program in order to allow viewing in general text editors.DQ Job Remote file jobs with headers containing white spaces fail with a requirement failed exception message.A workaround is to edit the DQ Job command line in the Run CMD tab and place single quotes around the column name in -q and double quotes around the entire -header flag.DQ Security Metrics2022.12New FeaturesExplorerThe types of queries that can run from the View Data page are now restricted to read-only queries only.APIsYou can now copy SQLG- and SQLF-type rules from an existing dataset to another existing dataset with the /v3/rules/copy API call.ConnectionsYou can now create a MongoDB connection with a CDATA driver.Snowflake Pushdown
(beta)You can now detect outliers when running a Pushdown job.EnhancementsDQ JobAll tables on the Jobs page now include pagination, dropdown filters, and the ability to export.RulesRules associated with datasets with zero rows now execute successfully.Stat rule evaluation on secondary datasets is now supported for SQLF rules.ProfileYou can now view run execution details and stale data by toggling the box chart on the findings page.APIsThe getRecords notebook API function is now updated and the getGeneric query is renamed getDupesPreview. You can now obtain rules from a dataset and reassign them to another dataset with the following Databricks notebook API functions:def addRules(rules: List[Rule], dataset: String): Owldef getRulesDfByDataset(dataset: String): DataFramedef getRulesByDataset(dataset: String): List[Rule]def getRuleNamesByDataset(dataset: String): DataFramePlatformTechPreview (TP) labels are now removed from the UI.ConnectionsAs of September 2022, Databricks JDBC driver version 2.6.27 is packaged as part of both standalone and Kubernetes download packages. The Databricks Simba driver (version 2.6.22) is no longer packaged for Kubernetes. As a result of this change, the Databricks connection template has changed, and any existing connection using the old driver (2.6.22) must be updated. For more information on updating your drivers, refer to Standalone Upgrade.The Databricks SQL endpoint is now supported for JDBC connections. The following flag is now added to all Databricks JDBC connection parameters:UserAgentEntry = collibra-dqTo set the user agent for JDBC in Java, append UserAgentEntry and <isv-name+product-name>, as shown in the following example:com.simba.spark.jdbc.DataSource ds = new com.simba.spark.jdbc.DataSource(); ds.setCustomProperty(UserAgentEntry, <isv-name+product-name>);To set the user agent for JDBC as part of the JDBC URI, append ;UserAgentEntry=<isv-name+product-name> to the connection URL that starts with jdbc:spark://.3DES and DES encryption cipher for Kerberos authentication types are no longer supported because of recent Red Hat OS (RHEL 8.7) cipher deprecation.FixesExplorerFixed an issue with the -rdEnd variable in the command line the variable in the query to be improperly escaped. (ticket #98702)ProfileFixed an issue where the confidence score (Conf) displayed values greater than the threshold of 100. (ticket #99636)Fixed an issue where HTML in data fields was rendered on the Data Preview section of the findings page. (ticket #97883)Fixed an issue with Data Preview that resulted in an OOM error when the data_preview table contained a large number of records.RulesFixed an issue where values on the Rules tab did not correctly display in scientific notation format. (ticket #89738)Fixed an issue when using a secondary dataset that prevented @dataset for primary dataset from being supported. ScorecardsProfile is now removed from the DQ Scorecards submenu.SecurityFixed an issue with LDAP external groups to role mappings when there was no fully qualified path for the LDAP group that caused malformed API calls and did not save properly.Fixed an issue with the Dataset Security feature. (ticket #100317) When the following security settings are configured, the system fully restricts access to the findings page for admin users:Dataset security is turned on.Default owner access is unchecked.Dataset belongs to no roles or no roles to which the user has access.APIsFixed an issue with the /v2/gethints endpoint that prevented the Hints table from displaying correctly on the findings page. (ticket #98941)Fixed an issue with the getRecords and getGenerics APIs that prevented any information from being returned. (ticket #98820)AlertsFixed an issue with the SQL on the Alert Notifications page that prevented data from appearing in the DataTables error message.AgentFixed an issue with GKP deployments where job scans failed because the driver pod could not create connections to the metastore. (ticket #102175)Validate SourceFixed an issue where the Source to Target scorecard incorrectly displayed a mismatch because of an unexpected column type checked during a schema order check. (ticket #98300)ConnectionsResolved connection issues in certain cases by upgrading the Athena driver to version 2.0.33. (ticket #100340)Fixed an issue where HDFS connections could not rerun a job successfully because certain parameters were automatically appended to the Free Form (Appended) field of the Agent configuration. (ticket #95810)Fixed an issue with Dremio connection timeouts on Kubernetes deployments. (ticket #101221)To prevent Dremio connection issues, set the following value in the Free Form (Appended) field of the Agent configuration:-conf spark.driver.extraJavaOptions=-Dcdjd.io.netty.tryReflectionSetAccessible=trueKnown LimitationsRulesFreeform rules with fully qualified column names are currently unsupported when they use the following syntax:select <column name> FROM @<dataset name> WHERE @<dataset name>.<column name> conditionA workaround to this limitation is to use aliasing instead.APIsWhen using the new /v3/rules/copy API, the copied rule automatically appends copied to the rule name. After copying a rule, you may need to manually update the rule name. If the copied rule is performed on a target dataset that does not conform to the compatible columns, then you need to manually update the rule to ensure the columns are compatible across datasets.Dataset Security is not enforced when using the /v3/rules/copy API.DQ Security Metrics2022.11The MS SQL driver that comes with JDK11 standalone packages does not currently work in the JDK11 environment. MSSQL requires a separate JAR for JDK11. Please contact your Customer Success Manager for the compatible driver.Dremio is not currently supported for JDK11 standalone packages. If you plan to run JDK11, add -Dcdjd.io.netty.tryReflectionSetAccessible=true to owlmanage.sh as a JVM option for your Web and Spark instances. Please contact your Customer Success Manager for assistance.Dremio jobs currently fail on both K8s and standalone JDK11 deployments. Add the following config to the Free Form (Appended) field of the Agent Configuration template: -conf spark.driver.extraJavaOptions=-Dcdjd.io.netty.tryReflectionSetAccessible=true.As of October 18, 2022, all images for the 2022.10 release have a Critical CVE (CVE-2022-42889). If you picked up the 2022.10 release before October 18, 2022, there should be no issue with your scans. If issues persist, please contact your Customer Success Manager for a new build.After you complete an upgrade or a new installation of Collibra DQ, you are now required to enter a license name by following either a one-time prompt on the login page, entering the LICENSE_NAME environment variable in the environment variable file (owl-env.sh), or by entering the global.configMap.data.license_name Helm chart variable. Your license name is the value after YOUR NAME IS = found in the license provision email sent to you by Collibra. Customers who do not have this information due to being issued a license before March 2022 should input license information following the format below.For a single instance: <yourcompanyname>For multiple instances: <yourcompanyname>-dev, <yourcompanyname>-test, <yourcompanyname>-prodNo spaces or special characters are permitted except for hyphens -.New FeaturesPlatformThe following pages now support the new React MUI:ScorecardsList ViewAssignmentsPulse ViewAlertsReact is turned off by default for the 2022.11 release. If you would like to try the new React pages, you can toggle it on from the Admin Console, or contact your Customer Success Manager for assistance.DQ JobYou can now terminate jobs from the Jobs page if they are in progress, incorrectly submitted, or stuck in Staged status. When you terminate a job, two alerts are generated.Jobs in the Spark UI display Finished statuses, even though they are terminated from the DQ UI. AlertsYou can now generate alerts for the following stale data stat rules:$daysWithoutData$runsWithoutData$daysSinceLastRunYou can now generate alerts for jobs stuck in Staged status for more than one hour.AdminYou can now configure LDAP for user access in multi-tenant environments.ConnectionsYou can now use key-pair authentication for Snowflake connections.When you append to the Connection URL string, your entry must be comma separated.When you manually modify the Driver Properties field, your entry must be semicolon separated.CDATA connections are now supported in standalone deployments.CDATA drivers are now included in the release package.Cloud StorageAzure Blob Storage is now a supported target storage system.Snowflake Pushdown (beta)Schema Change monitoring from the AdaptiveRules tab is now enabled by default.Schema is now separated from basic profiling.The new DatasetDefDTO API now returns Pushdown information.Dataset security checks are now implemented for Pushdown jobs.EnhancementsExplorerThe Job Estimate dialogue now has improved guidance on executors and cores. The Job Estimate now estimates when a max core, max executor, and max memory is reached.DQ JobJob schedule time zone is now a read-only field and can no longer be configured. Existing scheduled jobs reflect their current settings, but all other scheduled jobs are now based on the time zone of the DQ server (UTC). (ticket #88797, 89736, 92611, 95231)DupesA new warning message now displays when increasing the duplicate check limit from the UI. (ticket #95604)SecurityKubernetes service accounts associated with AWS IAM pod roles for controlling access to AWS services for cloud native DQ deployments on AWS EKS are now supported.When DATASET SECURITY is enabled, DATASET ACCESS is now required to edit, map, or retrieve datasets or business units. (ticket #92934)FixesRulesFixed an issue that prevented freeform rules containing double backslashes from saving. (ticket #96636, 96640)Fixed an issue that caused rules containing open
brackets ([) to display break records incorrectly. (ticket #94399)Fixed an issue that caused rules containing regex to throw out of range exceptions. (ticket #98435)DQ JobFixed an issue where run time was not displayed on the findings page because run_id column type in the metastore did not include time zone. (ticket #96050)Fixed an issue that caused Parquet files to fail during the LOAD activity. (ticket #96191)Other NFS file types, including ORC, CSV, and Avro, also run successfully.AlertsFixed an issue when saving batch names that used spaces between delimiters, which caused an invalid error to occur. (ticket #97028)Validate SourceThe Add Column Names feature is now removed from the Source tab. (ticket #96066)Instead, use the query to edit/limit columns or use Update Scope.Fixed an issue where disabling source check on a cloned dataset resulted in an error. You can now disable source validation on cloned datasets. (ticket #97795)DupesThe Advanced Filter is now hidden from the Dupes tab. (ticket #96065)ShapesFixed an issue when editing a dataset that reverted the Shape Detection setting (Off, Auto, or Manual) applied when it was created. (ticket #95471, 95473)SchemaFixed an issue with schema detection on files where schema detection was performed on all columns when a subset of columns was selected. (ticket #92476)Use theheadercheckoff flag when it is necessary to see only when columns are added or dropped.Fixed an issue where schema changes were not correctly identified and updated. (ticket #96013)BehaviorFixed an issue with behavior lookback(-bhlb) that caused Row Count changes to be misrepresented. (ticket #94840)ConnectionsAzure Blob connections in standalone environments require the following jars to be added to the $SPARK_HOME/jars folder:hadoop-azure-3.2.0.jarwildfly-openssl-1.1.3.Final.jarAPIFixed an issue with the DB import process to ensure JobSchedule records import without error. (ticket #98405)Known LimitationsDQ JobJob termination is not supported for jobs in Unknown status.Validate SourceCloning and saving, enabling, or disabling the source tab is associated with the original dataset name and fails on the screen when an update is made, but does not affect the actual job run.ConnectionsWhen adding driver properties using the +Add Property option for Snowflake connections, semicolons are incorrectly appended to key values. Instead, use comma format to separate key values.DQ Security Metrics2022.10New Features For the Collibra Data Quality 2022.10 release, all Docker images run on JDK11. Standalone packages contain JDK8 and JDK11 options. If you are an existing customer who requires JDK11, please upgrade your runtime before upgrading to 2022.10. Most Hadoop environment versions (EMR/HDP/CDH) still run on JDK8, so customers using these environments can upgrade with the JDK8 packages. If you prefer to upgrade to JDK11, you must follow the documentation of your respective Hadoop environment to upgrade to JDK11 before deploying the 2022.10 release.The MS SQL driver that comes with JDK11 standalone packages does not currently work in the JDK11 environment. MSSQL requires a separate JAR for JDK11. Please contact your Customer Success Manager for the compatible driver.Dremio is not currently supported for JDK11 standalone packages. If you plan to run JDK11, add -Dcdjd.io.netty.tryReflectionSetAccessible=true to owlmanage.sh as a JVM option for your Web and Spark instances. Please contact your Customer Success Manager for assistance.As of October 18, 2022, all images for the 2022.10 release have a Critical CVE (CVE-2022-42889). If you picked up the 2022.10 release before October 18, 2022, there should be no issue with your scans. If issues persist, please contact your Customer Success Manager for a new build.RulesYou can now define a rule to detect the number of days a job runs without data by using $daysWithoutData.You can now define a rule to detect the number of days a job runs with 0 rows by using $runsWithoutData.You can now define a rule to detect the number of days since a job last ran by using $daysSinceLastRun.ProfileYou can now use a string length feature by toggling the Profile String Length checkbox when you create a data set.When Profile String Length is checked, the min/max length of a string column is saved to table dataset_fieldValidate SourceYou can now write rules against a loaded source data frame when -postclearcache is configured in the agent.The DQ UI will be converted to the React MUI framework with the 2022.11 release. Prior to the 2022.11 release, you can turn the React flag on, but note that some features may be temporarily limited.EnhancementsDQ JobStart Time and Update Time are now based on the server time zone of the DQ Web App.SchedulerThe Job Schedule page now has pagination.ScorecardsFrom Pulse View, you can now view missing runs, runs with 0 rows, and runs with failed scores.Admin/CatalogConnection details are now masked when non-admin users attempt to view or modify database connection details from the Catalog page. Only users with role_admin or role_connection_manager have the ability to view connection details on this page. (ticket #94430)APIThe /v2/getRunIdDetailsByDataset endpoint now provides the following:The RunIDs for a given data set.All completed DQ Jobs for a given data set.Snowflake Pushdown (beta)You can now detect shapes that do not conform to a data field. Pushdown jobs scan all columns for shapes by default.You can now view Histogram and Data Preview details for the Profile activity.ConnectionsThe Snowflake JDBC driver is now updated to 3.13.14.FixesRulesFixed an issue with the Rule Validator that resulted in missing table errors. The Validator now correctly detects columns. (ticket #93430)DQ JobFixed an issue that caused queries with joins to fail on the load activity when Full Profile Pushdown was enabled. Pushdown profiling now supports SQL joins. (ticket #92409)Fixed an issue that caused jobs to fail at the load activity when using the CTE query. Please note that CTE support is currently limited to Postgres connections. (ticket #88287, 89150)Fixed an issue that caused inconsistencies between the time zones represented in the Start Time and Update Time columns.AgentFixed the loadBalancerSourceRanges for web and spark_history services in EKS environments. (ticket #95398)The helm property global.ingress.* has been removed to separate the config for web and spark_history. Please update the property as follows:__global.web.ingress.*``global.spark_history.ingress.*Added support to specify the inbound CIDRs for the Ingress using the property .global.web.service.loadBalancerSourceRanges. (ticket #95398)Though Ingress is supported as part of Helm charts, we recommend attaching your own Ingress to the deployment if you need further customization.This requires a new Helm chart.Fixed an issue that caused Livy file estimates to fail for GCS on K8s deployments.Fixed an issue that caused jobs to fail for GCS on K8s deployments.Validate SourceThe Add Column Names feature is scheduled for removal with the upcoming 2022.11 release. (ticket #96066)This was a previous functionality before being able to limit the query directly (srcq) and Update Scope was added.Use the query to edit/limit columns and also use Update Scope.Fixed an issue that caused the incorrect message to display for [VALUE_THRESHOLD] when validate source was specified for a matched case. (ticket #94435)DupesThe Advanced Filter is scheduled for removal from the Dupes page with the upcoming 2022.11 release. (ticket #96065)ExplorerFixed an issue that caused BigQuery connections to incorrectly update the library (-lib) path when a subset of columns was selected. (ticket #96768)SchedulerFixed an issue that prevented the scheduler from running certain scheduled jobs in multi-tenancy setups. Email server information is now captured from the correct tenant. (ticket #92898)Known LimitationsRulesWhen a data set has 0 rows returned, stat rules applied to the data set are not executed. While a full fix is planned for a future release, this limitation is only partially fixed as of 2022.10.DQ JobCTE query support is currently limited to Postgres connections. DB2 and MSSQL are currently unsupported.CatalogWhen using the new bulk actions feature, updates to your job are not immediately visible in the UI. Once you apply a rule, run a DQ Job against that data set. From the Rules tab, a row with the newly applied rule is visible.Snowflake Pushdown (beta)Freeform (SQLF) rules cannot use a data set name but instead must use @dataset because Snowflake does not explicitly understand data set names.When using the SQL Query workflow, selecting a subset of columns in your SQL query must be enclosed in double quotes to prevent the job from running infinitely and without failing.Min/Max precision and scale are only calculated for double data types. All other data types are currently out of scope.DQ Security Metrics2022.09EnhancementsRulesThe Conditions column on the Rules tab now displays SQLG and SQLF rule definitions on hover.DQ JobThe Jobs chart now shows a dotted gray line to represent jobs in Submitted status. The Jobs chart now supports an hourly view option.When you run a Pushdown Job that has a data set that returns 0 rows, an unclear message displays.SchemaFrom the Config tab in Explorer, a Check Header checkbox under DQ Job is now available for when column names contain special characters. The Check Header checkbox is checked by default. When checked, schema findings do not display when detected.When unchecked, schema findings display when detected.BehaviorMean values are now rounded on the Findings page.ExplorerSOH delimiters for files are now supported. The Only checkbox on all Build Layer tabs is now removed.The Profile activity is now always enabled and no longer has an on/off switch. AlertsOnly one email per alert is now sent when alerts are set up for a scheduled job.You can now check the logs to see when an
alert does not send in order to resend the email.SchedulerThe findings page now displays a green indicator next to the Schedule icon when you schedule a job to run automatically. If Scheduler is inactive, a red indicator displays. APIThe v2/gethoot API now properly returns rule dimension information for data sets. (ticket #89973)ConnectionsThe Databricks connection template has changed, due to an upgrade of the driver. Any existing connection that uses the old driver must be updated. Refer to the new template. (ticket #19950)The drivers for Athena, BigQuery, MongoDB, GCS, Hive/Impala were also upgraded but no connection change is required.SparkThe 2023.02 release uses Spark 3.2.2.We recommend using Spark 3.x for standalone installs/upgrades.FixesExplorerFixed an issue that prevented the Job Estimator from properly displaying row estimates when the run date was modified during a new job run. (ticket #90860)Fixed an issue that prevented DQ jobs created using NFS connection types from displaying under the Remote File Connections dropdown. (ticket #92479)Fixed an issue that caused the file type parser to throw an error message when the default comma delimiter was not detected. The parser now detects a file's delimiter and updates the delimiter type in the UI automatically. (ticket #89489, 92480)FilesThe error message for Failed Merging Schema now has extra logging to clarify the cause of failed schema merges for both Livy sessions and non-Livy paths. (ticket #92694)SecurityFixed an issue with the v2/getcatalogtableshasrulesfromcxn API that triggered a 403 status code when Dataset Security was enabled. (ticket #93298, 94258)AgentFixed an issue that caused the Agent Check to no longer attempt check-ins to the metastore on K8s deployments, which resulted in red (unhealthy) status. (ticket #92055, 92963)Fixed an issue that prevented concurrent users from properly running Livy sessions. (ticket #92963, 90432)Known LimitationsRulesThe Rule Builder page becomes unusable if the user creates, validates, saves a new rule and then re-edits.The workaround for this limitation is to do a full page refresh.When a user attempts to validate a rule that contains a stat, an exception error is returned.SecurityThe Assignments Queue feature is only available for local users. Support for externally connected users, such as SAML and AD connector, is not currently available. AlertsWhen alert recipient email addresses are separated by semicolons ;, alerts emails are not sent to the intended recipients. A workaround for this limitation is to separate alert recipient email addresses with commas , instead of semicolons.Snowflake PushdownWhen a Job is run, which has a data set that returns 0 rows, an unclear message displays.When a native rule is created that contains an embedded stat, its calculated value will not display on the Job results page.Data Set security is not supported.Disabling autometrics will not take effect, therefore, all autometrics are executed.Creating a DQ job using only SQL Query workflow doesn't allow you to set the rundate value.DQ Security Metrics2022.08New FeaturesRulesYou can now write SQLG-type Stat Rules on mean. EnhancementsConnectionsYou can now authenticate Oracle JDBC connections with Kerberos TGT, Keytab, and Password. (tickets #75267, 76030)You can now authenticate SQL Server JDBC connections with Kerberos Keytab in addition to basic authentication.RulesRule Summary enhancements: You can now select different time periods for analysis. You can now view charts from three different pages, including Rule Detail Summary, Rule Breaks, and Rule Dimension Summary. SecurityVulnerabilities identified by Jfrog Vulns 0, criticals 0, high severity 7The majority of the current mediums are due to merging the dq-streaming module into core.For a visual readout, see the DQ Security Metrics section below.AgentYou can now optionally configure individual time zones of DQ Job, Web, and Agent. You should only use this configuration when your instance and containers run in different system time zones. (tickets #87024, 87155)BehaviorThe Behavior tab now has a new column, Delta Percent Change (Δ % Change). You can now hover over new tooltips in the following columns: Baseline% ChangeΔ % ChangeZscoreScoreOutliersOutlier checks are now optimized to skip in certain circumstances. Outlier checks are only skipped when the history load of a specified date column is empty.You can now update and modify record flags from the command line with -rc, -rcKeys, -rcDateCol, and -rcTbin.APIThe v2/gethoot API now properly returns rule dimension information for data sets. The v3/jobs/run API now has improvements to the 400 Bad Request error messages in specific circumstances. ReportsThe PDF option is now removed from the Data Set Findings page. To print dynamic column tables, use CSV or Excel options instead. (ticket #89739)DQ ConnectorThe version of Collibra Integration Library is now updated to 2.4.12.Fixes ConnectionsThe new GCS jars are required to use GCS spark-history-server. (ticket #90623)DQ JobFixed an issue that caused jobs using .TXT files to incorrectly render custom column names. (ticket #81808) Files with .TXT extensions are now treated as delimited files. Files with .TXT extensions that are not delimited files should use their respective file type from the file type dropdown. Fixed an issue with deployments on K8s where jobs failed when the volume name exceeded 63 characters. (ticket #85372)AgentFixed an issue that caused the v2/updateagent API to fail when numCores was empty. (tickets #89737, 92404, 92680) The numCores field is no longer a required field. Validate SourceFixed an issue that caused validate source jobs to fail when the pkey was mapped to different column names. (ticket #88778)RulesWhen using Freeform SQL rules with wild-card operators, rules again correctly pass validation. (ticket #89644)Fixed an issue with regex rules that use the characters), , , and ; in the rlike, which caused DQ to append spaces to those characters and prevented the regex from operating correctly. (tickets #89417, 92958)Fixed an issue that caused rules with column values containing parentheses () to break due to the addition of padding before and after closing parentheses. (ticket #85176)Fixed an issue that caused rules with special characters such as @ to display incorrectly on the Rules page, Conditions tab, and when exported to Excel. Fixed an issue that prevented data sets with attached rules and roles from being renamed. (tickets #85731, 92059, 94315)ProfileFixed an issue where certain results in TopN Values and Data Preview displayed in scientific notation. Scientific notation is now removed from the display. (tickets #82163, 89738)ExplorerFixed an issue that allowed CLOB data types to be visible in the Drag Columns to Target map in the Source tab. (ticket #86902)APIThe REST API endpoint v2/updateRoleDatasets again correctly saves roles to data sets.Known LimitationsRulesThe Findings page displays results from computational stat rules on mean as a single-quote string. For example, '573523.87' > 6763Column-level sorting for the Rule Summary feature is not currently available. AdminWhen adding a Sensitive Label or a Data Category, the Edit and Update functions do not display the selected record. To properly display the record, you must first refresh the page before editing or updating. Session ActivityWhile the application UI is being redesigned, it is possible that when the application times out on the legacy side of the application, you might not be able to see it on the new React MUI side. This can happen when you have the DQ application open on multiple tabs. We are not currently tracking session timeout from the legacy UI to React. Beta featuresDQ JobCollibra is proud to launch a brand new feature, Snowflake Pushdown. Snowflake Pushdown allows for even faster processing and removes the need to set up a separate Spark compute platform to run Collibra Data Quality. Snowflake Pushdown is a private beta feature only available by request. Since this is a beta feature, some limitations are expected as we continue to improve its functionality. Contact your CSM to learn more about this feature.DQ Security Metrics There is a critical CVE CVE-2016-1000027 that shows up in the image scan due to Spring version. This is a false positive and should be added to the exception list of the customer scan tools. We don’t use HttpInvokerServiceExporter anywhere in the application and are not impacted by it.There is no fix version available for it from Spring. More details are available at Sonatype vulnerability CVE-2016-1000027 in Spring-web project · Issue #24434 · spring-projects/spring-framework2022.07Standalone packages for the 2022.07 release have a version naming convention of -RC. This will revert back to the standard naming convention with the 2022.08 release, and has no impact on the safety or stability of standalone packages. {% endhint %}Fixes / EnhancementsDQ Job Fixed an issue that prevented data from appearing in the Source tab when Source Observation RunID was clicked from the Assignments page.Fixed an issue that caused Annotations with special characters to be truncated in the Labels tab.Fixed an issue that caused the Column (name) column of the Rules tab to display incorrectly when Run Discovery was used.Fixed an issue where the Retrain button on the Record tab was disabled.You can again invalidate observations with single quotes ' from the Shapes tab. The Hints tab now displays any available data.You can no longer change agents from the Scheduler modal.Rules SQLF is now supported for Generic rules.When running a custom rule through Rule Discovery, the column names Repo and Column again display correctly.Alerts You can now send emails using unauthenticated SMTP servers.Security Vulnerabilities identified by Jfrog Vulns 0, criticals 0, high severity 7For a visual readout, see the DQ Security Metrics section below.Fixed an issue that allowed
jobs to be run from the command line regardless of connection permissions. When Connection Security is enabled, lock the SQL Editor to prevent unauthorized access to other connections. (#87916)Fixed an issue that allowed View Only users to access some profile results and export the data to a CSV file. Added an authorization check for data set access to the profile export feature, which allows only users with data set access to export the profile. (#87720)Backslashes \ are no longer supported characters for AD usernames without disabling XSS for the /v2/updateadsecurityconfiguration API. (#88499) Fixed an issue that prevented navigation back to the log in page when tenant access was denied. (#89024)Profile From the Labels tab, backslashes are now stripped from annotations when they are used for separation within strings.Admin From Audit Trail, when administrators modify roles mapped to data sets or data sets mapped to roles, changes are now documented automatically, and display original and updated values.The Agent Group (H/A) and its associated endpoints are now deprecated.From Usage, you can now access a table and tiles reflective of your monthly usage metrics.Salesforce account ID can now be configured for use with Pendo logs. *Tech Preview* [TP] ServiceNow integration You can now assign incidents (validate action) to ServiceNow groups and users with the following fields included in the same request: caller_id, description, short_description, cmdb_ci.Explorer Fixed an issue with date range on Oracle connections, which caused end date to change to start date when Transform was selected.The Job Estimate modal again displays the correct number of rows for Sybase connections.Fixed an issue with Source to Target where double quotes were removed from the source file in database to file targets. Scorecards Enhanced the layout of the Assignment Queues page.API v2/getallscheduledjobs is now available as an enhancement of the original, v2getscheduledjobs. A UI integration is planned for a future release.Schedule Added an Active column to the scheduler export. The RunJob column was removed. (#88799)Reporting Fixed an issue that created misalignment of column headers in PDF exports. (#89739)Known LimitationsRules To use the new SQLF feature for Generic rules, you must manually update the Generic rule type from SQLG to SQLF. A UI feature for this is planned for a future release.Stat rules such as $rowCount do not work for secondary data sets or previous runId of the same data set via @t1 syntax. To work around this limitation, run a subquery to select count(*) from the secondary data set or the previous runId.Explorer Drill-ins and jobs on Sybase connections run successfully, but connections to Sybase with encrypted passwords are currently unsupported.Files When using CSV files, you cannot use a comma , in the name.Admin *Tech Preview* [TP] ServiceNow integration Special characters !@#$%^&*()in the description are not supported and will not persist to the ServiceNow assignment queue at this time.Empty or invalid ServiceNow group name does not return an error in CDQ. As a result, the ServiceNow assignment is generated with the default admin account as the owner if left empty or invalid.You must have a valid ServiceNow group name or its related sys_id. The new REACT UI is not yet supported for the ServiceNow Group integration.DQ Security Metrics There is a critical CVE CVE-2016-1000027 that shows up in the image scan due to Spring version. This is a false positive and should be added to the exception list of the customer scan tools. We don’t use HttpInvokerServiceExporter anywhere in the application and are not impacted by it.There is no fix version available for it from Spring. More details are available at Sonatype vulnerability CVE-2016-1000027 in Spring-web project · Issue #24434 · spring-projects/spring-framework {% endhint %}2022.06Fixes / EnhancementsDQ Job Fixed an issue with the Learning Phase in the Behavior feature. (ticket #82907) Once CDQ has the minimum number of completed successful scans, the learning status now changes to PASSING or BREAKING based on the results.Outliers Fixed an issue where file lookback did not identify expected outliers. (#87967)Alerts When configuring email alerts, SMTP Username and SMTP password fields are still required fields. (#86033) Validation relaxation is planned for the 2022.07 release.Rules Fixed an issue which caused rule breaks to report the opposite of what was defined when a Generic Rule utilizing regex/rlike was created. (#86977)Fixed an issue where Data Classes with Date column types selected did not detect timestamps. (#83000)Fixed an issue where Data Classes using the operators <, > or = caused the inverse rule created from this process to throw exceptions. (#83000)When switching a data class from a regex to expression and then editing again, the regex checkbox is now correctly checked.Agent The Explorer page and Scheduler modal now display the same agents. (#86175)Security Vulnerabilities identified by Jfrog Vulns 0, criticals 0, high severity 8For a visual readout, see the DQ Security Metrics section below.General advisory: There is a critical CVE CVE-2016-1000027 that shows up in the image scan due to Spring version. This is a false positive and should be added to the exception list of the customer scan tools. We don’t use HttpInvokerServiceExporter anywhere in the application and are not impacted by it. There is no fix version available for it from Spring. More details are available at Sonatype vulnerability CVE-2016-1000027 in Spring-web project · Issue #24434 · spring-projects/spring-frameworkMajor vulnerabilities related to Spring, ESAPI, and Swagger have been addressed.No cross DB reference is allowed in explorer while accessing SQL database connections.Sensitive UI fields such as username no longer allow autocomplete.If configured, the ENV variable XSS_CANONICALIZE_INPUT_ENABLED should be removed from configmap or owl-env.sh.When dataset security is turned on, you can now add role based authorization for editing existing datasets. (#87720)You can now override the following mail settings from the App Config page within the Configuration section of the Admin Console: mail.transport.protocol -- default = smtpmail.smtp.auth -- default = true: If true, attempt to authenticate the user using the AUTH commandmail.smtp.auth.login.disable -- default = false: If true, prevents use of the AUTH LOGIN commandmail.smtp.starttls.enable -- default = true: If true, enables the use of the STARTTLS command (if supported by the server) to switch the connection to a TLS-protected connection before issuing any login commands.mail.smtp.ssl.enable -- default = false: If set to true, use SSL to connect and use the SSL port by default. Defaults to false for the smtp protocol and true for the smtps protocol.mail.smtp.ehlo -- default = truemail.debug -- default = truemail.smtp.ssl.trust -- default = : If set, and a socket factory hasn't been specified, enables use of a MailSSLSocketFactory. If set to *, all hosts are trusted. If set to a whitespace separated list of hosts, those hosts are trusted. Otherwise, trust depends on the certificate the server presents. (#76775, 88089)Profile Mean value is now rounded appropriately within the Profile page. For example: The value 2.4334334343345 is now rounded to 2.434.Connections From the Athena driver, you can now use MetadataRetrievalMethod=Query for database queries from the Connection URL. (#86139)Fixed an issue where error messages on failed connections did not display informational text. (#85527)Fixed an issue where NFS file connections under Remote File connections caused jobs to fail. (#88156) Added File protocol for Spark load for NFS file system.Added nfs:// prefix wile adding a NFS connection. This will prepend the URI with the file:// protocol when an NFS file connection is loaded via Spark.Catalog The Graph option is no longer available in Quick links.Admin The Pendo integration is now active by default. No sensitive information is collected; only high-level usage stats are collected.All new customers starting with 2022.06 onward will receive a new license.If you install a standalone environment, modify the <install-dir>/config/owl-env.sh file by adding your license nameexport DQ_INTEGRATION_PENDO_ACCOUNTID=<your-license-name>This new integration will not block or impair the functionality of the app in any way.For more information on Collibra's subprocessors, please review Collibra's Subprocessors page.The Agent Group (H/A) and its associated endpoints are now deprecated. (#83086)Fixed an issue where the Add Data Category button was missing without required permissions. (#86625)When a session expires on an Admin page, you are now redirected to the login page.The Admin Limits page now displays informational text indicating that only limits of Tenant - Admin type are displayed on the page.Fixed an issue when editing an existing data category which caused the 'Add new' modal to open instead of the 'Edit' modal. (#89617)From Configuration Settings, DB Limits is now called Data Retention Policy.Explorer You can now view calculated views for SAP HANA when creating a DQ Job on the Explorer page. (#83147, 84328)Fixed an issue which caused the Date range condition to incorrectly display results when using an Oracle connection. (#85802)Fixed an issue which threw an error message when Transform was checked with Date Range condition when using a Postgres connection. (#85802)Fixed an issue where an equals sign = used in a -transform expression from Run CMD caused jobs to fail. (#71547)Fixed an issue where schema and table names containing underscores _ were not accepted.Fixed an issue that allowed jobs to run with a row limit of less than 1.Fixed an issue where incorrect files loaded for preview from BLOB containers with Livy enabled.CLOB data types are unsupported. (#86902)Improved performance and logic when drilling into a database and
schema from the Explorer page.API You can now access API quick links page from the Admin Console React page.When using Swagger, UI text now indicates when a field is case sensitive.Reporting *Tech Preview* [TP] Rule Summary page enhancements You can now filter rule breaks by most frequent violations, most severe violations, and least violations.You can now view interactive pie charts with rules and dimension summaries.UI The styling of the expandable legacy navigation pane and the react menu are now updated.Legal Added a disclaimer to the DQ login page with a link to the Collibra Evaluation Agreement.Known LimitationsValidate Source When comparing JDBC (target) to remote files such as S3 (source), there is a known Spark bug for Recursive view detected. This validate source combination is not possible in 2022.06 using Spark 3.2.When using Bigquery as the source, the -libsrc needs to be manually modified to include the core (Spark Bigquery connector) directory. For example, /home/centos/owl/drivers/bigquery**/core**Profile Spark does not currently support varchar data types. All varchar data types are converted to String. Other unsupported data types may also be converted incorrectly.Security Permissions on the Export task have not yet been addressed when dataset security is turned on and you add a role based authorization for editing existing datasets. (#87720)DQ Security MetricsThere is a critical CVE CVE-2016-1000027 that shows up in the image scan due to Spring version. This is a false positive and should be added to the exception list of the customer scan tools. We don’t use HttpInvokerServiceExporter anywhere in the application and are not impacted by it. There is no fix version available for it from Spring. More details are available at Sonatype vulnerability CVE-2016-1000027 in Spring-web project · Issue #24434 · spring-projects/spring-frameworkCollibra DQ release archive2022.05Fixes / EnhancementsDQ Job You can no longer update the dataset name (-ds) from the command line. A helpful error message now appears if changes are made to -ds.Stop Job action is no longer enabled for K8s.Fixed an issue for Dremio jobs where jobs hang when editing or cloning an existing dataset.Outliers Added username to outlier boundary table to track who creates the boundary. The Outlier boundary again saves correctly after the addition of a username.Fixed an issue that caused jobs to fail when Day from By dropdown was selected.Rules Rule Preview drill-in capabilities are now improved: You can now configure Preview Limits based on the individual rule. Freeform and Simple rules are currently supported for the Preview Limit feature.You can now set any positive number as the Rules Preview Limit. When you update a Preview Limit value, you must re-run to apply the updated limit value.On the DQ Job page, the details of an individual rule now displays a paginated sub-table of all the break records.When a rule is labeled as BREAKING for rule types other than Freeform and SQL, UI text now displays, Data preview records are only available for Freeform and Simple rules.You can now hover over stat rules to see their conditions.Data Concepts is renamed Data Categories.Semantics is renamed Data Classes.When a Data Class is assigned to a dataset via Profile controls, a rule is now created.Security Vulnerabilities identified by Jfrog Vulns 0, criticals 0, high severity 9For a visual readout, see the DQ Security Metrics section below.The OS vulnerabilities from the images of Collibra DQ 2022.04 have been resolved by using the base image of RHEL8 to build the images for Collibra DQ 2022.05. The following OS utilities will not be available in the 2022.05 release images: Unified, OpenSSL crypto/stackFull YUM stackOS tools, including tar, gzip, and viAD users can again use auth/signin REST API.The Highcharts CVSS2: 9.3/CVSS3: 9.8 vulnerability is resolved.The LOGJAM (CVE-2015-400) SSL/TLS vulnerability is resolved.The SpringShell (CVE-2022-22965) vulnerability is resolved.TLS < 1.2 is no longer supported.When Azure AD SSO sends a groups.link assertion, the application now tries to resolve the groups via the link. You can now activate this setting by using the property, SAML_GROUP_LINK_PROP.Profile You can now edit or delete semantics by clicking anywhere in the semantics cell of the Profile column table.You can now save annotations with special characters. Special characters that are not currently supported include percent sign %, backslash \, and caret ^.Fixed an issue where columns of broken rules were not highlighted.Connections You can now view a list of all packaged and optionally packaged drivers on our new Builds page.The Databricks JDBC driver is now available.You can now add Databricks datasets using the Databricks Simba driver.Catalog Fixed an issue where the deletion of a dataset caused orphaned links to datasets in other areas of Collibra DQ.Admin *Tech Preview* [TP] You can now use the ServiceNow integration through a proxy server from the Assignment Queues screen.You can now access the new Usage page to view monthly historical usage statistics.AD users with Admin privileges can now add Business Units.AD users with Admin privileges can now manage local users.The Agent Groups (H/A) feature is marked for deprecation and will be removed from the app in the 2022.06 release.Explorer You can again edit schema and table name from the Catalog page.You can now navigate to a specific behavior tab directly from the Assignments page.Fixed an issue when viewing Schemas in View Data wizard.Scorecard Single-space `` , underscore _, and period . are now supported characters when saving Scorecard name.API Improved API calls for the UserManagement Save function.Reporting *Tech Preview* [TP] Rule Summary page enhancements You can now filter rule breaks by a specified date range and view charts for Most Used Rule Types, Dataset with Most Rule, and Top Rules Run.Known LimitationsDelta FilesA bug was introduced as a result of removing CVEs in 2022.05. If you use Delta files -delta it is not advised to upgrade until an update is available.Explorer Except for underscore _, special characters are not currently supported in schema or table names.Admin *Tech Preview* [TP] ServiceNow integration Only the local Docker container proxy has been tested and verified.The Test Connection button's validating credentials capabilities is currently limited if the ServiceNow URL is valid.The Validate All Rules function currently results in a failure.You cannot edit an active ServiceNow assignment. Invalidate/Validate or Resolve actions result in a failure.You can assign a ServiceNow ticket with an embedded URL when escaped with double quotes. No assignment is sent without this process.Multi-Tenant Tenant names should be lower case. Use lower case characters, when creating a tenant from the multi tenant admin page. The current limitation is around the schema that is generatedReporting *Tech Preview* Rule Summary page enhancements Sorting any column returns an error.User must use date picker as manual date entry is not honored.The start and end date are out of order when navigating to the page.The last page on the paginated list does not change when date criteria is updated.2022.04InstallFor standalone installations, within the setup.sh script find/replace the variable for spark_package.Change spark-3.0.1-bin-hadoop3.2.tgz to spark-3.1.2-bin-hadoop3.2.tgzspark_package=${SPARK_PACKAGE:-spark-3.0.1-bin-hadoop3.2.tgz} # replace with spark_package=${SPARK_PACKAGE:-spark-3.1.2-bin-hadoop3.2.tgz} Fixes / EnhancementsDQ Job Entering negative values for the downscore is no longer supported and will now produce an error message.You can now invalidate schema with special characters.Spark table names of historical dataset loaded and other spark tables are now available on Jobs Log table.Long type values larger than Integer.Max no longer breaks the Profile.View Findings now displays user's full name, if applicable, in Validate Modal. Assignment queue page also displays the full name of user, if applicable.Alerts You can once again use the Cancel action button on the Alerts page.You can now set up alerts to reach multiple email recipients.If email_server table is not yet configured, a helpful message will now display in the Description column in the job log directing you to register an email Server under Admin - Alerts. The job will still run successfully.Rules You can now modify Rules definitions from the primary DQ Job dashboard without loading the Rules page.Mean value check once again triggers correctly for Integer and Long columns. This fix triggers the mean value check for Integer and Long columns and shows an infinity percentage change in behavior for a period, depending on -bhlb. After this period, it should disappear.For Native SQL rules, jobs now behave the same whether or not a semicolon ; is included in the SQL query.You can now use a hyphen - in a dataset name. Acceptable special characters now include a hyphen -, period ., and underscore _.Added a tooltip that displays which condition is being checked in a DQ Job when using a Stat rule when you hover your cursor over a condition in the Condition column.Improved the exception message for when there are no values for a specific column while using a Stat rule.The WebUI passing boundaries range has been updated to ().For Freeform rules, IS Null and IS NOT NULL no longer return invalid results in the Validation tab.Added a pop-up success message for when the correct syntax rule passes for Freeform rules with secondary datasets after the Validate button is clicked.Security Vulnerabilities identified by Jfrog Vulns 2, criticals 2, high vulnerabilitiesFor a visual readout, see the DQ Security Metrics section below.Authorization restriction is now enforced for the following endpoints:
/v2/deletefiledir/v2/getRunIdsByDataset/v2/putDatasetWeight/v2/checkListofFilesPath/v2/getlistagents/v2/checkDriver/v2/getconnectionssensitive/v2/getemailgroups/v2/getemailserver/v2/addemailgroup/v2/validateEmailAddress/v2/getlistoffiles/v2/getlistoffilespath/v2/getlistoffiles/v2/getDriverDir/v2/getlistrolesbydataset/v2/getlistrolesbydistnctdatasets/v2/getlistrolesbyfunctiontypename/v2/getlistusersbyauthority/v2/getlocalDBRoles/v2/getsecuritysettingsbytype/v2/getowlcheckinventory/v2/getconnectionspwdmgrsensitive/v2/getsecuritysettingsbycoltype/v2/getdbuserlist/v2/getdbuserdetailsbyuser/v2/getexternaladgroupstointernalroles/v2/getlistdatasets/v2/getlistdatasetsbyrole/v2/getaudittrailitems/v2/get-all-audit/v2/get-datasets-audit-trail-items/v2/get-all-dataset-audit/v2/getactivityaudit/v2/getallactivityaudit/v2/getlocaldbrolesbyuser/v2/getdatasetaclsecurity/v2/getexternaladgrouplist/v2/getexternaladuserlist/v2//external-service-configurationLocal user accounts now have an account lockout feature implemented with the following restrictions: A user's account will be locked if a password is entered incorrectly more than 10 times (configurable via app config).The locked account can only be unlocked by Admin user in user management screen.If an Admin is locked, another Admin can unlock their account.If all the Admins are locked, enable the account via DB (ubdate users table accountNonLocked colun to 1).User cannot use forgot password to reset password while the account is locked.CORS restriction is now enforced for SAML and multi-tenancy. This breaks SAML unless the IDP is configured as a trusted origin in DQ, so the following property must be added to environment variables in order for DQ and SAML to work: CORS_ALLOWED_ORIGINS=\({IDP-BASE-URL},\)Replace $ with the value of the actual IDP URL (For example: https://ping.auth.com)Replace $ with the value of the actual DQ Base URL (For example: https://dq-env.com)SAML login no longer automatically triggers on the login page during an existing session when accessing DQ base URL. For SAML login, you should instead use /saml/login. API requests (v2/v3) return proper JSON response in case of failures.auth/signin API is updated to provide JWT token for MT & local users.Profile Mean value once again displays in the Volume column.When connecting to MSSQL server on Windows from a Linux DQ environment, the connection no longer fails. We recommend (not required) a TLS connection for MSSQL connections from a DQ Linux environment with a properly signed certificate setup on MSSQL server to connect only via TLS.You can now edit annotations in the Labels tab.S3 Added an enhancement for -addlib flag.Connections Added new Jconn4 driver for encrypted connections.Tech Preview - You can now save a local (NFS) file directory as a connection type.See our newest Supported Connections page for a definitive guide to driver support.BigQuery is now certified for production, but removed from packaged install for K8s docker.Explorer When toggling between fullfile and Union LookBack options, -fullfile and -fllb flags can no longer be generated together in the DQ Job command line.Data Preview for Temp files loading in Explorer now correctly shows the order of columns of the original Temp file.You can now drill in and search files within the connection.You can now browse multiple local (NFS) file connections.Scorecard You can now create scorecards with special characters ^[A-Za-z0-9]+$ in their names.Dupes Added linkID column for exact match in both UI and REST API. linkID can now be either included or excluded from Dupes for exact match.linkID is now shown at the aggregate level for Exact Match. We recommend using this feature from a primary key perspective for its first iteration.The aggregate function used is min(). For example: if you have 6 occurrences, you will get 1 example linkID, the min.API Updated the /v2/getlistdataschemapreviewdbtablebycols API call method from GET to POST to support the long query (-q) or very large columns table.Added a new SAML load balancer so the syestem picks the appropriate schema and SAML server URL for Swagger.Known LimitationsProfile Special characters are not currently supported in annotations in the Label tab.Scorecard Space , underscore _, and period . are not yet supported for scorecard edit.2022.03Fixes / EnhancementsDQ Job The -validatevaluesshowmissingkeys options now allows the extrapolation of missing keys between target and source.Newly created jobs will no longer be marked incorrectly with enclosing double quotes.File names with spaces are now handled with double quotes within the application.Alerts Email notifications now have Collibra branding and terminology.Fixed Cancel Action for Delete functionality on Alert page.Outliers Fixed the issue where Numerical Outlier drill in graph wasn't displaying when perChange is NaN.Rules Added additional HealthCare Data Classes to Rule Library.Fixed input validation rule of POST - /v3/rules/ endpoints. The following validation rules have been applied to RuleDTO.ruleName field: Maximum size is 100.Must comply with the following regular expression: ^[a-zA-Z0-9_]+$The rules on the Hoot page now show the correct exception data when expanded if there are two or more rules with exceptions attached to the dataset.Security Vulnerabilities identified by Jfrog Vulns 0, critical, 6 high vulnerabilitiesPassword length has increased to a maximum of 72 characters.Forgot password screen will now always show success message in UI regardless of success or failure.Fixed an issue of a throwing error message when adding/editing user roles.Added error checks if the password manager script throws any errors.Added the helper text Enforce user roles to run the job to DQ Job Security row.User password field removed while updating user in user management screen. Admin can only set password for another user wile creating new user, but not while updating/modifying them.To change a password, users can now use either the profile page or the self-service (Forgot password) feature.XSS security Fixed the vulnerability on scorecard, jobs, rules and catalog pages.Fixed the vulnerability via remote connection.Mitigated the endpoint /v2/getrawpreview vulnerable to Local File inclusion attack.DQ HTTP session cookie is now secured by default when HTTPS is enabled.{% hint style=info %} Rule Discovery Terminology AlignmentData Concepts => Data CategoriesSemantics => Data Classes {% endhint %}Profile Precision and Scale metrics are correct when using multi executors.Admin Edge download page within Admin Console (for Cloud customers).Validate Source *Tech Preview* [TP] Update Source Scope. Added Update Source Scope in the Query section of the Source tab.Connection Added handling for errors during log cleanup process.API Improved API calls for the Save function.Known LimitationsValidate Source *Tech Preview* [TP] Update Source Scope. Only works for JDBC connections. Feature is hidden for remote, temp, local files.Valsrc query won't be updated automatically when modifying column mappings. Use 'Preview' button to reset the feature if column mappings need to be changed.2022.02For new Standalone Collibra DQ installations, please double check 'Number of Core(s)' field when setting up 'Edit Agent'.{% hint style=info %} Added UUIDs for Jobs may take additional time on initial startup after upgrade {% endhint %}EnhancementsDQ Job Added UUIDs for jobs for better tracking between web and coreImproved DQ Job page load performance by optimizing callsFixed issue DQ jobs would fail when -rd is in yyyy-mm-dd HH formatOutliers *Tech Preview* [TP] Outlier CalibrationFeature flag can be set within owl-env.sh or configMap with export outlier_calibration_enabled=true (Default is off)Ability to suppress Outlier observations for a user-determined length of time that would have otherwise surfaced as anomaliesOnce feature is enabled, accessible within Outliers tab on DQ Job pageAlerts Ability to navigate to dataset specific Alerts from DQ Job pageAbility to test SMTP alert configurations when adding an email relayFixed issue where 'Reply Email' field did not properly accept user input value Please note there are no (Collibra imposed) domain restrictions on Reply Email fieldSecurity Stricter password policy is enforced on all user/tenant management screens/APIs. The restriction is as follows: Minimum length of 8 charactersMaximum length of 20 characters.At least one upper-case letter.At least one numeric character.At least one special character (supported are !,%,&,@,#,$,^,*,?,_,~)User ID and password cannot be the same.Password cannot contain user ID.Change Password functionality on user profile requires a current password of the user.Mitigated 64 critical, 15 high, and 12 medium vulnerabilities identified by JFrogUpgrade Log4J to 2.17.1 Please follow *Note to Standalone Collibra DQ Customer Upgrades*: We have upgraded to Log4J 2.17, please refer to Standalone Upgrade for additional stepsAdded connection security checks to users to prevent running jobs and query the tables that are not authorized per connection. This is applicable when DB Connection Security is enabled in the Admin Console under General.Implemented stricter session managementImplemented CORS restriction to mitigate potential CSRF vulnerability Enforced strict CORS policy by not allowing any domain. In order to allow other domains and tweak this behavior, we have exposed the following properties as environment variables in owl-env:CORS_ALLOWED_ORIGINS=http://facebook.com,http://google.comCORS_ALLOWED_METHODS=GET,POST,OPTIONS,DELETE,PUT,PATCHCORS_ALLOWED_HEADERS=X-Requested-With,Origin,Content-Type,Accept,AuthorizationCORS_EXPOSE_HEADERS=CORS_ALLOW_CREDENTIALS=falseCORS_MAX_AGE=0*Tech Preview* [TP] DQ ConnectorFixed issue where tenant specified on DQ Connector configuration (issuer of the jwt token field within DGC Edge Management page) was not properly accepted; only rules that existed with 'public' schema were
brought over; now the DQ Connector will accept the proper valuesAgent Upon potential deletion of an agent, added server side validation to indicate number of scheduled jobs so that users can understand if jobs fail going forwardRules Enhanced stability on Parallel Rule execution to ensure all rules load by reverting back to fixed thread countsDisplay exceptions upon rule execution failure to improve rule management experienceImprovements to user experience in Rule Library tab (within Rules page) including filters and column alignmentQuick Rule dropdown within the Rules page will save with default severity of 1 point and a threshold of 1 percentEnhanced validation for rules generated in Profile tabFixed issue where removing semantic tag may not have removed corresponding auto-generated ruleRule name character limit of 100Rule Builder page now returns error messages where the dataset contained 0 recordsCatalog Renaming Dataset from Catalog page keeps associated rules Clone only creates the dataset shell (with DQ job run configs, no additional rules, etc.) will be copiedBulk actions support for Data ConceptsFixed issue where child of business unit could be assigned as parentFixed issue where clearing individual filters were not functioningValidate Source *Tech Preview* [TP] New collapsible section for Query in Source tab; enables users to use custom srcq, similar to query on section on Home tab so that users do not need to edit -srcq in cmd line editor on Run tabIntroducing new observation types via -valscrshowmissingkey flag Key not in sourceKey not in targetSource Name should be fetched as part of getcatalogandconnsrcnamebydataset API call for a given datasetFixed issue which prevented Hive from working as TargetExport / Import Fixed issue that import could not accommodate more than one table insertFixed bug where certain values were inadvertently inserted into RegEx rules upon ExportNew endpoints added for Export and Import APIConnection Fixed Out Of Memory issue with Dremio Explicitly added limit clause in the preview query within Update ScopeDremio driver requires double quotes in Schema, Table, and Column names e.g. SchemaName.TableNameFixed Oracle TIMESTAMPLTZ conversion errorExplorer Fixed issue where 'Analyze Table' option did not populate for HiveFixed the static date values showing up in Managed Template and Run Check while running the job via v2/runtemplate API call from swagger UIFiles File names with spaces are now handled with double quotes tImplemented Supported File Type Check at time of uploading the Temp Files via Explorer Default supported file types are “csv,json,parquet,avro,delta.In order to add/update the supported file types and ensure validation, a new environment variable needs to be added in owl-env.sh as below: export ALLOWED_UPLOAD_FILE_TYPES=csv,json,parquet,avro,deltaTip: For remote files with delimiter, please use the csv dropdown options for files with .txt extension*Tech Preview* [TP] Users have ability to assign an agent when using temp file and local file Explorer paths without manually appending -master to agent or job (previous known limitation)LIMIT values are now properly accepted on the Scope & Range query panelDupes Fixed issue where column selections were not retained from the original DQ Job with Dupes ON for future runsKnown LimitationsRules Cannot currently create rule with API /v3/rules; will be fixed in future release Please use /v2/createrule APIProfile Stat Rules Tool tips will only generate when Max Precision and Max Scale are greater than 0DQ Job /v2/runtemplate API still creates 'zombie' job Please use /v3/jobs/runLinkID LinkID column selection is case sensitive; breaks may not appear if case does not matchOutliers Outlier Calibrate Outliers cannot retrain on-demand; to suppress existing Outliers, must rerun the DQ Job for those date(s)In-app labels do not exist for Outliers which have been subject to past, current, or future calibration; references only exist within the outlier_boundary table in the metastore[Informational Only] New Tables Introduced To Metastore In 2022.02outlier_boundary[Informational Only] Changes To Metastore Made In 2022.02ALTER TABLE validate_source_metadata ADD COLUMN IF NOT EXISTS validate_values_show_missing_keys boolean DEFAULT false ALTER TABLE opt_source ADD COLUMN IF NOT EXISTS validate_values_show_missing_keys boolean DEFAULT false ALTER TABLE opt_source ADD COLUMN IF NOT EXISTS filter_cols character varying[] ALTER TABLE user_profile ADD COLUMN IF NOT EXISTS external_user_id VARCHAR ALTER TABLE owlcheck_q ADD COLUMN IF NOT EXISTS agent_job_uuid UUID ALTER TABLE job_log ADD COLUMN IF NOT EXISTS job_uuid UUID ALTER TABLE platform_logs ADD COLUMN IF NOT EXISTS job_uuid UUID ALTER TABLE platform_logs DROP CONSTRAINT IF EXISTS platform_logs_job_uuid_ux ALTER TABLE platform_logs ADD CONSTRAINT platform_logs_job_uuid_ux UNIQUE (job_uuid) ALTER TABLE opt_owl ADD COLUMN IF NOT EXISTS job_uuid UUID 2022.01EnhancementsDQ Job Fixed issue where backrun -br flag was inadvertently added on future runs (error contained in 2021.12) if the initial DQ Job setup Explorer selected backrunImproved validation to not allow for slashes in dataset nameValidate Source Fixed potential DQ Job failure with Source turned on for some legacy installations when upgrading from older versions to 2021.11 and newerExplorer DB_VIEWS_ON can be added with TRUE or FALSE values by adding new App Config (Add Custom within Admin -> Configuration)-Addlib flag now working across JDBC connectionsUpdate Scope now supports rdEndRules When creating rules, run-time limit for each rule (in minutes) can be set on the Rule page UI and on the V3 API (by setting runTimeLimit property). The default is 30 minutes if not explicitly set. This 30 minute limit sets the overall timeout limit for all rules in a particular job. For example, if there are 10 rules with 9 rules with 30 min limit and 1 rule as 90 min limit, then the DQ Job will wait up to 90 min for all 10 rules to finish. This is because all rules must finish before the Rule stage in DQ Job to finish and move to the next stage. We do not support async stages where one long running rule is running while the job itself moves on to the next stage.Added ability to specify score of 0 to a ruleImprovement to Stat Rules to fail without exception when result is not within rangeProfile Fixed ability to remove a business unit from a datasetFixed issue where data concepts were not correctly displaying on a dataset's Profile pageFixed sensitive labels not being assigned from DiscoveryTreat certain doubles, floats, decimal types as Decimal format that preserves length and prevents Java from truncating to E11 formatRemoved commas when displaying date columnsSecurity SAML Login fix for IDPs that use POST binding as defaultS3 Enhanced support where . in column headers were causing large jobs to not complete Underscores now replace periods and large jobs should no longer hangConnections Updated default Snowflake template connection properties Corrected 'db' parameter placeholder on connection string versus former 'databaseName'Added Connectivity to BigQuery troubleshooting informationKnown LimitationsLocal files using NO_AGENT require a valid $SPARK_HOME on the machine where the web server is running.Supported data types CLOB datatypes are unsupportedExplorer -Addlib not yet supported for Remote Files e.g. S3[Informational Only] Changes To Metastore Made In 2022.01ALTER TABLE owl_rule ADD COLUMN IF NOT EXISTS run_time_limit DOUBLE PRECISION NOT NULL DEFAULT 30.0; ALTER TABLE owl_rule ADD COLUMN IF NOT EXISTS scoring_scheme INT4 NOT NULL DEFAULT 0; ALTER TABLE job_log ALTER COLUMN stage TYPE character varying; -- stage set to varchar because RULE logs rule_nm into stage ALTER TABLE job_log ALTER COLUMN log_desc TYPE character varying; ALTER TABLE job_log ALTER COLUMN log_hint TYPE character varying; 2021.12*Note to Standalone Collibra DQ Customer Upgrades*: We have upgraded to Log4J 2.17, please refer to Standalone Upgrade for additional stepsEnhancementsRules Semantic and data concept management: Run Discovery feature Run Discovery feature can be accessed from Catalog by selecting 'Data Concept' option from Actions or clicking the 'Run Discovery' button on the Rules tab of the DQ Job page. This will run a DQ Scan to detect for the semantics assigned to the selected data conceptAlgorithm now selects best match if column matches 2 or more data classes based on % match and name distance*Tech Preview* [TP] Configurable rule break preview limit Global default is 6 max rows per ruleAny change from 6 must be specified with previewLimit (API /v2/createrule) or in the Preview Limit field (UI)Maximum of 50 from UIIntroducing additional Stat Rules including minPrecision, maxPrecision, minScale, maxScaleBehavior Min and max value checks are now triggered for all numeric columns when selected, even if column contains zeroes in lookback periodAR column view graph now shows theMean value for current day (runId). No re-run of DQ Job is necessary. The displayed Mean makes it clear that the % change is the % change from the mean, not runId - 1 day.Findings in behaviors that were directly correlated to a row count shift as the root cause have been optimized, such that a major deviation in row count will no longer down-score related fields in the dataset to reduce noiseCatalog Catalog now features intelligent ranking based on Recency, Most Scanned, UserOutliers Outliers (advanced) allows for gaps in dates when establishing lookback period, which is established by history with row count > x (specified by user)Fixed issue where outlier data preview graphics were not displayedFixed issue where outlier results did not honor the initial scope where clause, in particular for Remote Files (S3)Connections BigQuery: Enhanced support for cataloging host namePulse View Pulse view can filter Connections and UsersPulse view can serve as proxy verification on whether scheduled
jobs were successfully completedProfile Viewable precision and scale statistics for double, float, and decimal data typesShapes Fixed issue where data shape preview not available when same shape is detected on the same row for different columnsFiles *Tech Preview* [TP] Users have ability to assign an agent when using temp file and local file Explorer paths Known limitation: -master must be freeform appended to the agent or to each jobSupport for multicharacter delimitersImproved delimiter support to distinguish string commas versus actual CSV commas to align data to respective columnsAgent Fixed issue where certain completed jobs could not be re-run on the DQ Jobs page. In other words, NO_AGENT was the only available option in the Agent dropdown. Now, users can select valid agents in the dropdown and this will persist for future scheduled jobsSchedule Implemented validation to enforce user to choose days when picking schedule to avoid Java error messagesExplorer Fixed issue where '&' was not properly supported when adding additional parametersAPI JSESSIONID session time is configurableBearer token and JSESSIONID authentication paths are properly forkedPattern Patterns activity now shows Count (number of times the current dataset has the Pattern breaks). This Count is interpreted the same way as Outlier activity Count2021.11EnhancementsRules *Tech Preview* [TP] Rule DiscoveryThe application now supports dynamic semantics checks. This allows you to create custom semantics that can be checked for when running a DQ check on a data set. Previously the application checked against a predefined set of semantics. You also have access to controls to organize and apply these semantics checks. The following is a list of changes: There is a new data concepts management page. You can access it from Catalog or Admin Console. You can assign multiple semantics to a data concept.When running a DQ check, you can select a data concept. The semantics assigned to this data concept will be checked against each column of dataset.You have a list of predefined semantics that are not editable. You also have the ability to create/edit/delete custom semantics.Repo on rules page has been added to Rules Library where semantics will be viewable.Resource Limits You can edit the Performance Settings to supply limits to executors, cores, memory and cells so that a user can be warned if submitting a job that requires a lot of resources and admins can control maximum resources submitted.EnhancementsExplorer *Tech Preview* [TP] Dynamic query reload allows you to view JOIN query columns in other activities. User can update and reload the schema table with the custom query in the scope section by clicking the [Update Scope] button. It will enable using the new columns from the custom query in all activities (Profile, Outlier, Dupes, Patterns, Source)Since the first tab is for compositing the query, updating fields will change the user's custom query. Therefore, all areas are locked except the query field in the first tab to keep the query unchanged after updating the scope tableSupport for some special characters in table name.Fixed the ability to add additional libs that were previously not being properly saved on subsequent runs. Under DQ Job tag, please utilize -fllb boolean (union lookback) and libsrc input box for lib directory path (will materialize as -addlib).Connections *Tech Preview* [TP] BigQuery Views and JoinsPlease add the following to the BigQuery connection propertyviewsEnabled=true API You can perform multiple imports without conflicts.You can have an incremental import such as updating matching records / insert new / leave existing. There is no requirement to delete tables first before running import.Profile Fixed backrun timebin to work with weeks and quarters instead of days.Outliers Split historical load to avoid historical query rounding up.*Tech Preview* [TP] Outliers (advanced).Source Fixed an issue where settings were not sticky for subsequent runs.Security SAML Enhancements New configuration settings are available when the Load Balancer is set for SSL Termination.You can now set theMulti-tenancy support through SAML RelayState to route SSO to the proper tenant.Patches2021.11.1 Explorer Allow ampersand in metastore host name for additional parametersIn below example, support for ampersand needed for required SSL flagsmetastore01.us-east1-b.c.customer-dq-prod.internal:5432/dev?sslmode=required¤tSchema=public Known LimitationsRules Semantics and data concepts: Not supported in pushdown modeExporting RegEx semantics not currently supportedWhile it is possible to create joins and cross-dataset rules using Freeform SQL, it is best practice to create a view and handle the join prior to running the DQ Job.Behavior Schema is not eligible for invalidateFiles Local files using UPLOAD_PATH, UPLOAD_FILE_PATH, and temp files are only eligible to be deployed using the default NO_AGENT option. These are only intended for quick tests and not intended for production-scale use. Best practice is to use a remote file system connection (S3, Google storage or ADLS).Delimiter support for special characters is limited. Supported file delimiters are comma, pipe, tab, semicolon, double quote and single quote. Custom delimiters will work for many characters, but not all combinations.Temp files and NO_AGENT should have -master local[*] or -master spark://:7077 defined in freeform append of the agent optionsDQ Job When submitting jobs via API from a different machine with a different timezone, timezone discrepancies are not accounted for automatically. Best practice is to align each component to use UTC.Jobs submitted via API with a run date that include HH:MM in the -rd (run date) will submit to the job queue and leave a remnant ‘STAGED’ jobConnections Postgres limits max connections per spark job. The default is 100. Please refer to Postgres official documentation how to increase max_connection and shared_buffers. https://www.postgresql.org/docs/9.6/runtime-config-connection.htmlBigQuery Updating scope to include joins in BigQuery can only be materialized when tables are part of the same dataset collectionShould you receive an error for pre-existing BigQuery jobs, please add -dssafeoff to the cmd line or select ‘Allow Overwrite’ to enable this from Edit mode in the ExplorerAlerts After an upgrade to 2021.11, you may need to set the environment variable ALERT_SCHEDULE_ENABLED=true in owl-env.sh and restart owl-web to enable email alerts to work again.2021.10EnhancementsDQ Job Refactored DQ Job Score to Gauge ChartExplorer Fixed issue where permissions are checked on datasets that do not yet existConnections Sybase 'Test / Preview' now availableUpdated web model of saving additional connection propertiesFixed scenario where editing connection yields null instead of empty for multiple valuesRules Placeholder new searchable Rule Summary Page for Rule statistics / insightsAlerts Updated Alert Mailer to TLS 1.2 to resolve Third Party Error exceptionFixed issue where alerts are deleted even when clicking cancel buttonBehavior Fixed issue where user must refresh to have invalidated item removed from UISearch Fixed search on Audit Datasets and Dataset Management pageScorecards Date ranges are now customizableValidate Source Added feature that provides 'trim' option on String columns when running source-target validation, extra spaces in the cell are trimmed on both ends (left and right)Dupes Resolved issue with white spaces in column headers blocking duplicate detectionSecurity Added configuration for setting the SAML_ENTITY_BASEURL, which sets the Consumer service url for the SP MetadataShapes Fixed issue where custom values override even after toggling Shapes back to auto or offConsole Fixed uncaught TypeError on login screenFixed GET timeout error on registration pageExport/Import API Users will be able to run the export/import API calls to conduct multiple promotions on the repo, schedule, and rule tables.Patches2021.10.1 Import / Export API without constraint conflicts Import must match exactly to the format of our export in order to parse out columns and values to perform an update when existing records are already thereowl_rule owl_check_repo job_schedule rule_repo Known LimitationsFile sizes Individual files greater than 5gb will experience performance degradation in Explorer for Standalone installs. Best practice is to save in smaller chunks and use bypass schema in the Explorer if needed.Individual files greater than 25gb will experience performance degradation in Core for Standalone installs.Files Explorer / browser will generally have difficulty supporting > 250 columns in filesProfiling Pushdown profiling on Bigquery, Redshift, Athena and Presto is available for specific datatypes.Backrun option and flag will persist beyond the first run (-br). Please remove this flag if you do not want to backrun again.Explorer QUARTER and WEEK are not supported time bins in this release.On non-csv files, Explorer will not automatically infer file types. Users must change file type to the required value and click Step 2 Load File. Nothing will change in Step 1 File Information. A future enhancement will be added to automatically check filetypes by reading the first fileDataset names should not contain special charactersRules Out of the box semantic rules cannot be edited (STATECHECK, GENDERCHECK, etc). Users can still apply their own global rules which can be customized.LinkId does not support alias columns that are not part of the -LinkId definitionConnections Connection names should not contain spacesValidate Source Complex Validate Source queries can only be edited from the CMD line or JSON directly before hitting Run.Security Active Directory in Azure SQL can connect via LDAP (basic auth) or Kerberos.S3 / GS / ADLS Remote storage connections should be defined using the root bucket only.Estimate Job is only available for files when Livy is being
used.Stop Job on jobs page is limited and does not work for all installation types.Bigquery connector does not work with views
	Introducing Collibra Data Quality
	Getting Started
	Release Notes
	 BuildsBuilds follow a naming convention to indicate which Optional Drivers drivers are packaged.The optional drivers only impact container versions of Collibra Data Quality and does not impact Standalone installation packages.Available Containers2023.01Collibra Data Quality & Observability2023.01-LM-20672023.01-ABDGCSILM-20662023.01-ABDGCSHILM-20652023.01-2068Spark3.2.2-2023.01-LM-20673.2.2-2023.01-ABDGCSILM-20663.2.2-2023.01-ABDGCSHILM-20653.2.2-2023.01-20682022.12Collibra Data Quality & Observability2022.12-LM-19602022.12-ABDGCSILM-19592022.12-ABDGCSHILM-19582022.12-1964Spark3.2.2-2022.12-LM-19603.2.2-2022.12-ABDGCSILM-19593.2.2-2022.12-ABDGCSHILM-19583.2.2-2022.12-19642022.11Collibra Data Quality & Observability2022.11-LM-17392022.11-ABDGCSILM-17382022.11-ABDGCSHILM-17372022.11-1736Spark3.2.2-2022.11-LM-17393.2.2-2022.11-ABDGCSILM-17383.2.2-2022.11-ABDGCSHILM-17373.2.2-2022.11-17362022.10Collibra Data Quality & Observability2022.10-ADGCSILM-15682022.10-ABDGCSILM-15692022.10-ABDGCSHILM-15702022.10-1572Spark3.2.2-2022.10-ADGCSILM-15683.2.2-2022.10-ABDGCSILM-15693.2.2-2022.10-ABDGCSHILM-15703.2.2-2022.10-15722022.09Collibra Data Quality & Observability2022.09-ADGCSILM-13862022.09-ABDGCSILM-13872022.09-ABDGCSHILM-13882022.09-1390Spark3.2.2-2022.09-ADGCSILM-13863.2.2-2022.09-ABDGCSILM-13873.2.2-2022.09-ABDGCSHILM-13883.2.2-2022.09-13902022.08Collibra Data Quality & Observability2022.08-L-11322022.08-AHM-11332022.08-H-11342022.08-HM-11352022.08-D-11362022.08-AL-11372022.08-AD-11382022.08-ABGCSHMS-11392022.08-AGCSHLM-11402022.08-M-11412022.08-GCSL-11422022.08-ADH-1143Spark3.2.0-2022.08-L-11323.2.0-2022.08-AHM-11333.2.0-2022.08-H-11343.2.0-2022.08-HM-11353.2.0-2022.08-D-11363.2.0-2022.08-AL-11373.2.0-2022.08-AD-11383.2.0-2022.08-ABGCSHMS-11393.2.0-2022.08-AGCSHLM-11403.2.0-2022.08-M-11413.2.0-2022.08-GCSL-11423.2.0-2022.08-ADH-11432022.07Collibra Data Quality & Observability2022.07-L-9392022.07-AHM-9402022.07-H-9412022.07-HM-9422022.07-D-9432022.07-AL-9442022.07-AD-9452022.07-ABGCSHMS-9472022.07-M-946Spark3.2.0-2022.07-L-9393.2.0-2022.07-AHM-9403.2.0-2022.07-H-9463.2.0-2022.07-HM-9423.2.0-2022.07-D-9433.2.0-2022.07-AL-9443.2.0-2022.07-AD-9453.2.0-2022.07-ABGCSHMS-9473.2.0-2022.07-M-9462022.06Collibra Data Quality & Observability2022.06-L-8192022.06-AHM-8202022.06-H-8212022.06-HM-8222022.06-D-8232022.06-AL-8242022.06-AD-8252022.06-ABGCSHMS-8262022.06-M-830Spark3.2.0-2022.06-L-8193.2.0-2022.06-AHM-8203.2.0-2022.06-H-8213.2.0-2022.06-HM-8223.2.0-2022.06-D-8233.2.0-2022.06-AL-8243.2.0-2022.06-AD-8253.2.0-2022.06-ABGCSHMS-8263.2.0-2022.06-M-8302022.05Collibra Data Quality & Observability2022.05-L-7142022.05-AL-7152022.05-H-7162022.05-AHM-7172022.05-ABGCSHMS-7192022.05-D-7212022.05-AD-7232022.05-BDG-7512022.05.2-L-7372022.05.2-AHM-7382022.05.2-HM-7392022.05.2-H-740Spark3.2.0-2022.05-L-7143.2.0-2022.05-AL-7153.2.0-2022.05-H-7163.2.0-2022.05-AHM-7173.2.0-2022.05-ABGCSHMS-7193.2.0-2022.05-D-7213.2.0-2022.05-AD-7233.2.0-2022.05-BDG-7513.2.0-2022.05.2-L-7373.2.0-2022.05.2-AHM-7383.2.0-2022.05.2-HM-7393.2.0-2022.05.2-H-7402022.04Collibra Data Quality & Observability2022.04-L-3032022.04-AL-3022022.04-2962022.04-A-2952022.04-ALL-294 22022.04-ABHGCSGCRS-291Spark3.2.0-2022.04-L-3033.2.0-2022.04-AL-3023.2.0-2022.04-2963.2.0-2022.04-A-2953.2.0-2022.04-ALL-2943.2.0-2022.04-ABHGCSGCRS-291The default build is considered the Secure Build with no optional drivers included and no critical vulnerabilities.Config Map ExampleThese are the configs to change the versions. For a complete list of versions for Collibra DQ and Spark, refer to the Available Containers section above.--set global.version.owl=2022.05-720 --set global.version.spark=3.2.0-2022.05-720 Pull Examplesdocker pull https://gcr.io/owl-hadoop-cdh/owl-agent:2022.05-L-714docker pull https://gcr.io/owl-hadoop-cdh/owl-livy:3.2.0-2022.05-L-714docker pull https://gcr.io/owl-hadoop-cdh/owl-web:2022.05-L-714docker pull https://gcr.io/owl-hadoop-cdh/spark:3.2.0-2022.05-L-714DescriptionExample: 2022.05-L-7142022-05: Release number (Year and Month) L: Optional Livy package included 714 - A unique number appended to each buildDefault DriversAlways PackagedSQL ServerOracleSnowflakeRedshiftS3ADLSPostgresMysqlTeredataSybaseDb2DremioOptional DriversPlease select driversABGCSHLMS (Drivers Initial in alphabetical order): A : AthenaB : BigQueryD = DatabricksGCS : Google Cloud Storage ConnectorH : HiveL : LivyM : MongoDBS : Solr
	 APIsRestPlease see the REST APIs section for more details.import requestsimport json # Variablesowl = 'https://<ip_address>' #Edit user = '<user>' #Edit password = '<password>' #Edit tenant = 'public' #Edit dataset = '<your_dataset_name>' #Edit runDate = '2021-08-08' #Edit agentName = 'your_agent_name' #Edit # Authenticateurl = owl+'/auth/signin'payload = json.dumps({username: user, password: password, iss: tenant })headers = {'Content-Type': 'application/json'}response = requests.request(POST, url, headers=headers, data=payload, verify=False)owl_header = {'Authorization': 'Bearer ' + response.json()['token']} # Runresponse = requests.post(url = owl + '/v3/jobs/run?agentName='+agentName+'&dataset='+dataset+'&runDate='+runDate, headers=owl_header, verify=False)jobId = str(response.json()['jobId']) # Waittime.sleep(100) # Resultsresponse = requests.get(url = owl + '/v3/jobs/'+jobId+'/findings', headers=owl_header, verify=False) NotebookPlease see the Databricks example for more informationval dataset = cdq_notebookvar date = 2018-01-11 // Optionsval opt = new OwlOptions()opt.dataset = datasetopt.runId = dateopt.host = pgHostopt.port = pgPortopt.pgUser = pgUseropt.pgPassword = pgPass // Pre Routine val cdq = com.owl.core.util.OwlUtils.OwlContext(df, opt).register(opt) // Scancdq.owlCheck()val results = cdq.hoot()
	 Collibra DQ InstallationStandaloneWhen large scale and high concurrency checks are not required, DQ can be installed and operated entirely on a single host. In this mode, DQ will leverage a Spark Standalone pseudo cluster where the master and workers run and use resources from the same server. DQ also requires a Postgres database for storage and Java 8 for running the DQ web application. It is possible to install each of the Spark, Postgres, and Java 8 components separately and install DQ on top of existing components. However, we offer a full installation package that installs these components in off-line mode and install DQ in one server.Standalone Install1. Setup Tutorial AssumptionsWe assume that a server running Centos 7 or RHEL 7 is set up and ready to install Collibra DQ in the home directory (base path: OWL_BASE) under the subdirectory owl(install path: $OWL_BASE/owl). There is no requirement for Collibra DQ to be installed in the home directory, but the DQ Full Installation script may lead to permission-denied issues during local Postgres server installation if paths other than the home directory are used. If these issues occur, please adjust your directory permission to allow the installation script a write access to the Postgres data folder.This tutorial assumes that you are installing Collibra DQ on a brand new compute instance on Google Cloud Platform. Google Cloud SDK setup with proper user permission is assumed. This is optional, as you are free to create Full Standalone Installation setup on any cloud service provider or on-premise.Please refer to the GOAL section for the intended outcome of each step and modify accordingly.The full install package supports Centos 7 and RHEL 7. If another OS flavor is required, please follow the basic install process.# Create new GCP Compute Instance named installgcloud compute instances create install \ --image=centos-7-v20210701 \ --image-project=centos-cloud \ --machine-type=e2-standard-4 # SSH into the instance as user centosgcloud compute ssh --zone us-central1-a --project gcp-example-project centos@full-standalone-installationGOALCreate a new compute instance on a cloud provider (if applicable).Access the server where DQ will be installed. 2. Download DQ Full PackageDownload full package tarball using the signed link to the full package tarball provided by the DQ Team. Replace <signed-link-to-full-package> with the link provided.### Go to the OWL_BASE (home directory of the user is most common)### This example uses /home/owldq installing as the user owldq cd /home/owldq ### Download & untarcurl -o dq-full-package.tar.gz <signed-link-to-full-package>tar -xvf dq-full-package.tar.gz ### Clean-up unnecessary tarball (optional)rm dq-full-package.tar.gzGOALDownload the full package tarball and place it in the $OWL_BASE (home directory). Download via curl or upload directly via FTP. The tarball name is assumed to be dq-full-package.tar.gzfor the sake of simplicity.Untardq-full-package.tar.gz to OWL_BASE.3. Install DQ + Postgres + SparkFirst set some variables for OWL_BASE (where to install DQ. In this tutorial, you are already in the directory that you want to install), OWL_METASTORE_USER (the Postgres username used by DQ Web Application to access Postgres storage), and OWL_METASTORE_PASS (the Postgres password used by DQ Web Application to access Postgres storage).### base path that you want owl installed. No trailing export OWL_BASE=$(pwd)export OWL_METASTORE_USER=postgres# minimum complexity recommended (18 length, upper, lower, number, symbol)# example belowexport OWL_METASTORE_PASS=H55Mt5EbXh1a%$aiX6dq-package-full.tar.gz that you untarred contains installation packages for Java 8 or Java 11, Postgres 11, and Spark. There is no need to download these components. These off-line installation components are located in $(pwd)/package/install-packages .One of the files extracted from the tarball is setup.sh. This script installs DQ and the required components. If a component already exist (for example, Java 8 is already installed and $JAVA_HOME is set), then that component is not installed (i.e. Java 8 installation is skipped).To control which components are installed, use the -options=...parameter. The argument provided should be a comma-delimited list of components to install (valid inputs: spark, postgres, owlweb, and owlagent. -options=postgres,spark,owlweb,owlagent means install Postgres, Spark pseudo cluster, Owl Web Application, and Owl Agent. Note that Java is not part of the options. Java 8 or Java 11 installation is automatically checked and installed/skipped depending on availability.At a minimum, you must specify -options=spark,owlweb,owlagent if you independently installed Postgres or use an external Postgres connection (as shown in Step #3, if you choose that installation route).### The following installs PostgresDB locally as part of Collibra DQ install ./setup.sh \ -owlbase=$OWL_BASE \ -user=$OWL_METASTORE_USER \ -pgpassword=$OWL_METASTORE_PASS \ -options=postgres,spark,owlweb,owlagentIf you are prompted to install Java 8 or Java 11 because you do not have one of them installed, accept to install from a local package.You are prompted to select a location to install Postgres, as shown below:Postgres DB needs to be intialized. Default location = <OWL_BASE>/postgres/datato change path please enter a FULL valid path for Postgres and hit <enter>DB Path [<OWL_BASE>/owl/postgres/data] = If the data files for the Postgres database need to be hosted at a specific location, provide it during this prompt. Ensure the directory is writable. Otherwise, press <Enter> to install the data files into $OWL_BASE/owl/postgres/data. The default suggested path does not have permission issues if you use OWL_BASE as the home directory.If no exceptions occur and the installation is successful, then the process completes with the following output:installing owlwebstarting owlwebstarting owl-webinstalling agentnot starting agentinstall completeplease use owl owlmanage utility to configure license key and start owl-agent after owl-web successfully starts upGOALSpecify OWL_BASE path where DQ will be installed and specify Postgres environment variables.Install DQ Web with Postgres and Spark linked to DQ Agent (all files are in the $OWL_BASE/owl sub-directory) using setup.sh script provided. The location of OWL_BASE and Postgres are configurable, but we advise you take the defaults.4. Install DQ + Spark and use existing Postgres (advanced) Skip Step 3 if you opted to install Postgres and performed Step 2 instead.We recommend Step 3 over Step 2 for advanced DQ Installer.If you already installed DQ in the previous step, then skip this step. This is only for those who want to use external Postgres (e.g. use GCP Cloud SQL service as the Postgres metadata storage). If you have an existing Postgres installation, then everything in the previous step applies except the Postgres data path prompt and the setup.sh command.Refer to Step 2 for details on OWL_BASE, OWL_METASTORE_USER , and OWL_METASTORE_PASS.# The base path that you want Collibra DQ installed. No trailing export OWL_BASE=$(pwd)export OWL_METASTORE_USER=postgres # minimum complexity recommended (18 length, upper, lower, number, symbol)# example belowexport OWL_METASTORE_PASS=H55Mt5EbXh1a%$aiX6Run the following installation script. Note the missing Postgres in -options and new parameter -pgserver. This -pgserver could point to any URL that the standalone instance has access to.# The following does not install PostgresDB and # uses existing PostgresDB server located in localhost:5432 with postgres database./setup.sh \ -owlbase=$OWL_BASE \ -user=$OWL_METASTORE_USER \ -pgpassword=$OWL_METASTORE_PASS \ -options=spark,owlweb,owlagent \ -pgserver=localhost:5432/postgresThe database named postgres is used as the default DQ metadata storage. Changing this database name is out-of-scope for Full Standalone Installation. Contact the DQ team for assistance. GOALSpecify OWL_BASE path where DQ will be installed and specify Postgres environment variablesInstall DQ Web and Spark linked to DQ Agent (all files will be in $OWL_BASE/owl sub-directory) using setup.sh script provided and link DQ Web to an existing Postgres server.5. Verify DQ and Spark InstallationThe installation process will start the DQ Web Application. This process initializes the Postgres metadata storage schema in Postgres under the database named postgres. This process must complete successfully before the DQ Agent can be started. Wait approximately 1 minute for the Postgres metadata storage schema to be populated. If you can access DQ Web using <url-to-dq-web>:9000 using a Web browser, then this means you have successfully installed DQ.Next, verify that the Spark Cluster has started and is available to run DQ checks using <url-to-dq-web>:8080. Take note of the Spark Master URL starting with spark://.... This is required during DQ Agent configuration.6. Set License KeyIn order for DQ to run checks on data, the DQ Agent must be configured with a license key. Replace <license-key> with a valid license key provided by Collibra.Your license key is the value following YOUR KEY IS = in the license provision email.cd $OWL_BASE/owl/bin./owlmanage.sh setlic=<license-key> # expected output:# > License Accepted new date: <expiration-date>7. Set License NameIt is required that you set a license name upon your initial deployment of Collibra DQ.Replace <your-license-name> with a valid license name provided by Collibra.Your license name is the value following YOUR NAME IS = in the license provision email.vi /<install-dir>/owl/config/owl-env.shexport LICENSE_NAME=<your-license-name>8. Set DQ Agent ConfigurationStart the DQ Agent process to enable processing of DQ checks.# 1 Start the agent to create the agent.properties file.cd $OWL_BASE/owl/bin./owlmanage.sh start=owlagent # 2 Stop the agent and add this line to agent.properties:./owlmanage.sh stop=owlagent # 3 Add this
line to agent.properties:sparksubmitmode=nativesparkhome=</your/spark/home/folder> # 4 Start the agent again../owlmanage.sh start=owlagent # 5 Verify that agent.properties contains the correct details.cd $OWL_BASE/owl/configcat $OWL_BASE/owl/config/agent.propertiesWhen the script successfully runs, the $OWL_BASE/owl/config folder contains a file called agent.properties. This file contains agent ID and the number of agents installed in your machine. Since this is the first non-default agent installed, the expected agent ID is 2. Verify that the agent.properties file is created. Youragent.properties is expected to have a different timestamp, but you should see agentid=2.cd $OWL_BASE/owl/configcat agent.properties # expected output:> #Tue Jul 13 22:26:19 UTC 2021> agentid=2Once the DQ Agent starts, it needs to be configured in DQ Web in order to successfully submit jobs to the local Spark (pseudo) cluster.The new agent is set up with the template base path /opt and install path /opt/owl. The owlmanage.sh start=owlagent script does not respect OWL_BASE environment. You must edit the Agent Configuration to follow the OWL_BASE.Follow the steps in the Agent section to configure the newly created DQ Agent and edit the following parameters in DQ Agent #2.Replace all occurrence of /opt/owl with your $OWL_BASE/owl/in Base Path, Collibra DQ Core JAR, Collibra DQ Core Logs, Collibra DQ Script, and Collibra DQ Web Logs. Note that Base Path here does not refer to OWL_BASEReplace Default Master value with the Spark URL from Fig 3Replace Number of Executors(s), Executor Memory (GB), Driver Memory (GB) to a reasonable default based on the size of your instance.Refer to the Agent section for descriptions of the parameters.Specify the Number of Core(s).To limit Spark cores from being used for each job, a common configuration for the Free Form (Appended) field is -conf spark.cores.max=8.Set the Default Deployment Mode option to Clientfor a Spark Standalone master.8. Create DB Connection for DQ JobFollow the steps on Agent to add metastore database connection. In the following examples, a DQ Job is run against local DQ Metadata Storage.Follow the steps on Agentsection to configure newly created DQ Agent.Click the compass icon in the navigation pane to open the Explorer page. Click the metastore connection, select the public schema, and select the first table in the resulting list of tables. From the Preview and Scope page, click Build Model. When the Profile page populates, click Save/Run.On the Run page, click Estimate Job, acknowledge the resource recommendations, and click Run.Click the revolving arrows icon in the left navigation panel to open the Jobs page. Wait 10 seconds and then click the refresh button above the Status column until the status shows that the DQ job is Finished. We recommend refreshing several times, pausing for a few seconds in between clicks. While a job runs, the Activity column tracks the sequence of activities DQ performs before it completes a job. A successful job shows its status as Finished last. Troubleshooting + Helpful Commands### Setting permissions on your pem file for ssh access chmod 400 ~/Downloads/ssh_pem_keyMake sure working directory has permissionsFor example, if I SSH into the machine with user owldq and use my default home directory location /home/owldq/### Ensure appropriate permissions ### drwxr-xr-x chmod -R 755 /home/owldqReinstall Postgres### Postgres data directly initialization failed ### Postgres permission denied errors### sed: can't read /home/owldq/owl/postgres/data/postgresql.conf: Permission denied sudo rm -rf /home/owldq/owl/postgreschmod -R 755 /home/owldq ### Reinstall just postgres./setup.sh -owlbase=$OWL_BASE -user=$OWL_METASTORE_USER -pgpassword=$OWL_METASTORE_PASS -options=postgresChanging Postgres password from SSH### If you need to update your postgres password, you can leverage SSH into the VM### Connect to your hosted instance of Postgres sudo -i -u postgrespsql -U postgres\password#Enter new password: ### Enter Strong Password#Enter it again: ### Re-enter Strong Password\qexitPermissions for ssh keys when starting Spark### Spark standalone permission denied after using ./start-all.sh ssh-keygen -t rsa -N -f ~/.ssh/id_rsacat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keysPermissions if log files are not writable### Changing permissiongs on individual log files sudo chmod 777 /home/owldq/owl/pids/owl-agent.pidsudo chmod 777 /home/owldq/owl/pids/owl-web.pidGetting the hostname of the instance### Getting the hostname of the instance hostname -fChecking/deleting space of spark worker directory### Checking worker nodes disk space sudo du -ah | sort -hr | head -5sudo find /home/owldq/owl/spark/work/* -mtime +1 -type f -deleteIncrease Thread pool / Thread Pool ExhaustedAdding to the owl-env.sh script# vi owl-env.sh# modify these lines export SPRING_DATASOURCE_POOL_MAX_WAIT=500export SPRING_DATASOURCE_POOL_MAX_SIZE=30export SPRING_DATASOURCE_POOL_INITIAL_SIZE=5 # restart web and agentAdding to the Spark agent configurationsIf you see the following message, update the agent configurations within load-spark-env.sh:Failed to obtain JDBC Connection; nested exception is org.apache.tomcat.jdbc.pool.PoolExhaustedException: [pool-29-thread-2] Timeout: Pool empty. Unable to fetch a connection in 0 seconds, none available[size:2; busy:1; idle:0; lastwait:200].Adjust the following configurations to modify the connection pool available:export SPRING_DATASOURCE_POOL_MAX_WAIT=1000export SPRING_DATASOURCE_POOL_MAX_SIZE=30export SPRING_DATASOURCE_POOL_INITIAL_SIZE=5The load-spark-env.sh file is located in the $SPARK_HOME/bin folder.Adding to the owl.properties fileDepending on client vs. cluster mode and cluster type, you may also need to add the following configurations in the owl.properties file:spring.datasource.tomcat.initial-size=5spring.datasource.tomcat.max-active=30spring.datasource.tomcat.max-wait=1000Active Database Queriesselect * from pg_stat_activity where state='active'Too many open files configuration### Too many open files error message### check and modify that limits.conf file ### Do this on the machine where the agent is running for Spark standalone version ulimit -Ha cat /etc/security/limits.conf ### Edit the limits.conf filesudo vi /etc/security/limits.conf ### Increase the limit for example ### Add these 3 lines fs.file-max=500000* soft nofile 58192* hard nofile 100000### do not comment out the 3 lines (no '#'s in the 3 lines above)Redirecting Spark Scratch### Redirect Spark scratch to another locationSPARK_LOCAL_DIRS=/mnt/disks/sdb/tmp ### Set Spark to delete older filesexport SPARK_WORKER_OPTS=${SPARK_WORKER_OPTS} -Dspark.worker.cleanup.enabled=true -Dspark.worker.cleanup.interval=1800 -Dspark.worker.cleanup.appDataTtl=3600Or change Spark storage with an agent configuration -conf spark.local.dir=/home/owldq/owl/owltmpTip: Add Spark Home Environment Variables to Profile### Adding ENV variables to bash profile ### Variable 'owldq' below should be updated wherever installed e.g. centos vi ~/.bash_profileexport SPARK_HOME=/home/owldq/owl/sparkexport PATH=$SPARK_HOME/bin:$PATH ### Add to owl-env.sh for standalone install vi /home/owldq/owl/config/owl-env.sh export SPARK_HOME=/home/owldq/owl/sparkexport PATH=$SPARK_HOME/bin:$PATHCheck Processes are Running### Checking PIDS for different components ps -aef|grep postgresps -aef|grep owl-webps -aef|grep owl-agentps -aef|grep sparkStarting Components### Restart different components cd /home/owldq/owl/bin/./owlmanage.sh start=postgres./owlmanage.sh start=owlagent./owlmanage.sh start=owlweb cd /home/owldq/owl/spark/sbin/./stop-all.sh./start-all.shConfiguration OptionsSetup.sh arguments ArgumentDescription-non-interactiveSkips asking to accept Java license agreement.-skipSparkSkips the extraction of Spark components.-stopDo not automatically start all components (Owl-Web, Zeppelin, Postgres).-port=Set DQ Web application to use the defined port.-user=Optional parameter to set the user to run Collibra DQ. The default is the current user.-owlbase=Sets the base path to where you want Collibra DQinstalled.-owlpackage=Optional parameter to set the Collibra DQ package directory. The default is the current working directory.-helpDisplay this help and exit.-options=The different Collibra DQ components to install in a comma-separated list format. For example, -options=owlagent,owlweb,postgres,spark-pgpassword=The password used to set for the Postgres metastore. For unattended installs.-pgserver=The name of the Postgres server. For example, -pgserver=owl-postgres-host.example.com:5432/owldb. For unattended installs.Example: ./setup.sh -port=9000 -user=ec2-user -owlbase=/home/ec2-user -owlpackage=/home/ec2-user/packagesThe tar ball extracted to this folder on my EC2 Instance: **** /home/ec2-user/packages/Collibra DQ is running as the **** ec2-userThe DQ Web application runs on port 9000The base location for the setup.sh script to create the will be: /home/ec2-user/Example installing just the agent (perhaps on an Edge node of a hadoop cluster):./setup.sh -user=ec2-user -owlbase=/home/ec2-user -owlpackage=/home/ec2-user/package -options=owlagentThe package extracted to this folder on my EC2 Instance: **** /home/ec2-user/packages/Owl-agent is running as the **** ec2-userThe base location for the setup.sh script to create the Collibra DQ folder and place all packages under Collibra DQ is: /home/ec2-user/When installing different features, the following questions are asked:postgres = Postgres DBPassword needs to be supplied.If postgres is not being installed (such as agent install only) postgres metastore server name needs to be supplied.Launching and Administering Collibra DQ When the setup.sh script finishes by default software is automatically started. The setup.sh also creates the owlmanage.sh script which allows for stopping and starting of all owl services or some components of services. The setup script will also
generate an owl-env.sh script that will hold the main variables that are reused across components (see owl-env.sh under the config directory).Collibra DQ Directory Structure after running Setup.sh Configuration of ENV settings within owl-env.sh Contents of the Owl-env.sh script and what the script is used for.Owl-env.sh ScriptsDescriptionexport SPARK_CONF_DIR=/home/collibra/owl/cdh-spark-confThe directory on your machine where the Spark conf directory resides.export INSTALL_PATH=/home/collibra/owlThe installation directory of Collibra DQ.export JAVA_HOME=/home/collibra/jdk1.8.0_131Java Home for Collibra DQ to leverage.export LOG_PATH=/home/collibra/owl/logThe log path.export BASE_PATH=/home/collibraThe base location under which the Collibra DQ directory resides.export SPARK_MAJOR_VERSION=2Spark Major version. Collibra DQ only supports 2+ version of Spark.export OWL_LIBS=/home/collibra/owl/libsLib Directory to inject in spark-submit jobs.export USE_LIBS=0 Use the lib directory or not. 0 is the default.A value of 0 means the lib directory is not used.A value of 1 means the lib directory is used.export SPARKSUBMITEXE=spark-submitSpark submit executable command. Collibra DQ using spark-submit as an example.export ext_pass_manage=0 If using a password management system. You can enable for password to be pulled from it.A value of 0 disables an external password management system.A value of 1 enables an external password management system.export ext_pass_script=/opt/owl/bin/getpassword.shLeverage password script to execute a get password script from the vault.TIMEOUT=900 #15 minutes in secondsOwl-Web user time out limits.PORT=9003 #owl-web port NUMBERThe default port to use for owl-web.SPRING_LOG_LEVEL=ERRORThe logging level to be displayed in the owl-web.logSPRING_DATASOURCE_DRIVER_CLASS_NAME=org.postgresql.DriverThe driver class name for postgres metastore (used by web).export SPRING_DATASOURCE_URL=jdbc:postgresql://localhost:5432/postgresJDBC connection string to Collibra DQ Postgres metastore.export SPRING_DATASOURCE_USERNAME=collibraCollibra DQ Postgres username.export SPRING_DATASOURCE_PASSWORD=3+017wfY1l1vmsvGYAyUcw5zGLCollibra DQPostgres password.export AUTOCLEAN=TRUE/FALSETRUE/FALSE Enable/Disable automatically delete old datasets.export DATASETS_PER_ROW=200000Delete datasets after this threshold is hit (must be greater than the default to change).export ROW_COUNT_THRESHOLD=300000Delete rows after this threshold is hit (must be greater than the default to change).export SERVER_HTTP_ENABLED=trueEnabling HTTP to owl webexport OWL_ENC=OFF #JAVA for java encryptionEnable Encryption (NOTE need to add to owl.properties also). Has to be in form owl.enc=OFF within owl.properties file to disable, and in this form owl.enc=JAVA to enable. the owl.properties file is located in the owl install path /config folder (/opt/owl/config).PGDBPATH=/home/collibra/owl/owl-postgres/bin/dataPath for Postgres DBexport RUNS_THRESHOLD=5000Delete runs after this threshold is hit (must be greater than the default to change).export HTTP_SECONDARY_PORT=9001Secondary HTTP port to use which is useful when SSL is enabled.export SERVER_PORT=9000Same as PORT.export SERVER_HTTPS_ENABLED=trueEnabling of SSL.export SERVER_SSL_KEY_TYPE=PKCS12Certificate trust store.export SERVER_SSL_KEY_PASS=t2lMFWEHsQha3QaWnNaR8ALaFPH15Mh9Certificate key password.export SERVER_SSL_KEY_ALIAS=owlCertificate key alias.export SERVER_REQUIRE_SSL=trueOverride HTTP on and force HTTPS regardless of HTTP settings.export MULTITENANTMODE=FALSEFlipping to TRUE will enable multi tenant support.export multiTenantSchemaHub=owlhubSchema name used for multi tenancy.export OWL_SPARKLOG_ENABLE=falseEnabling deeper spark logs when toggled to true.export LDAP_GROUP_RESULT_DN_ATTRIBUTEThe attribute to the full path of the group object, for example, CN=OwlAppAdmin,OU=OwlGroups,OU=Groups,DC=owl, DC=com.Default is distinguishedname.export LDAP_GROUP_RESULT_NAME_ATTRIBUTEThe attribute to the simple name of the group, for example, OwlAppAdmin.Default is CN.export LDAP_GROUP_RESULT_CONTAINER_BASEProperty used in the scenario where the LDAP_GROUP_RESULT_DN_ATTRIBUTE does not return a value. In this case, the LDAP_GROUP_RESULT_NAME_ATTRIBUTE prepends to this value, which creates a fully qualified LDAP path. For example, OU=OwlGroups,OU=Groups,DC=owl,DC=com. Default is <null>.Configuration of owl.properties file ExampleDescriptionkey=XXXXXXThe license key.spring.datasource.url=jdbc:postgresql://localhost:5432/postgresThe connection string to the Collibra DQ metastore (used by owl-core).spring.datasource.password=xxxxxxThe password to the Collibra DQ metastore (used by owl-core).spring.datasource.username=xxxxxxThe username to the Collibra DQ metastore (used by owl-core).spring.datasource.driver-class-name=com.owl.org.postgresql.DriverShaded Postgres driver class name.spring.agent.datasource.urljdbc:postgresql://$host:$port/owltrunkspring.agent.datasource.username{user}spring.agent.datasource.passwords{password}spring.agent.datasource.driver-class-nameorg.postgresql.DriverStarting SparkSpark Standalone Mode - Spark 3.2.0 DocumentationLaunch ScriptsTo launch a Spark standalone cluster with the launch scripts, you should create a file called conf/workers in your Spark directory, which must contain the hostnames of all the machines where you intend to start Spark workers, one per line. If conf/workers does not exist, the launch scripts defaults to a single machine (localhost), which is useful for testing. Note, the master machine accesses each of the worker machines via ssh. By default, ssh is run in parallel and requires password-less (using a private key) access to be setup. If you do not have a password-less setup, you can set the environment variable SPARK_SSH_FOREGROUND and serially provide a password for each worker.Once you’ve set up this file, you can launch or stop your cluster with the following shell scripts, based on Hadoop’s deploy scripts, and available in SPARK_HOME/sbin:Shell ScriptDescriptionsbin/start-master.shStarts a master instance on the machine the script is executed on.sbin/start-workers.shStarts a worker instance on each machine specified in the conf/workers file.sbin/start-worker.shStarts a worker instance on the machine the script is executed on.sbin/start-all.shStarts both a master and a number of workers as described above.sbin/stop-master.shStops the master that was started via the sbin/start-master.sh script.sbin/stop-worker.shStops all worker instances on the machine the script is executed on.sbin/stop-workers.shStops all worker instances on the machines specified in the conf/workers file.sbin/stop-all.shStops both the master and the workers as described above. These scripts must be executed on the machine you want to run the Spark master on, not your local machine.### Starting Spark Standalone cd /home/owldq/owl/spark/sbin./start-all.sh ### Stopping Spark cd /home/owldq/owl/spark/sbin./stop-all.sh### Starting Spark with Separate Workers SPARK_WORKER_OPTS= -Dspark.worker.cleanup.enabled=true -Dspark.worker.cleanup.interval=1799 -Dspark.worker.cleanup.appDataTtl=3600 ### 1 start master/home/owldq/owl/spark/sbin/start-master.sh ### 2 start workers SPARK_WORKER_INSTANCES=3;/home/owldq/owl/spark/sbin/start-slave.sh spark://$(hostname):7077 -c 5 -m 20gStandalone Install (Script)RequirementsResourceNotesProvided byOSRed Hat 7 or Centos 7CustomerMemory16 GB Ram Cores8 Storage50 GB Disk Permissionsudo Install ScriptDownload using the curl command belowCollibraAccess the machine through either a cloud shell or SSH. The snippet below is an example SSH command.ssh -i <your_key> <user>@<public-ipv4-ip-address> ssh -i ~/.ssh/abc.pem centos@22.000.111.3333Your pem file should have correct permissions. Confirm you have the correct permissions with the command: sudo chmod 400 <your_key>StepsAfter you enter your SSH into the Centos or Redhat VM, run these commands from the command line:Step 1: Download the scriptcurl -o cdq_install.sh https://owl-packages.s3.amazonaws.com/MP/cdq_install.shStep 2: Modify script permissionsudo chmod +x cdq_install.sh Step 3: Run the scriptecho | ./cdq_install.shThe most common directory to use for installation is your user directory (/home/<user>). You do not need to create any directories because the install script creates the correct directory structure. You should have sudo access to perform the installation and the directory should not be a restricted system directory.In this step, you are prompted to enter a default admin user email and password associated with the default admin user account.The password must adhere to the following password policy:A minimum of 8 characters.A maximum of 72 characters.At least one upper-case character.At least one numeric character.At least one supported special character (!@#%$^&*?_~).Cannot contain the user ID (admin).As part of Collibra's password policy, you cannot proceed with installation until you enter a valid password.Step 4: Click the URLSign in to the application with the username admin and the default admin password you provided in the setup script.http://<server_name/ip>:9000Make sure you have access to the server and port. Adding the correct security group or whitelisting your IP address is a common step to be able to access an application running on a cloud server.BYOL (Optional)Using the same command, you can bring your own license or use a different download link../cdq_install.sh <Installer Download Link> <License Key>Confirmation (Optional)Once the installation script is complete, check the details of the processes on the server.ps -ef | grep -i spark ps -ef | grep -i owl-webps -ef | grep -i owl-agentps -ef | grep -i postgresWhen all of the processes are up and running, sign in to your standalone instance of Collibra Data Quality & Observability.Configure your Agent and Adding Connections as normal.TroubleshootingCommon error messagesIf you receive an error with the message, Application already
running on port 8080, enter the following command:sudo netstat -plten |grep javaYou can then use a kill command to kill the process.kill -9 <appId>If you receive a permission denied error message, make sure that you are using sudo. Getting Started with AWSPrerequisitesTo get started, you need a Collibra Data Quality account.Connecting to Collibra Data QualityTo connect to your environment, enter your URL. Example: https://<your_host_name>:9000 2. Enter admin as your Username and your unique Instance ID as your Password.Username: admin Password: CDQ<your_instance_id>3. From the home page, click the Explorer tab.4. From Explorer, select a connection from the Connections dropdown to access your data set.What's next?Visit the Explorer (no-code) for more information on quickly connecting to your data sets.Visit Collibra Data Quality's Youtube channel for more tutorials.Register for Collibra Data Quality's Product Showcase to learn more about Collibra Data Quality.Standalone Install (AWS CloudFormation)This section describes how to install and configure Collibra Data Quality using the AWS CloudFormation stack.PrerequisitesTo install Collibra Data Quality using the AWS CloudFormation stack, you need an AWS user account with permissions to provision AWS resources.Steps1. Login to your AWS account and navigate to CloudFormation from the search bar.2. In CloudFormation, click the Create stack button and provide the S3 location for the template.https://owl-packages.s3.amazonaws.com/MP/CDQ_AWSCF_TEMPLATE_RHEL.YAML3. Click Next.4. Follow the prompts and select the appropriate instance type, VPC, subnet, and key values based on your AWS account. Rest accepts everything by default.5. Click Next.This process takes 10-15 minutes to spin up the EC2 instance and deploy Collibra DQ. 6. In the Events tab, you can monitor status of your stack.7. Once your stack is created, click the Outputs tab to access the CDQ Login URL.8. In the Value column, click the CDQ Login URL.Your CDQ instance comes with sample data and prewired DB connections.9. To uninstall and release the resource, delete the stack.Standalone Install (Google Cloud Platform)This section provides information on how to deploy Collibra Data Quality on Google Cloud Platform. PrerequisitesYou have: A Google user account.A project for Google Cloud Platform to deploy Collibra Data Quality.Deployment Manager permissions provisioned by an admin.StepsStep 1: Create a new Collibra Data Quality deploymentStep 2: Launch a new Collibra Data Quality deploymentStep 1: Create a new Collibra Data Quality deploymentSign in to your Google Cloud Marketplace account and choose your working project for Collibra Data Quality deployment.In the search bar, search for Collibra and press enter.>> The search results appear.Select Collibra CDQ.>> The Collibra CDQ product page opens.Select Launch.>> The New Collibra CDQ deployment page opens.On the New Collibra CDQ deployment page, specify the following information:FieldDescriptionDeployment nameThe name of your Collibra Data Quality deployment.ZoneSelect the zone closest to your region.SeriesThe default is E2.Machine typeThe default is e2-standard-16 (16 vCPU, 64 GB memory).Boot disk typeThe default is Standard Persistent Disk.Boot disk size in GBThe default is 100.6. Read and accept the Terms of Service.7. Select Deploy. >> The Deployment Manager page opens. GCP also sends you a confirmation email containing a direct link to the Deployment Manager Page.Step 2: Launch a new Collibra Data Quality deploymentFrom the Deployment Manager, select the site address to sign in to your Collibra Data Quality instance.2. Sign in to your instance using the following one-time username and password: admin / admin123 >> The Collibra Data Quality landing page opens.You must change your password after successfully signing in for the first time. Select the avatar in the upper right of your screen and select the Change Password tab and follow the prompts to change your password. Troubleshooting your deploymentAfter a successful deployment of Collibra Data Quality on GCP, it is possible that you receive an error message when you select your site address. If this happens, you can:Check your network access and verify that you have the appropriate network tags.Check that the firewall entry is properly defined for your install.Check the URL and remove the s from https. Also remove the second trailing forward slash / after :9000. Correct: http://<your.instance>:9000/Deleting your deploymentTo delete your deployment, go to the Deployment Manager. Select Delete at the top of the screen and then from the dialog box, choose to eitherDelete your deployment and all of its resources.Delete your deployment but keep its resources.When you select a deletion method, your deployment is permanently removed from the list of deployments on the Deployment Manager page.What's next?Visit the Explorer (no-code) for more information on quickly connecting to your data sets.Visit Collibra Data Quality's Youtube channel for more tutorials.Standalone UpgradeBefore proceeding with any upgrades, please remember to backup your DQ Metastore.Please remember that rolling back Collibra DQ to a prior version is not supported. Please contact Collibra Support with any questions. Download DQ Upgrade PackageBeginning December 2021, all Collibra DQ customers upgrading or patching will receive the Full package (vs. the Base package) and should follow the same upgrade steps as below.Download tarball using the signed link to the full package tarball provided by Collibra. Replace <signed-link-to-full-package> with the link provided.### Go to the OWL_BASE (home directory of the user is most common)### This example we will use /home/owldq installing as the user owldq cd /home/owldq ### Download & untarcurl -o dq-full-package.tar.gz <signed-link-to-full-package>tar -xvf dq-full-package.tar.gz ### Clean-up unnecessary tarball (optional)rm dq-full-package.tar.gzUpgrade StepsCopy the contents of the provided package e.g. owl-<newversion>-<SPARK301>-package-full.tar.gz to the system being upgraded (extract contents).Best practice: Untar the contents into a uniquely named folder, for example, 2022-10-dq-upgrade.Stop the Collibra DQ Web process with the following commands:dc /owlhome/owl/bin./owlmanage.sh stop=owlwebStop the Collibra DQ Agent process with the following commands:cd /owlhome/owl/bin./owlmanage.sh stop=owlagentMove the old jars from owl/bin with the following commands:mv owl-webapp-<oldversion>-<spark301>.jar /tmpmv owl-agent-<oldversion>-<spark301>.jar /tmpmv owl-core-<oldversion>-<spark301>.jar /tmpCopy the new jars into the owl/bin folder from the extracted package with the following commands:mv owl-webapp-<newversion>-<spark301>.jar /home/owldq/owl/binmv owl-agent-<newversion>-<spark301>.jar /home/owldq/owl/binmv owl-core-<newversion>-<spark301>.jar /home/owldq/owl/binStart the Collibra DQ Web application with the following command:./owlmanage.sh start=owlwebStart the Collibra DQ Agent with the following command:./owlmanage.sh start=owlagentValidate the number of active services with the following command:ps -ef | grep owlAdditional Notes / Steps Due To Log4J (December 2021)Additional Step 1: Place Log4j-1.2-api-2.17.1.jar (as of 2022.02) into /<install-home>/owl/spark/jars.Was Log4j-1.2-api-2.17.0.jar in 2021.12 and 2022.01.Who: All Collibra DQ customers, particularly those leveraging CLI mode.Navigate to the same folder where the Collibra provided upgrade package was extracted.Navigate to <location of 2022-02-dq-upgrade>/packages/install-packages.Extract the needed log4j-1.2-api-2.17.1.jar via the command:tar -xvf spark-extras.tar.gz spark-extras/log4j-1.2-api-2.17.1.jar.Move the log4j-1.2-api-2.17.1.jar file into /<install-path>/spark/jars folder.FAQQ: (When) do I need to move Log4j-1.2-api-2.17.1.jar before or after swapping the main Collibra DQ jars?A: The sequence does not matter.Q: (What) if I don't follow these additional upgrade steps?A: If your SPARK_SUBMIT_MODE within owl-env.sh is set to SPARK_SUBMIT_MODE=native, Collibra DQ will function properly without the above additional upgrade step, with the exception of CLI mode.Additional Step 2: Remove a legacy properties file.Who: Only Collibra DQ customers upgrading Agents installed on Cloudera CDP Hadoop Edge Nodes.Navigate to /<agenthome>/owl/config/.Remove the log4j-cluster.properties file.FAQQ: (When) do I need to remove log4j-cluster.properties before or after swapping the main Collibra DQ jars?A: Remove the file before restarting owl-agent. Otherwise, stop owl-agent again, remove the file, then restart owl-agent.Q: (What) if I don't follow these additional steps?A:If you use agents on Hadoop edge nodes, you will receive errors when running DQ Jobs as a result of engaging a method that no longer exists.Q: What should I do if I am not a vendor-supported Cloudera CDP version?A: Our testing and guidance mainly applies to vendor-supported (non-EOL) Cloudera CDP versions. Other Hadoop variants may handle logging differently and may require the legacy properties file. In short, feel free to first upgrade without this step, then remove the log4j-cluster.properties file if DQ Jobs are running into issues.Upgrading data source driversWhen new data source drivers are available, they are listed in the Release Notes or recommended to you directly by Collibra. Determine which drivers need to be updated and follow these steps:Confirm with Collibra Support which drivers need to be updated.From the previously extracted tarball provided to you by Collibra, locate the drivers.tar.gz file and extract the contents into a new directory called drivers.Replace the drivers:Replace OWL_BASE/owl/drivers/<old-driver> with the new drivers extracted from the tarball OWL_BASE/owl/drivers/<new-driver>.For example, if you replace an old Databricks driver with a new one, the file path might look like OWL_BASE/owl/drivers/databricks.Standalone SizingSmall Tier - 16 Core,
128G RAM (r5.4xlarge / E16s v3) ComponentRAMCoresWeb2g2Postgres2g2Spark100g10Overhead10g2Medium Tier - 32 Core, 256G RAM (r5.8xlarge / E32s v3) ComponentRAMCoresWeb2g2Postgres2g2Spark250g26Overhead10g2Large Tier - 64 Core, 512G RAM (r5.16xlarge / E64s v3) ComponentRAMCoresWeb4g3Postgres4g3Spark486g54Overhead18g4EstimatesSizing should allow headroom and based on peak concurrency and peak volume requirements. If concurrency is not a requirement, you just need to size for peak volume (largest tables). Best practice to efficiently scan is to scope the job by selecting critical columns. See Performance Tuning for more information.Bytes per CellRowsColumnsGigabytesGigabytes for Spark (3x)161,000,000.00250.41.21610,000,000.002541216100,000,000.002540120161,000,000.00500.82.41610,000,000.005082416100,000,000.005080240161,000,000.001001.64.81610,000,000.001001648161,000,000,000.001001600480016100,000,000.00100160480161,000,000.002003.29.61610,000,000.00200329616100,000,000.00200320960161,000,000,000.0020032009600Cluster If your program requires more horsepower or (spark) workers than the example tiers above which is fairly common in Fortune 500 companies then you should consider the horizontal and ephemeral scale of a cluster. Common examples are Amazon EMR, Cloudera CDP, etc. Collibra DQ is built to scale up horizontally and can scale to hundreds of nodes.HadoopFor large scale processing and concurrency, a single vertically scaled Spark server is not enough. To address large scale processing, DQ has the ability to push compute to an external Hadoop cluster. This page describes the process by which the DQ Agent can be configured to push DQ jobs to Hadoop.Hadoop InstallIn some cases, the required Hadoop client configuration requires the DQ Agent to run on an Hadoop Edge node within the cluster. This can happen because native dependency packages are required, network isolation from subnet that is hosting DQ server, complex security configuration, ect. In these circumstances, simply deploy the DQ Agent on a cluster Edge Node that contains the required configurations and packages. In this setup, the DQ Agent will use the existing Hadoop configuration and packages to run DQ checks on the Hadoop cluster. Hadoop Config SetupHadoop configuration can be incredibly complex. There can be hundreds of knobs across dozens of different components. However, DQ's goal is to simply leverage Hadoop to allocate compute resources in order to execute DQ checks (Spark jobs). This means that the only client side configurations required are:Security protocol definitionYarn Resource Manager endpointsStorage service (HDFS or Cloud storage).Once the Hadoop client configuration is defined, it is only a matter of pointing the DQ Agent at the folder that contains the client configuration files. The DQ Agent is then able to use the Hadoop client configuration to submit jobs to the specified Hadoop cluster.DQ jobs running on Hadoop are Spark jobs. DQ will use the storage platform defined in the fs.defaultFS setting to distribute all of the required Spark libraries and specified dependency packages like drivers files. This allows DQ to use a version of Spark that is different than the one provided by the cluster. If it is a requirement to use the Spark version provided by the target Hadoop cluster, obtain and use a copy of the yarn-site.xml and core-site.xml from the cluster. Create Config Foldercd $OWL_HOMEmkdir -p config/hadoopecho export HADOOP_CONF_DIR=$OWL_HOME/config/hadoop >> config/owl-env.shbin/owlmanage.sh restart=owlagentMinimum Config (Kerberos Disabled, TLS Disabled)This configuration would typical only be applicable in Cloud Hadoop scenarios (EMR/Dataproc/HDI). Cloud Hadoop clusters are ephemeral and do not store any data as the data is stored in and is secured by Cloud Storage.export RESOURCE_MANAGER=<yarn-resoruce-manager-host>export NAME_NODE=<namenode> echo <configuration> <property> <name>hadoop.security.authentication</name> <value>simple</value> </property> <property> <name>hadoop.rpc.protection</name> <value>authentication</value> </property> <property> <name>fs.defaultFS</name> <value>hdfs://$NAME_NODE:8020</value> </property></configuration> >> $OWL_HOME/config/hadoop/core-site.xml echo <configuration> <property> <name>yarn.resourcemanager.scheduler.address</name> <value>$RESOURCE_MANAGER:8030</value> </property> <property> <name>yarn.resourcemanager.address</name> <value>$RESOURCE_MANAGER:8032</value> </property> <property> <name>yarn.resourcemanager.webapp.address</name> <value>$RESOURCE_MANAGER:8088</value> </property></configuration> >> $OWL_HOME/config/hadoop/yarn-site.xmlWhen deploying a Cloud Service Hadoop cluster from any of the major Cloud platforms, it is possible to use Cloud Storage rather than HDFS for dependency package staging and distribution. To achieve this, create a new storage bucket and ensure that both the Hadoop cluster and the instance running DQ Agent have access to it. This is usually accomplished using a Role that is attached to the infrastructure. For example, AWS Instance Role with bucket access policies. Then, set fs.defaultFS in core-site.xml to the bucket path instead of HDFS. Once the Hadoop client configuration has been created, navigate to Agent Management console from the Admin Console and configure the agent to use Yarn (Hadoop resource scheduler) as the Default Master and set the Default Deployment Mode to Cluster.Kerberos Secured with Resource Manager TLS enabledTypically, Hadoop cluster that are deployed on-premises are multi-tenant and not ephemeral. This means they must be secured using Kerberos. In addition, all endpoints with HTTP endpoints will have TLS enabled. In addition HDFS may be configured for a more secure communication using additional RPC encryption.export RESOURCE_MANAGER=<yarn-resoruce-manager-host>export NAME_NODE=<namenode>export KERBEROS_DOMAIN=<kerberos-domain-on-cluster>export HDFS_RPC_PROTECTION=<authentication || privacy || integrity> echo <configuration> <property> <name>hadoop.security.authentication</name> <value>kerberos</value> </property> <property> <name>hadoop.rpc.protection</name> <value>$HDFS_RPC_PROTECTION</value> </property> <property> <name>fs.defaultFS</name> <value>hdfs://$NAME_NODE:8020</value> </property></configuration> >> $OWL_HOME/config/hadoop/core-site.xml echo <configuration> <property> <name>hadoop.security.authentication</name> <value>HDFS/_HOST@$KERBEROS_DOMAIN</value> </property></configuration> >> $OWL_HOME/config/hadoop/hdfs-site.xml echo <configuration> <property> <name>yarn.resourcemanager.scheduler.address</name> <value>$RESOURCE_MANAGER:8030</value> </property> <property> <name>yarn.resourcemanager.address</name> <value>$RESOURCE_MANAGER:8032</value> </property> <property> <name>yarn.resourcemanager.webapp.https.address</name> <value>$RESOURCE_MANAGER:8090</value> </property></configuration> >> $OWL_HOME/config/hadoop/yarn-site.xmlWhen the target Hadoop cluster is secured by Kerberos, DQ checks require a Kerberos credential. This typically means that the DQ Agent will need to be configured to include a Kerberos keytab with each DQ check. Access the DQ Agent configuration page from the Admin Console and configure the Freeform Append setting with the -sparkprinc <spark-submit-principal> -sparkkeytab <path-to-keytab>.EMR / Dataproc / HDIRunning Apache Spark on Kubernetes differs from running this on virtual machine-based Hadoop clusters, which is the current mechanism provided by the existing CloudProc Dataproc service or competitive offerings like Amazon Web Services (AWS) Elastic MapReduce (EMR) and Microsoft's Azure HDInsight (HDI).Each cloud provider will have unique steps and configuration options. More detail on enabling agents for this deployment option be found in the Hadoop Integration section.A detailed guide for EMR is provided below.Collibra Data Quality & Observability on EMR ArchitectureCollibra DQ is able to use EMR as the compute space for data quality jobs (Owlchecks). While it is possible to simply operate a long running EMR cluster, EMR's intended operation model is ephemeral infrastructure. Using EMR as an ephemeral compute space is the most cost effective approach both in terms of operational effort and infrastructure costs. Collibra DQ makes it possible to seamlessly leverage EMR in this operating model. When there is not an EMR cluster available, Collibra DQ users are still able to browse datasets and DQ results in Web. However, if a user attempts to deploy an Owlcheck, they will simply see a red light icon next to the target agent. If the user still wants to request an Owlcheck, it will simply wait in queue until the target agent comes back online the next time an EMR cluster is available.Prepare for DeploymentBefore enabling Collibra DQto use EMR as the compute space, make sure that Owl Web and the Owl Metastore are already deployed (https://docs.owl-analytics.com/installation/full-install).Create a bootstrap bucket location in S3 where Collibra DQ binaries and bootstrap script (install-agent-emr.sh) will be staged. The EMR cluster instances will need to include an attached Role that has access to this location in order to bootstrap the cluster. This location should not contain any data or any kind of sensitive materials and thus should not require any special permissions. It just needs to be accessible by EMR clusters for bootstrap purposes.Create or modify an instance Profile Role that will be attached to EMR clusters so that it enables read access to the bootstrap bucket location. This Role is separate from the EMR service role that EMR will use to deploy the infrastructure.Stage the bootstrap script and the Collibra DQ binary package in the bootstrap location created above.Make sure that the VPC where the Collibra DQ Metastore is deployed is accessible from the VPC where EMR clusters will be deployed.Make sure that Security Groups applied to the Collibra DQ Metastore are
configured to allow access from EMR master and worker Security Groups.Decide whether to use EMR 5.x or EMR 6.x. This is important because EMR 6 introduces Spark 3 and Scala 2.12. If EMR 6 is chosen, make sure Collibra DQ binaries were compiled for Spark 3 and Scala 2.12.(OPTIONAL) Create and store a private key to access EMR instances.Deploy EMR ClusterThere are several ways to deploy EMR, however, for dev-ops purposes, the simplest path is usually to use the AWS CLI utility. The example below will deploy and EMR cluster bootstrapped with Collibra DQ binaries and a functioning agent to deploy Owlchecks.When defining the Bootstrap Location argument, do not include s3://. For example: If Bootstrap Location is s3://bucket/prefix then BOOTSTRAP_LOCATION=bucket/prefix.aws emr create-cluster \--auto-scaling-role EMR_AutoScaling_DefaultRole \--applications Name=Hadoop Name=Spark Name=Hive Name=Tez \--name owl-emr \--release-label emr-6.2.0 \--region ${EMR_REGION} \--ebs-root-volume-size 10 \--scale-down-behavior TERMINATE_AT_TASK_COMPLETION \--enable-debugging \--bootstrap-actions \[{\Path\:\s3://${BOOTSTRAP_LOCATION}/install-agent-emr.sh\, \\Args\:[\\${OWL_VERSION}\, \\${OWL_AGENT_ID}\, \\${METASTORE_HOST}:${METASTORE_PORT}/${METASTORE_DB}?currentSchema=owlhub\, \\${METASTORE_USER}\, \\${METASTORE_PASSWORD}\, \\${BOOTSTRAP_LOCATION}\, \\${LICENSE_KEY}\, \\native\], \Name\:\install-owl-agent\}] \--ec2-attributes { \\KeyName\:\${EMR_INSTANCE_PRIVATE_KEY_NAME}\, \\InstanceProfile\:\${BOOTSTRAP_ACCESS_ROLE}\, \\SubnetId\:\${EMR_SUBNET}\, \\EmrManagedSlaveSecurityGroup\:\${EMR_WORKER_SECURITY_GROUP}\, \\EmrManagedMasterSecurityGroup\:\${EMR_WORKER_SECURITY_GROUP}\ \} \--service-role ${EMR_SERVICE_ROLE} \--log-uri s3n://${EMR_LOG_LOCATION} \--instance-groups [\{\InstanceCount\:1,\InstanceGroupType\:\MASTER\,\InstanceType\:\${EMR_MASTER_INSTANCE_TYPE}\,\Name\:\Master - 1\}, \{\InstanceCount\:3,\InstanceGroupType\:\CORE\,\InstanceType\:\${EMR_CORE_INSTANCE_TYPE}\,\Name\:\Core - 2\} \] Configure AgentOnce the EMR cluster and Owl Agent is deployed, it needs to be configured in Owl Web.Log into Owl Web, click the gear icon in the Navigation Pane and select Admin Console.In the Admin Console, click on the Remote Agent tile.The newly created agent should have a green light icon.Click the Pen/Pencil icon to the far right to configure the agent's settings. Make sure that Deploy Mode is set to Cluster and Default Master is set to yarn.Click the chain link icon to the far right to configure what datasources the agent is able to deploy Owlchecks for.Any datasources that are not listed in the right hand pane will not be visible to this agent.Run OwlchecksEverything is now ready for users to use EMR to run Owlchecks on data. Review Explorer documentation for detailed instructions. Explorer (no-code) Cloud nativeIntroduction to cloud native architectureAccording to the Cloud Native Computing Foundation (“CNCF”) Charter:Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.Collibra Data Quality wholeheartedly embraces these principles in its design and deployment. The diagram below depicts Collibra Data Quality & Observability's cloud native deployment architecture:In this form factor, you can deploy Collibra DQ in any public or private cloud while maintaining a consistent experience, performance, and management runbook. Collibra DQ microservicesTo achieve cloud native architecture, Collibra DQ is decomposed into several components, each of which is deployed as a microservice in a container.Owl Web - The main point of entry and interaction between Collibra DQ and end users or integrated applications. Owl Web provides both a rich, interactive user experience and a robust set of APIs for automated integration.Owl Agent - You can think of the Agent as the foreman of Collibra DQ. When a user or application requests a data quality check through Owl Web, Owl Agent will marshal compute resources to perform the work. Owl Agent does not actually do any of the data quality work. Instead, it translates the request submitted by Owl Web into a technical descriptor of the work that needs to be done and then launches the requested DQ job.Owl Metastore - This is where Collibra DQ stores all the metadata, statistics, and results of DQ jobs. It is also then main point of communication between Owl Web and Owl Agent. The metastore also contains the results of DQ jobs performed by transient containers (workers) in the compute space.History Server - Collibra DQ relies on Apache Spark to actually scan data and perform the bulk of data quality activities. To facilitate troubleshooting and performance tuning of DQ jobs, Collibra DQ uses an instance of Spark History Server to enable easy access to Spark logs.Spark - Apache Spark is the distributed compute framework that powers the Collibra DQ data quality engine. Spark enables DQ jobs to rise to the task of data quality on Terabyte scale datasets. Spark containers are completely ephemeral and only live for as long as necessary to complete a given DQ job.ContainerizationThe binaries and instruction sets described in each of the Collibra DQ microservices are encompassed within Docker container images. Each of the images is versioned and maintained in a secured cloud container registry repository. To initiate a Collibra DQ cloud native deployment, you must first obtain credentials to either pull the containers directly or download them to a private container registry.Support for Collibra DQ cloud native deployment is limited to deployments using the containers provided from the Collibra container registry.Reach out to your customer contact for access to pull the Collibra containers.KubernetesKubernetes is a distributed container scheduler and has become synonymous with cloud native architecture. While Docker containers provide the logic and runtime at the application layer, most applications still require network, storage, and orchestration between multiple hosts in order to function. Kubernetes provides all of these facilities while abstracting away all of the complexity of the various technologies that power the public or private cloud hosting the application. For complete details on how to install Collibra DQ on Kubernetes with Docker containers, see Cloud native install.Collibra DQ supports Kubernetes versions v1.21 - v1.24. Collibra DQ Helm chartWhile Kubernetes currently provides the clearest path to gaining the benefits of a cloud native architecture, it is also one of the more complex technologies in existence. This has less to do with Kubernetes itself and more with the complexity of the constituent technologies it is trying to abstract. Technologies like attached distributed storage and software defined networks are entire areas of specialization that require extensive expertise to navigate. Well implemented Kubernetes platforms hide all of this complexity and make it possible for anyone to leverage these powerful concepts. However, a robust application like Collibra DQ requires many descriptors (K8s manifests) to deploy its various components and all of the required supporting resources like network and storage.This is where Helm comes in. Helm is a client side utility (since v3) that automatically generates all the descriptors needed to deploy a cloud native application. Helm receives instructions in the form of a Helm chart that includes templated and parameterized versions of Kubernetes manifests. Along with the Helm chart, you can also pass arguments like names of artifacts, connection details, enable and disable commands, and so on. Helm resolves the user defined parameters within the manifests and submits them to Kubernetes for deployment. This enables you to deploy the application without necessarily having a detailed understanding of the networking, storage or compute that underpins the application. For example, the command below deploys Collibra DQ with all of the components depicted in the Introduction to cloud native architecture into Google Kubernetes Engine with Google Cloud Storage (GCS) as the storage location for Spark logs. The only prerequisite is that the image pull secret, representing credentials to access the container registry, and secret containing the credentials for a service account with access to GCS are already deployed to the namespace.helm upgrade --install --namespace <namespace> \--set global.version.owl=<owl-version> \--set global.version.spark=<owl-spark-version> \--set global.configMap.data.license_key=<owl-license-key> \--set global.spark_history.enabled=true \--set global.spark_history.logDirectory=gs://logs/spark-history/ \--set global.cloudStorage.gcs.enableGCS=true \<deployment-name> \/path/to/chart/owldqThe full universe of possible customizations is quite extensive and provides a great deal of flexibility in order to be applicable in a wide variety of platforms. However, when deploying on a known platform (EKS, GKE, AKS), the number of required inputs is quite limited. In common cases, you run a single CLI command including basic parameters like disable history server, configure the storage bucket for logs, specify the image repository, and so on.Cloud native requirementsMinimum requirementsYou need a machine with the following files and packages to run the installation. You can run these from a laptop or separate VM and they do not need to be issued on the Kubernetes cluster itself.For complete details on how to install Collibra DQ on Kubernetes with Docker containers, see Cloud native install.PrerequisitesKubernetes
cluster -- EKS, GKE, AKS, Openshift, RancherHelm(v3)kubectlCloud command line SDK, such as gcloud CLI, AWS CLI or similarExternal Postgres DB version 11.9 and above, storage size 100GB, cores 4 to 8 memory to 4 to 8 GBPrivate container registry -- to store imagesLoadBalancer -- IngressController -- IngressEgress networking accessHelm chartImages, image access keyMinimum pod requirement -- 2 cores, 2GB RAMFilesThe helm chart. JKS files with secrets created in kubectl: owldq-ssl-secretowldq-pull-secret*A spark-gcs-secret you create from your service account file or token. * Available upon request from Collibra.Application system requirementsComponentProcessorMemoryStorageCollibra DQ Web1 core2 GB10 MB PVCOwl Agent1 core1 GB100 MB PVCOwl Metastore1 core2 GB10 GB PVCSpark*2 cores2 GB- * This is the minimum quantity of resources required to run an a Spark job in Kubernetes. This amount of resources would only provide the ability to scan a few megabytes of data with no more than a single job running at a given time. Proper sizing of the compute space must take into account the largest dataset that may be scanned, as well as the desired concurrency.Network service considerationsOwl Web is the only required component that needs to be directly accessed from outside of Kubernetes. History Server is the only other component that can be accessed directly by users, however, it is optional. If the target Kubernetes platform supports a LoadBalancer service type, you can configure the Helm chart to directly deploy the externally accessible endpoint. For testing purposes, you can also configure the Helm chart to deploy a NodePort service type.For the Ingress service type, deploy OwlDQ without an externally accessible service and then attach the Ingress service separately. This applies when you use a third-party Ingress controller such as NGINX, Contour, etc. The Helm chart is able to deploy an Ingress on GKE and EKS platforms, however, there is a wide variety of possible Ingress configurations that have not been tested.Obtaining credentialsKubernetes stores credentials in the form of secrets. Secrets are base64 encoded files that you can mount into application containers and that application components can reference at runtime. You use pull secrets to access secured container registries to obtain application containers. Although it is not recommended, you should only access the Collibra image registry for the initial download and validation of Docker images. After this, images should be uploaded and stored on your private registry, which allows you to control when the images are updated, as well as eliminate any operational dependencies on Collibra's repository. SSL certificatesTo enable SSL for secure access to Owl Web, a keystore that contains a signed certificate, keychain, and private key is required. This keystore must be available in the target namespace before you deploy Collibra DQ. By default, Collibra DQ looks for a secret called owldq-ssl-secret to find the keystore.Although it is possible to deploy with SSL disabled, is not recommended.Cloud storage credentialsIf you enable History Server, a distributed filesystem is required. Currently, Collibra DQ supports S3 and GCS for Spark history log storage.Azure Blob and HDFS on the near term roadmap.Target storage systemCredentials requirementsS3An IAM Role with access to the target bucket needs to be attached to the Kubernetes nodes of the namespace where Collibra DQ is being deployed.GCSYou must create a secret from the JSON key file of a service account with access to the log bucket. The secret must be available in the namespace before you deploy Collibra DQ. By default, Collibra DQ looks for a secret called spark-gcs-secret, if GCS is enabled for Spark history logs. You can change this via a helm chart argument.Container pull secretCollibra Data Quality & Observability containers are stored in a secured repository in Google Container Registry. For Collibra DQ to successfully pull the containers when deployed, a pull secret with access to the container registry must be available in the target namespace.By default, Collibra DQ looks for a pull secret named owldq-pull-secret. You can change this via a helm chart argument.Spark service accountTo enable Owl Agent and the Spark driver to create and destroy compute containers, you must have a service account with a role that allows get/list/create/delete operations on pods/services/secrets/configMaps in the target namespace. By default, Collibra DQ attempts to create the required service account and the required RoleBinding to the default Edit role. Edit is a role that is generally available in a Kubernetes cluster. If the Edit role is not available, you can manually create it.Accessing the platformTo deploy anything to a Kubernetes cluster, the first step is to install the required client utilities and configure access:kubectl: The main method of communication with a Kubernetes cluster. All configuration or introspection tasks will be preformed using kubectl.helm v3: Used to deploy the OwlDQ helm chart without hand coding manifests.After you install the utilities, the next step is to configure a kube-context that points to and authenticates to the target platform. On cloud platforms like GKE and EKS, this process is completely automated through their respective CLI utilities.aws eks --region <region-code> update-kubeconfig --name <cluster_name> gcloud container clusters get-credentials <cluster-name> In private clouds, this process will vary from organization to organization, however, the platform infrastructure team should be able to provide the target kube-context entry.Preparing secretsOnce access to the target platform is confirmed, you can begin the preparation of the namespace. Typically the namespace that Collibra DQ is going to be deployed into is pre-allocated by the platform team. kubectl create namespace <namespace> There is a lot more that can go into namespace creation such as resource quota allocation, but that is generally a task for the platform team.Create an SSL keystore secretFor complete details on how to install Collibra DQ on Kubernetes with Docker containers, see Cloud native install.Create a container pull secretFor complete details on how to install Collibra DQ on Kubernetes with Docker containers, see Cloud native install.JSON key file credentialkubectl create secret docker-registry owldq-pull-secret \ --docker-server=<owldq-registry-server> \ --docker-username=_json_key \ --docker-email=<service-account-email> \ --docker-password=$(cat /path/to/key.json) \ --namespace <namespace>Short lived access tokenkubectl create secret docker-registry owldq-pull-secret \ --docker-server=<owldq-registry-server> \ --docker-username=oauth3accesstoken \ --docker-email=<service-account-email> \ --docker-password=<access-token-text> \ --namespace <namespace> GCP Oauth tokens are usually only good for 1 hour. This type of credential is excellent if the goal is to pull containers into a private registry. It can be used as the pull secret to access containers directly, however, the secret would have to be recreated with a fresh token before restarting any of the Colbra DQ components.Create a GCS credential secretkubectl create secret generic spark-gcs-secret \ --from-file /path/to/keystore.jks \ --namespace <namespace> The file name that you use in the --from-file argument should be spark-gcs-secret. If the file name is anything else, you must include an additional argument specifying the gcs secret name in the Helm command.For complete details on how to install Collibra DQ on Kubernetes with Docker containers, see Cloud native install.Cloud native installInstall Collibra DQ on Kubernetes with Docker ContainersCollibra DQ provides the following Core Docker containers:Owl-Agent: Launches the Apache Spark JobsOwl-Web: The Collibra DQ web application itselfApache Spark: The runtime analytics engine Postgres (persistent volume needed): The Collibra DQ metastoreApache Livy:Session Manager: How Collibra DQ can browse the HDFS, S3, GCS, or Azure Data Lake (ADL)Interacts with Object Stores, similar to JDBC sources Explorer (estimate Jobs, get days with data, Filtergrams, etc.)PrerequisitesKubernetes cluster -- EKS, GKE, AKS, Openshift, RancherHelm(v3)kubectlCloud command line SDK, such as gcloud CLI, AWS CLI or similarExternal Postgres DB version 11.9 and above, storage size 100GB, cores 4 to 8 memory to 4 to 8 GBPrivate container registry -- to store imagesLoadBalancer -- IngressController -- IngressEgress networking accessHelm chartImages, image access keyMinimum pod requirement -- 2 cores, 2GB RAMStepsTo install Collibra DQ on Kubernetes with Docker containers, follow these steps.Sign in to the Kubernetes clusterSign in to the Kubernetes cluster from a Linux compatible terminal.Create a namespace in the cluster using the following code snippet:kubectl create namespace <owldq>Pull images from the Collibra registryCollibra DQ containers are located in the Docker Hub registry. Collibra provides a repo-key to access Collibra images in a .json file, which can be stored locally and used to login.Download the Docker .json repo-key.Run the following command:docker login -u _json_key -p $(cat repo-key.json) https://gcr.ioImage names with their versions are provided by Collibra.To pull the images, run the following Docker pull commands:docker pull gcr.io/owl-hadoop-cdh/owl-agent:2021.09docker pull gcr.io/owl-hadoop-cdh/owl-web:2021.09docker pull gcr.io/owl-hadoop-cdh/spark:3.0.1-2021.09docker pull gcr.io/owl-hadoop-cdh/owl-livy:3.0.1-2021.09Push images into your private registrySign in to your private Docker container registry.Tag and push the images from Collibra to your private registry, by using the following commands:docker tag gcr.io/owl-hadoop-cdh/owl-web:2021.10.3 <registryURL>/owl-web:2021.10.3docker push <registryURL>/owl-web:2021.10.3Example:docker tag [OPTIONS] IMAGE [:TAG][REGISTRYHOST/][USERNAME/]NAME[:TAG]docker tag
push NAME[:TAG]Create an SSL keystore secretkubectl create secret generic owldq-ssl-secret \ --from-file /path/to/keystore.jks \ --namespace <namespace> The file name that you use in the --from-file argument should be keystore.jks. If the file name is anything else, you must include an additional argument specifying the keystore file name in the Helm command.Create a pull secret Although it is not recommended, you should only access the Collibra image registry for the initial download and validation of Docker images. After this, images should be uploaded and stored on your private registry, which allows you to control when the images are updated, as well as eliminate any operational dependencies on Collibra's repository. To create a pull secret, use the following code snippet:kubectl create secret docker-registry owldq-pull-secret--docker-server=https://gcr.io--docker-username=_json_key--docker-email=<email of customer>--docker-password=$(cat repo-key.json)--namespace <owldq>If your private registry is used for images and if they are accessible from within the Kubernetes cluster, this secret need not be created. If credentials are required to access your private registry, create this secret by modifying the docker-server URL and docker-password.Helm chartFor more detailed information about the Helm Chart, see Cloud native.Unzip and store the helm charts given by Collibra on a Linux compatible deployment location.Once you have your Collibra DQ license, you will receive an email from Collibra that includes the Helm Charts as zip files.There should be two folders and two files:drwxrwxr-x -- templatesdrwxrwxr-x -- charts-rw-rw-r-- Chart.yaml-rw-rw-r-- values.yamlThere are two ways of passing parameters. While deploying, parameter values can be passed:Using the values.yaml file or,Using the helm set commands.The set commands take precedence over the values.yaml file.Deploy Collibra Data Quality & ObservabilityOnce you have created a namespace and added all of the required secrets, you can begin the deployment of Collibra DQ.Minimal installInstall Web, Agent, and metastore. Collibra DQ is inaccessible until you manually add an Ingress or another type of externally accessible service. All of the following examples will pull containers directly from the Collibra DQ secured container registry. In most cases, InfoSec policies require that containers are sourced from a private container repository controlled by the local Cloud Ops team. Make sure to to add --set global.image.repo=</url/of/private-repo> so that you use only approved containers. The metastore container must start first as the other containers use it to write data. On your initial deployment, the other containers might start before the metastore and fail. helm upgrade --install --namespace <namespace> \--set global.version.owl=<owl-version> \--set global.version.spark=<owl-spark-version> \--set global.configMap.data.license_key=<owl-license-key> \--set global.configMap.data.license_name=<your-license-name> \--set global.web.admin.email=${email} \--set global.web.admin.password=${password} \--set global.web.service.type=ClusterIP \--set global.image.repo=<pathTolmageRepo> \<deployment-name> \/path to the helm chart root folder>ValueDescription<namespace>Enter the namespace that you created in the Sign in to the Kubernetes cluster step.<owl-version>Enter the version from the web image suffix. For example, 2023.02 from the image, owl-web:2023.02.<spark-versionEnter the Spark version from the Spark image suffix. For example, 3.2.2-2023.02 from the image, spark:3.2.2-2023.02.<owl-license-key>Enter the license key provided to you by Collibra.<your-license-name>Enter the license name provided to you by Collibra.${email}Enter the default admin user email associated with the admin account.${password}Enter the default admin user password for the admin account. The password must adhere to the following password policy:A minimum of 8 characters.A maximum of 72 characters.At least one upper-case character.At least one numeric character.At least one supported special character (!@#%$^&*?_~).Cannot contain the user ID (admin).If a password that does not meet the password policy is entered, the install process proceeds as though the password is accepted, but the admin user becomes locked out. If this occurs, rerun the Helm command with a password that meets the password policy and restart the web pod.<pathTolmageRepo>This is your private registry key, where the Collibra images are available. When this is not provided, you will pull the images from the Collibra image registry, for which you should create a pull secret with the repo key provided by Collibra. See Create a pull secret for more details.<deployment-name>Any name of your choice for this deployment.Externally accessible servicePerform the Minimal install and add a preconfigured NodePort or LoadBalancer service to provide access to the Web. A LoadBalancer service type requires that the Kubernetes platform is integrated with a Software Defined Network solution. This will generally be true for the Kubernetes services offered by major cloud vendors. Private cloud platforms more commonly use Ingress controllers. Check with the infrastructure team before attempting to use LoadBalancer service type. helm upgrade --install --namespace <namespace> \--set global.version.owl=<owl-version> \--set global.version.spark=<owl-spark-version> \--set global.configMap.data.license_key=<owl-license-key> \--set global.configMap.data.license_name=<your-license-name> \--set global.web.admin.email=${email} \--set global.web.admin.password=${password} \--set global.web.service.type=<NodePort || LoadBalancer> \<deployment-name> \/path/to/chart/owldqExternally accessible with SSL enabledPerform the install with external service but with SSL enabled. Ensure you have already deployed a keystore containing a key to the target namespace with a secret name that matches the global.web.tls.key.secretName argument (owldq-ssl-secret by default). Also, ensure that the secret's key name matches the global.web.tls.key.store.name argument (dqkeystore.jks by default). helm upgrade --install --namespace <namespace> \--set global.version.owl=<owl-version> \--set global.version.spark=<owl-spark-version> \--set global.configMap.data.license_key=<owl-license-key> \--set global.configMap.data.license_name=<your-license-name> \--set global.web.admin.email=${email} \--set global.web.admin.password=${password} \--set global.web.service.type=<NodePort || LoadBalancer> \--set global.web.tls.enabled=true \--set global.web.tls.key.secretName=owldq-ssl-secret \--set global.web.tls.key.alias=<key-alias> \--set global.web.tls.key.type=<JKS || PKCS12> \--set global.web.tls.key.pass=<keystore-pass> \--set global.web.tls.key.store.name=keystore.jks \ <deployment-name> \/path/to/chart/owldqExternally accessible and History Server for GCS Log StoragePerform the install with external service and Spark History Server enabled. In the following example, the target log storage system is GCS.For Collibra DQ to be able to write Spark logs to GCS, create a secret from the JSON key file of a service account that has access to the log bucket. For more detailed information, see Cloud storage credentials.helm upgrade --install --namespace <namespace> \--set global.version.owl=<owl-version> \--set global.version.spark=<owl-spark-version> \--set global.configMap.data.license_key=<owl-license-key> \--set global.configMap.data.license_name=<your-license-name> \--set global.web.admin.email=${email} \--set global.web.admin.password=${password} \--set global.web.service.type=<NodePort || LoadBalancer> \--set global.spark_history.enabled=true \--set global.spark_history.logDirectory=gs://logs/spark-history/ \--set global.spark_history.service.type=<NodePort || LoadBalancer> \--set global.cloudStorage.gcs.enableGCS=true \<deployment-name> \/path/to/chart/owldqExternally Accessible and History Server for S3 Log StoragePerform the install with external service and Spark History Server enabled. In this example, the target log storage system is S3. For Collibra DQ to be able to write Spark logs to S3, makes sure that an Instance Profile IAM Role with access to the log bucket is attached to all nodes serving the target namespace. For more detailed information, see Cloud storage credentials.helm upgrade --install --namespace <namespace> \--set global.version.owl=<owl-version> \--set global.version.spark=<owl-spark-version> \--set global.configMap.data.license_key=<owl-license-key> \--set global.configMap.data.license_name=<your-license-name> \--set global.web.admin.email=${email} \--set global.web.admin.password=${password} \--set global.web.service.type=<NodePort || LoadBalancer> \--set global.spark_history.enabled=true \--set global.spark_history.logDirectory=s3a://logs/spark-history/ \--set global.spark_history.service.type=<NodePort || LoadBalancer> \--set global.cloudStorage.s3.enableS3=true \<deployment-name> \/path/to/chart/owldqExternally accessible with external metastorePerform the install with external service and an external metastore, for example AWS RDS, Google Cloud SQL, or just PostgresSQL on its own instance.Collibra DQ currently supports PostgreSQL 9.6 and newer. helm upgrade --install --namespace <namespace> \--set global.version.owl=<owl-version> \--set global.version.spark=<owl-spark-version> \--set global.configMap.data.license_key=<owl-license-key> \--set global.configMap.data.license_name=<your-license-name> \--set global.web.admin.email=${email} \--set global.web.admin.password=${password} \--set global.web.service.type=<NodePort || LoadBalancer> \--set global.metastore.enabled=false --set global.configMap.data.metastore_url=jdbc:postgresql://<host>:<port>/<database>--set global.configMap.data.metastore_user=<user> \--set global.configMap.data.metastore_pass=<password> \<deployment-name> \/path/to/chart/owldqUsing custom JDBC data source driversThis section
shows how to set up the persistent external volume on an existing cloud native deployment of Collibra DQ to support the use of custom JDBC data source drivers.StepsCreate a Persistent Volume (PV) and a Persistent Volume Claim (PVC) in the same Kubernetes cluster namespace where your cloud native deployment of Collibra DQ is running with ReadWriteMany access mode, as shown in the following example:apiVersion: v1kind: PersistentVolumemetadata: name: nfs-pvspec: capacity: storage: 10Gi accessModes: - ReadWriteMany nfs: server: nfs-server.nfs.svc.cluster.local path: / ---kind: PersistentVolumeClaimapiVersion: v1metadata: name: nfs-pvcspec: accessModes: - ReadWriteMany storageClassName: resources: requests: storage: 10GiYou can choose any storage class that supports ReadWriteMany access mode only.Patch the existing DQ Web and Agent StatefulSets with an additional Volume Mount, as shown in the following example: spec: volumes: - name: owldq-ext-jdbc-jars persistentVolumeClaim: claimName: nfs-pvc containers: - volumeMounts: - name: owldq-ext-jdbc-jars mountPath: /opt/owl/drivers/extFrom the Connections page, click Add on the Generic JDBC Connection tile.The New JDBC Conection modal appears.Enter the required information.Click the folder icon in the Driver Location option.The Add Driver modal appears. Click Choose File and select the JAR file to upload.Enter a one-word directory name to store the driver, for example, ext. Select /opt/owl/drivers/ext under Driver Directories to upload your driver to that location, as shown in the image below.Click Upload.A success message appears when your driver is successfully addedUploads from DQ Web only work if the PVC's storageclass supports the fsGroup security context of Kubernetes. If the fsGroup security context is not supported, create a temporary dummy pod running as a root user with the PVC mounted, and copy the required JDBC jars to the mount location with 544 permissions.Navigate to the Remote Agent section of the Admin Console and click the pencil icon to edit your agent.The Edit Agent modal appears.Add the following properties to the Free Form (Appended) option, as shown in the following example:-conf spark.kubernetes.driver.podTemplateFile=https://spark-on-k8s-templates-public.s3.amazonaws.com/spark-on-k8s-template.yml,spark.kubernetes.executor.podTemplateFile=https://spark-on-k8s-templates-public.s3.amazonaws.com/spark-on-k8s-template.yml,spark.kubernetes.executor.volumes.persistentVolumeClaim.nfs-pv.options.claimName=nfs-pvc,spark.kubernetes.executor.volumes.persistentVolumeClaim.nfs-pv.options.sizeLimit=10Gi,spark.kubernetes.executor.volumes.persistentVolumeClaim.nfs-pv.mount.path=/opt/owl/drivers/ext,spark.kubernetes.executor.volumes.persistentVolumeClaim.nfs-pv.mount.readOnly=false,spark.kubernetes.driver.volumes.persistentVolumeClaim.nfs-pv.options.claimName=nfs-pvc,spark.kubernetes.driver.volumes.persistentVolumeClaim.nfs-pv.options.sizeLimit=10Gi,spark.kubernetes.driver.volumes.persistentVolumeClaim.nfs-pv.mount.path=/opt/owl/drivers/ext,spark.kubernetes.driver.volumes.persistentVolumeClaim.nfs-pv.mount.readOnly=falseThe pod templates induce security context to the Spark driver and executor pods, which allows you to mount the PVC dynamically. You can also download the template file and host it in your own public space.Click Save.Navigate to the Connections page to start using your new custom JDBC data source driver.Troubleshooting + Helpful CommandsThis guide is to provide the most common commands to run when troubleshooting a DQ environment that is deployed on Kubernetes. For a basic overview of Kubernetes and other relevant knowledge.### Provide documentation on syntax and flags in the terminal kubectl help ### To see how to use Kubernetes resources kubectl api-resources -o wideViewing Kubernetes Resources### Get Pods, their names & details in all Namespaces kubectl get pods -A -o wide ### Get all Namespaces in a cluster kubectl get namespaces ### Get Services in all Namespaces kubectl get services -A -o wide ### List all deployments in all namespaces: kubectl get deployments -A -o wideLogs & Events### List Events sorted by timestamp in all namespaces kubectl get events -A --sort-by=.metadata.creationTimestamp ### Get logs from a specific pod: kubectl logs [my-pod-name]Resource Allocation### If the Kubernetes Metrics Server is installed, ### the top command allows you to see the resource consumption for nodes or podscode kubectl top nodekubectl top pod ### If the Kubernetes Metrics Server is NOT installed, use kubectl describe nodes | grep Allocated -A 10 Configuration### Get current-context kubectl config current-context ### See all configs for the entire cluster kubectl config viewAuthorization Issues### Check to see if I can read pod logs for current user & context kubectl auth can-i get pods --subresource=log ### Check to see if I can do everything in my current namespace (* means all) kubectl auth can-i '*' '*'EKS / GKE / AKSFor organizations that are familiar with containers and managed Kubernetes services, Collibra Data Quality & Observability offers a cloud native deployment option. Please refer to the Cloud Native section for more detail.Cloud nativeCloud native requirementsCloud native installThe containers are part of a private repository which requires access. Please contact Collibra directly for more information.CloudInstallation details for the Edge component for DQ Cloud.DQ Cloud is in public beta, which means that it is an upcoming feature that is made available to all customers before it is fully ready for general availability so it can be tested and evaluated early. Please contact a Collibra representative or click here to learn more. RequirementsResourceNotesProvisioned byCollibra DQVersion 2022.02+ with Edge mode enabledCollibraCollibra Edge SiteVersion 2022.02+CustomerPostgresVersion 11+CustomerDiagramPrerequisitesVMThis is where your Edge site is installed.RedHat 8 or Centos 8SSH Access55 GB of free storage64 GB memory16 coresEgress (outbound) network access on port 443Network access to Postgres installed in step 2For medium to large workloads of more than 100M rows by 100 columns, we recommend that your VM has a minimum of 32 cores, 128 GB memory, and 500 GB of free storage.Edge installation requirements can be found here.PostgresThis is where your DQ Job results are stored.Version 11 or laterA minimum of 100 GB of free storageA minimum of 4 cores Network access to and from the VM where Edge is installedUser with ownership rights over the target database1. Obtain a Secure Collibra DQ Web URLThis is provisioned by Collibra. Along with the URL, credentials will be provided to access your instance.This offering is in public beta and only available for select Collibra customers. Please contact a Collibra representative to learn more.2. Install PostgresThis is provisioned by the customer. There are several way to install Postgres. You should follow your existing company process to provision a Postgres instance (RDS, Azure SQL, Cloud SQL, or standard install using a package manager). Please ensure version 11+.Remember your Postgres IP and login credentials. This is required when deploying the Edge site.3. Install EdgeRefer to Edge documentation for system requirements.Navigate to the Edge Site Management panel in the Admin ConsoleAdd an Edge Site and provide a name and descriptionUsing the Actions drop-down, download the Edge installer package locallyBecause connections must have an exact relationship between the Edge site and the datasource hostname, do not delete your Edge Site from the Edge Site Management page.Upload the Edge installer package to your VM that meets the Edge system requirements above. An example scp command is below, but you can do this several ways.scp -i ~/Downloads/vm-key.pem ~/Downloads/<installer>.tgz user@<host-or-ip>:/home/user/<installer>.tgzSSH to your VM after uploading the installer package. Untar the .tgztar -xvf <installer>.tgzInstall prerequisite Edge packages.sudo yum install -y container-selinux selinux-policy-base sudo yum install -y https://rpm.rancher.io/k3s/stable/common/centos/7/noarch/k3s-selinux-0.2-1.el7_8.noarch.rpm sudo firewall-cmd --zone=trusted --add-interface=lo --permanent sudo firewall-cmd --zone=trusted --add-interface=cni0 --permanent sudo firewall-cmd --reloadConfirm you have the right Collibra DQ version pointer e.g. 2022.02-186 from your Cloud instance.Remember your Postgres IP and credentials from the previous step.Install Edge w/ DQ w/ the correct parameterssudo /home/centos/install-master.sh --storage-path /var/edge properties.yaml -r registries.yaml --set collibra_edge.collibra.dq.enabled=true,collibra_edge.collibra.dq.targetRevision=2022.02-186,collibra_edge.collibra.dq.sparkVersion=3.2.0,collibra_edge.collibra.dq.metastoreUrl=jdbc:postgresql://<your-postgres-ip>:5432/postgres,collibra_edge.collibra.dq.metastoreUser=<your-postgres-user>,collibra_edge.collibra.dq.metastorePass=<your-postgres-password>The snippet below is the same as the code block above.The bold sections are the areas you will editsudo /home/<your-directory>/install-master.sh --storage-path /var/edge properties.yaml -r registries.yaml --set collibra_edge.collibra.dq.enabled=true,collibra_edge.collibra.dq.targetRevision=2022.02-<version>,collibra_edge.collibra.dq.sparkVersion=3.2.0,collibra_edge.collibra.dq.metastoreUrl=jdbc:postgresql://<postgres-ip>:5432/postgres,collibra_edge.collibra.dq.metastoreUser=<postgres-user>,collibra_edge.collibra.dq.metastorePass=<postgres-password>Check that all the processes are running / completedsudo /usr/local/bin/kubectl get pods --all-namespacesYour Edge site will appear as HEALTHY upon successful installationUninstall Edge if there were mistakes/typos in the processsudo /usr/local/bin/uninstall-edge.sh --forceUninstalling an Edge Site using this command is OK. Do not delete an Edge Site using the UI.Reinstall the prerequisites
if you perform the uninstallsudo yum localinstall --skip-broken -y https://rpm.rancher.io/k3s/stable/common/centos/7/noarch/k3s-selinux-0.2-1.el7_8.noarch.rpm You should not delete an Edge using the UI, to avoid orphaned records. 4. Configure an AgentNavigate to the Remote Agent panel in the admin consoleUpon completion of the Edge installation, you'll find an agent available from each respective Edge Site. Click the pencil icon to configure the agent.Change the Default Deploy Mode to Cluster, the Default Masters to K8s and input defaults for resource assignment. Also add freeform append Spark confs as shown here.Use the spark confs in the code block below.-conf spark.kubernetes.executor.limit.cores=1,spark.kubernetes.driver.limit.cores=1The DQ Job (Spark) compute will take place locally on Edge K3s. Increase the size of your VM to vertically scale for more resources (.e.g. 32 cores, RAM, etc.). This is the preferred option in beta. Hadoop compute is supported if customer chooses that path and uses their Dataproc or EMR cluster. Make note of the agent name that as created. In the following step you will create a connection and select (link) the agent to your connection. Do not delete an Agent from the UI, to avoid any orphaned records.5. Set Job LimitsSet max cores to 1 in the job limit settings.Refer to this link for configuring job limits.6. Add a ConnectionThis is the same process of adding a connection found Adding Connectionswith one difference. You will map the connection to your agent upon establishing a connection. This is different than mapping a connection and an agent in the self-hosted application.Select your target agent using the Target Agent drop-down. This drop-down will populate with existing agents. Here is where you will select the agent name from the previous step.Afterwards, you do not need to assign the connection to the agent. It will be automatically mapped.To map a connection to another agent, you need to re-save the connection and select another agent from the drop-down list. 7. Run a DQ JobRun a DQ Job to validate the installation. Use the Explorer to onboard a table and check the Jobs page as normal to see the status. If the DQ Job does not succeed, please check your Agent settings and system prerequisites NotesEdge Capability Resource Requirements: If insufficient resources, your capabilities will not perform properly.Installer: Please beware, downloading new installer will invalidate previous installer.Volume: /var/lib/rancher/k3s path must have 50gb availableRoot access: root access is needed, though future revisions will follow the least privileged user access policies.The private beta is designed to let customers 1) complete the installation 2) confirm successful DQ jobs can be run and 3) validate their security requirements whereby no sensitive data is stored outside their custody.Helpful Commands# Get all pods runningsudo /usr/local/bin/kubectl get pods --all-namespaces # Get shell access to podsudo /usr/local/bin/kubectl exec -it <dq-web-pod> -n collibra-edge -- bash # Get shell access to podsudo /usr/local/bin/kubectl exec -it collibra-edge-controller-<pod-name> -n collibra-edge -- sh # Check network connectivity to databasecurl telnet://<rds-host>:<port> # Delete jobssudo /usr/local/bin/kubectl delete pod <pod-name> -n collibra-edgeFAQWhat network access is needed?The Edge Site and Postgres need to communicate with each other.Additionally, logging and heartbeat requires outbound access to several services. Please refer to Edge documentation for specific services that are used.How can a user check the install?Time: The install should complete in around ~5 minutes; if not, there is likely an issue.Check that the podssudo /usr/local/bin/kubectl get pods --all-namespacesIs there a way to get more checks / more logs?sudo /usr/local/bin kubectl describeHow to verify successful install?In your Collibra DQ instance, navigate to the Edge Site Management panel in the Admin Console and confirm a HEALTHY statusSupport can confirm via Datadog, the edge site will send heartbeatsHow to locate my Edge site in Datdog?Send your Edge Site ID to Support to check the health status.Do customers have access to Datadog?Only Collibra has access to Datadog logging.Can all my Collibra DQ and other capabilities run on the same Edge Site?There are not technical reasons preventing other capabilities and Collibra DQ from running on the same Edge Site.The guidance for the beta is to have DQ Edge separate from DGC Edge capabilities and simply use two Edge sites.Are there any limitations with Collibra DQ Cloud in terms of features or functionality?While remote files are supported, local files and uploaded files are not supported due to security restrictionsSpecific drivers are not available in the beta, though the most common data sources are available.What are the benefits of installing with Edge vs. a stand-alone, self-hosted application?The primary benefits are managed upgrades, maintenance, and reducing the ownership costs of an entirely self-hosted set of components.In addition, this design allows customers to take advantage of containers and cloud technologies without deep technical skillset requirements.This installation pattern was intentionally develop to not compromise any security requirements and give the customer complete custody of their data.Lastly, this aligns the Collibra architecture standards so support and services teams will benefit from normalized deployment models. In particular, when it comes to installation, configuration, and troubleshooting.AgentDiagramThe diagram above provides a high-level overview of how agents work within Collibra DQ. Job execution is driven by DQ Jobs that are written to an agent_q table inside the DQ Metastore (DQ-Postgres) via the Web App or REST API endpoint. Each active and available agent queries the DQ-Postgres table every 5 seconds to execute DQ Jobs for which the agent is responsible. For example, the EMR agent DQ-Agent3 only executes DQ Jobs scheduled to run on EMR.When an agent picks up a DQ Job, it launches the job either locally on the agent node itself or on a cluster as a Spark job (if the agent is set up as an edge node of the cluster). Depending on where the job launches, the results of the DQ Job will write back to the DQ Metastore. The results then display in the DQ Web App, are exposed as REST API, and become available for direct SQL query against the DQ Metastore.Setting up a DQ Agent with setup.sh as part of the DQ packageUse the setup.sh script located in /opt/owl/ (or other Base Path that your installation used). See the example in the code block below for setting up a DQ Agent with a Postgres server running localhost on port 5432 with database postgres and Postgres username/password combo postgres/password.# PATH TO DIR THAT CONTAINS THE INSTALL DIRexport BASE_PATH=/opt # PATH TO AGENT INSTALL DIRexport INSTALL_PATH=/opt/owl # DQ Metadata Postgres Storage settings export METASTORE_HOST=localhostexport METASTORE_PORT=5432export METASTORE_DB=postgresexport METASTORE_USER=postgresexport METASTORE_PASSWORD=password cd $INSTALL_PATH # Install DQ Agent only./setup.sh \ -owlbase=$BASE_PATH \ -options=owlagent \ -pguser=$METASTORE_USER \ -pgpassword=$METASTORE_PASSWORD \ -pgserver=${METASTORE_HOST}:${METASTORE_PORT}/${METASTORE_DB}The setup script automatically generates the /opt/owl/config/owl.properties file and encrypts the provided password.Setting up a DQ Agent manuallyStepsOpen a terminal session and go to the directory with the installer.Run the following command to encrypt your DQ Metastore password before it is stored in the /opt/owl/config/owl.properties file:# PATH TO AGENT INSTALL DIRexport INSTALL_PATH=/opt/owl cd $INSTALL_PATH #Encrypt DQ Metadata Postgres Storage password./owlmanage.sh encrypt=passwordowlmanage.sh generates an encrypted string for the plain text password input. You can use the encrypted string in the /opt/owl/config/owl.properties configuration file to avoid exposing the DQ Metadata Postgres Storage password.Run the following command to open the /opt/owl/config/owl.properties configuration file:vi $INSTALL_PATH/config/owl.propertiesAdd the following properties to the configuration file:spring.datasource.url=jdbc:postgresql://{DB_HOST}:{DB_PORT}/{METASTORE_DB}spring.datasource.username={METASTORE_USER}spring.datasource.password={METASTORE_PASSWORD}spring.datasource.driver-class-name=com.owl.org.postgresql.Driver spring.agent.datasource.url=jdbc:postgresql://{DB_HOST}:{DB_PORT}/{METASTORE_DB}spring.agent.datasource.username={METASTORE_USER}spring.agent.datasource.password={METASTORE_PASSWORD}spring.agent.datasource.driver-class-name=org.postgresql.DriverRestart the DQ Web App.Setting up the DQ Agent from the Admin ConsoleStepsOn the Collibra DQ home page, hover your cursor over Settings and select Admin Console.The Admin Console opens.Click Remote Agent.The Agent Management page opens.In the last column of the Agents table, to the right, click the pencil icon to edit your agent.The Edit Agent modal appears.Enter the required information.FieldDescriptionAgent IdThe numeric identifier of your agent. For example, 6.This filed is pre-filled and cannot be edited.Agent NameThe unique name of your agent.This field is pre-filled and cannot be edited.Agent Display NameThe descriptive name of your agent that displays anywhere agent information is present in the DQ Web App. You can customize the Agent Display Name to make it easier to identify your agent.There are no character restrictions for the Agent Display Name field, but it is best practice to use only alphanumeric characters, hyphens, and underscores.Is LocalSelect for Hadoop deployments only.Is LivyDeprecated. Not used.Livy HostThe location where your Livy agent is hosted. This field is only applicable when Livy is in use.Base PathThe installation folder path for DQ. All other paths in the DQ Agent are relative to this installation path.This is the location
that is set as OWL_BASE in Full Standalone Setup and other installation setups followed by owl/ folder. For example, if the setup command is export OWL_BASE=/home/centos then the Base Path in the Agent configuration should be set to /home/centos/owl/. Default: /opt/owl/.Collibra DQ Core JARThe file path to DQ Core jar file. Default <Base Path>/owl/bin/.Collibra DQ Core LogsThe folder path where DQ Core logs are stored. Logs from DQ Jobs are stored in this folder.Default: <Base Path>/owl/log.Collibra DQ ScriptThe file path to DQ execution script owlcheck.sh. This script is used to run DQ Job via command line without using agent. Usingowlcheck.shfor running DQ Jobs is superseded by DQ Agent execution model. Default: <Base Path>/owl/bin/owlcheck.Collibra DQ Web LogsThe folder path where DQ Web logs are stored. Logs from the DQ Web App are stored in this folder.Default: <Base Path>/owl/log.Default QueueThe default resource queue for YARN.Deploy Deployment ModeThe Spark deployment mode that takes one of Client or Cluster.Default MasterThe Spark Master URL copied from the Spark cluster verification screen. For example, spark://....Dynamic Spark AllocationDeprecated. Not used.Spark Conf KeyDeprecated. Not used.Spark Conf ValueDeprecated. Not used.Number of Executor(s)The default number of executors allocated per DQ Job when using this Agent to run DQ Scans. The default is 1.Executor Memory (GB)The default RAM per executors allocated per DQ Job when using this Agent to run DQ Scans. The default is 1 gigabyte.Number of Core(s)The default number of cores per executors allocated per DQ Job when using this Agent to run DQ Scans. The default is 1.Driver Memory (GB)The default driver RAM allocated per DQ Job when using this Agent to run DQ Scans. The default is 1 gigabyte.Free Form (Appended)Other spark-submit parameters to append to each DQ Job when using this Agent to run DQ Scans.Click Save.Linking data sources to the DQ Agent from the Admin ConsoleWhen you add new Data Sources, the DQ Agent requires permission to run DQ Jobs with them.StepsOn the Collibra DQ home page, hover your cursor over Settings and select Admin Console.The Admin Console opens.Click Remote Agent.The Agent Management page opens.In the last column of the Agents table, to the right, click the chain link icon to link your agent to data source connections.The Agent to Connection Management wizard appears.The left panel contains a list of available connections that are not yet linked to the DQ Agent and do not yet have permission to run DQ Jobs. The right panel contains a list of connections that are linked to the DQ Agent and have permission to run DQ Jobs.Click a connection in the left panel to link connections one at a time or click the double arrow icon to link all available connections at the same time.Click Update.You can unlink connections with the same methods listed above, but click the connections listed in the right panel instead of the left. Successfully unlinked connections appear in the left panel.Adding a connection to a DQ Agent
	 Collibra DQ ConnectionsSupported ConnectionsThis page is a list of supported data source connection types. A supported data source is a data source that is shipped with the images or standalone bundles, and thus, eligible for support from the Collibra DQ team. Any data source that is compatible with the Java version and server to which you are connected can be used. However, if an issue occurs with an unsupported data source, we cannot guarantee support.ProductionThe following is a list of drivers certified for production use.Connections - Currently SupportedConnectionCertifiedTestedPackagedOptionally PackagedPushdownEstimate jobFiltergramAnalyze DataScheduleSpark AgentYarn AgentParallel JDBCSession StateKerberos PasswordKerberos Password ManagerKerberos KeytabKerberos TGTStandalone (non-Livy)JDK8 Driver CompatibilityJDK11 Driver CompatibilityAthena Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesAthena CDATA Yes Yes Yes No No Yes Yes Yes No Yes No Yes No No No No No Yes Yes YesBigQuery Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesBigQuery CDATA Yes Yes Yes No No Yes Yes Yes No Yes No Yes No No No No No Yes Yes YesDatabricks JDBC Yes Yes No Yes No No No No No No No No No No No No No No Yes YesDatabricks CDATA Yes Yes Yes No No Yes Yes Yes No Yes No Yes No No No No No Yes Yes YesDB2 Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesDremio Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesHive Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes YesHive CDATA No No Yes No No No Yes No No No No No No Yes No Yes Yes Yes Yes YesImpala Yes No No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes YesImpala CDATA No No Yes No No No Yes No No No No No No Yes No Yes Yes Yes Yes YesMicrosoft SQL Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes NoMYSQL Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesOracle Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesPostgres Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesPresto Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesRedshift Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesSnowflake Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesSybase Yes Yes Yes No No Yes Yes Yes Yes Yes Yes No No No No No No Yes Yes YesTeradata Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes Yes YesA connection listed as Tested is one for which the Collibra DQ team has an environment and is included in regular regression testing.The Dremio connection is compatible with JDK11 if you add the following to owlmanage.sh as a JVM option for the web and Spark instance: -Dcdjd.io.netty.tryReflectionSetAccessible=trueRemote Connections - Currently SupportedConnectionCertifiedTestedPackagedOptionally packagedPushdownEstimate jobFiltergramAnalyze dataSpark agentYarn agentAzure Data Lake (Gen2) Yes Yes Yes No No Yes Yes Yes Yes YesGoogle Cloud Storage Yes Yes No Yes No Yes Yes Yes Yes YesHDFS Yes Yes Yes No No Yes Yes Yes Yes YesS3 Yes Yes Yes No No Yes Yes Yes Yes YesUnder EvaluationThe following is a list of drivers which are under evaluation (not certified yet for production usage). These connections are currently ineligible for escalated support services.Connections - Tech PreviewConnectionCertifiedTestedPackagedOptional packagingPushdownEstimate jobFiltergramAnalyze dataScheduleSpark agentYarn agentParallel JDBCSession stateKerberos stateKerberos password managerKerberos keytabKerberos TGTStandalone (non-Livy)Cassandra No No No No No No No No No No No No No No No No No NoMongoDB No No No No No Yes No Yes Yes Yes Yes No No No No No No YesMongoDB CDATA Yes Yes Yes No No Yes Yes Yes No Yes No Yes No No No No No YesSAP HANA No No No No No No No No No No No No No No No No No NoSolr No No No No No No No No No No No No No No No No No NoStreaming - Tech PreviewConnectionCertifiedTestedPackagedOptional packagingPushdownEstimate jobFiltergramAnalyze dataScheduleSpark agentYarn agentParallel JDBCSession stateKerberos passwordKerberos password managerKerberos TGTCRDB metastoreStandalone (non-Livy)Kafka No No No No No No No No No No No No No No No No No NoFilesFile typeSupportedCSV (and all delimiters) YesParquet YesAVRO YesJSON YesDELTA YesLimitationsAuthenticationDQ Jobs that require Kerberos TGT are not yet supported on Spark Standalone or Local deployments Recommended to submit jobs via Yarn or K8sFile LimitationsFile SizesFiles with more than 250 columns supported in File Explorer, unless you have Livy enabled.Files larger than 5gb are not supported in File Explorer, unless you have Livy enabled.Smaller file sizes will allow for skip scanning and more efficient processingAdvanced features like replay, scheduling, and historical lookbacks require a date signature in the folder of file pathS3Please ensure no spaces in S3 connection namePlease remember to select 'Save Credentials' checkbox upon establishing connectionPlease point to root bucket, not sub foldersLocal FilesLocal files can only be run using NO_AGENT defaultThis is for quick testing, smaller files, and demonstration purposes.Local file scanning is not intended for large scale production use.LivyLivy is only supported for K8s environmentsSpark Engine SupportMapR is EOL and MapR spark engine not supported to run Collibra DQ jobs.DatabricksPlease refer to this page for more details on Databricks supportThe only supported Databricks spark submit option is to use a notebook to initiate the job (Scala and Pyspark options). This is intended for pipeline developers and users knowledgeable with Databricks and notebooks. This form factor is ideal for incorporating data quality within existing Spark ETL data flows. The results are still available for business users to consume. The configuration is not intended for business users to implement. There are three ways that Databricks users can run DQ jobs using Databricks cluster or JDBC connection. 1. Notebook Users can directly open a notebook, upload Collibra DQjars and run a DQ job on Databricks cluster. The full steps are explained in below page. Collibra DQsupports this flow in production.https://dq-docs.collibra.com/apis-1/notebook/cdq-+-databricks2. Spark-SubmitThere are two ways to run a spark submit job on Databricks's cluster. The first approach is to run a DQ spark submit job using Databricks UI and the second approach is by invoking Databricks rest API. We have tested both approaches against different cluster versions of DataBricks (See below table). Below is the full documentation to demonstrate these paths. https://dq-docs.collibra.com/apis-1/notebook/cdq-+-databricks/dq-databricks-submit\ Please note that these are only examples to demonstrate how to achieve DQ spark submit to Databricks's cluster. These paths are not supported in production and the Collibra DQ team does not support any bug coverages or professional services or customer questions for these flows. \3. JDBCCollibra DQ users can create JDBC connections in CDQ UI and connect to their Databricks database. This is scheduled for 2022.05 release.Delta Lake and JDBC connectivity has been validated against Spark 3.01 Collibra DQ package, Databricks 7.3 LTS and SparkJDBC41.jar. This is available as Preview. No other combinations have been certified at this time. Spark submit using the Databricks spark master url is not supported. Connectivity to AthenaYour host can connect to Athena with either an Athena public service endpoint or an Athena private endpoint. For more information on setting the endpoint, see Command line options and Boto3 documentation.JDBC URL Examplejdbc:awsathena://AwsRegion=us-east-1;User=xxx;Password=xxx;S3OutputLocation=s3://data-bucket;MetadataRetrievalMethod=QueryAthena uses port 443 to connect to the host.Athena's streaming API uses port 444 to stream the query results. When you use a JDBC/ODBC driver, Athena uses this port to stream the query results to the JDBC/ODBC driver installed on the client host. Therefore, unblock this port when you use a JDBC/ODBC driver to connect to Athena. If this port is blocked, your business intelligence tool might time out or fail to show query results when you run a query.Use the appropriate JDBC connection URLs in your business tool configuration according to your private DNS configuration for your endpoint. Use the following connection string if you turned off the private DNS: jdbc:awsathena://vpce-.athena.us-east-1.vpce.amazonaws.com:443Use the following connection string if you turned on the private DNS: jdbc:awsathena://athena.us-east-1.amazonaws.com:443Be sure that the security group attached to your VPC endpoint allows traffic from the host where you installed the JDBC/ODBC driver.Be sure that port 444 isn't blocked. If you use an AWS PrivateLink endpoint to connect to Athena, then be sure that the security group attached to the AWS PrivateLink endpoint is open to inbound traffic on port 444. Athena uses port 444 to stream query results. If port 444 is blocked, then the results aren't streamed back to your client host. In such situations, you might receive an error message similar to [Simba][AthenaJDBC](100123) An error has occurred. Exception during column initialization. This can also cause the business intelligence tool to stop responding and not display the query results.telnet athena.us-east-1.amazonaws.com 443telnet glue.us-east-1.amazonaws.com 443Minimum Permissions{ Version: 2012-10-17, Statement: [{ Sid: VisualEditor0, Effect: Allow, Action: [athena:StartQueryExecution, s3:ListBucketMultipartUploads, athena:GetQueryResultsStream, glue:GetTables, glue:GetPartitions, athena:GetQueryResults, glue:BatchGetPartition, s3:ListBucket, glue:GetDatabases,
athena:ListQueryExecutions, s3:ListMultipartUploadParts, glue:GetTable, glue:GetDatabase, athena:GetWorkGroup, s3:PutObject, s3:GetObject, glue:GetPartition, glue:GetCatalogImportStatus, athena:StopQueryExecution, athena:GetQueryExecution, s3:GetBucketLocation, athena:BatchGetQueryExecution, athena:DeletePreparedStatement, athena:CreatePreparedStatement], Resource: [arn:aws:athena:*:<AWSAccountID>:workgroup/primary, arn:aws:s3:::<S3 bucket name>/*, arn:aws:s3:::<S3 bucket name>, arn:aws:glue:*:<AWSAccountID>:catalog, arn:aws:glue:*:<AWSAccountID>:database/<database name>, arn:aws:glue:*:<AWSAccountID>:table/<database name>/*] }]}Connectivity to BigQuerySteps for the BigQuery ConnectionDriver: com.simba.googlebigquery.jdbc42.DriverLocate your service account owl-gcp.json (your org auth key in JSON format)Create a JDBC connection (for example only do not use this JDBC URL): jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=;OAuthType=0;OAuthServiceAcctEmail=<1234567890>-compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/bq-gcp.json;Timeout=86400Requires a path to a JSON file that contains the service account for authorization. That same file is provided to the Spark session to make a direct to storage connection for maximum parallelism once Core fires up.” Helpful tip: This JSON file can be uploaded to your bigquery directory using the add driver. To succeed with the connection, you must follow these steps:Password for the BigQuery Connector form in Collibra DQ must be a base64 encoded string created from the json file (see step 3. above) and input as password. For example: base64 your_json.json -w 0 or cat your_json.json | base64 -w 0Check that this JAR exists and is on the path of the Collibra DQ Web UI server (eg. <INSTALL_PATH>/owl/drivers/bigquery/core). Look at your driver directory location which contains this BigQuery JAR: spark-bigquery_2.12-0.18.1.jarMake sure these JARs present in <INSTALL_PATH>/owl/drivers/bigquery/: ****animal-sniffer-annotations-1.19.jargoogle-api-services-bigquery-v2-rev20201030-1.30.10.jargrpc-google-cloud-bigquerystorage-v1beta1-0.106.4.jarlistenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jarannotations-4.1.1.4.jargoogle-auth-library-credentials-0.22.0.jargrpc-google-cloud-bigquerystorage-v1beta2-0.106.4.jaropencensus-api-0.24.0.jarapi-common-1.10.1.jargoogle-auth-library-oauth2-http-0.22.0.jargrpc-grpclb-1.33.1.jaropencensus-contrib-http-util-0.24.0.jarauto-value-annotations-1.7.4.jarGoogleBigQueryJDBC42.jargrpc-netty-shaded-1.33.1.jarperfmark-api-0.19.0.jaravro-1.10.0.jargoogle-cloud-bigquery-1.125.0.jargrpc-protobuf-1.33.1.jarprotobuf-java-3.13.0.jarchecker-compat-qual-2.5.5.jargoogle-cloud-bigquerystorage-1.6.4.jargrpc-protobuf-lite-1.33.1.jarprotobuf-java-util-3.13.0.jarcommons-codec-1.11.jargoogle-cloud-core-1.93.10.jargrpc-stub-1.33.1.jarproto-google-cloud-bigquerystorage-v1-1.6.4.jarcommons-compress-1.20.jargoogle-cloud-core-http-1.93.10.jargson-2.8.6.jarproto-google-cloud-bigquerystorage-v1alpha2-0.106.4.jarcommons-lang3-3.5.jargoogle-http-client-1.38.0.jarguava-23.0.jarproto-google-cloud-bigquerystorage-v1beta1-0.106.4.jarcommons-logging-1.2.jargoogle-http-client-apache-v2-1.38.0.jarhttpclient-4.5.13.jarproto-google-cloud-bigquerystorage-v1beta2-0.106.4.jarconscrypt-openjdk-uber-2.5.1.jargoogle-http-client-appengine-1.38.0.jarhttpcore-4.4.13.jarproto-google-common-protos-2.0.1.jarcoregoogle-http-client-jackson2-1.38.0.jarj2objc-annotations-1.3.jarproto-google-iam-v1-1.0.3.jarerror_prone_annotations-2.4.0.jargoogle-oauth-client-1.31.1.jarjackson-annotations-2.11.0.jargrpc-alts-1.33.1.jarjackson-core-2.11.3.jarslf4j-api-1.7.30.jarfailureaccess-1.0.1.jargrpc-api-1.33.1.jarjackson-databind-2.11.0.jargax-1.60.0.jargrpc-auth-1.33.1.jarjavax.annotation-api-1.3.2.jarthreetenbp-1.5.0.jargax-grpc-1.60.0.jargrpc-context-1.33.1.jarjoda-time-2.10.1.jargax-httpjson-0.77.0.jargrpc-core-1.33.1.jarjson-20200518.jargoogle-api-client-1.31.1.jargrpc-google-cloud-bigquerystorage-v1-1.6.4.jarjsr305-3.0.2.jarYou may get a CLASSPATH conflict regarding the JAR files.Make sure the BigQuery connector Scala version matches your Spark Scala version..NetworkingPlease account for these urls from a networking and firewall perspective.logging.googleapis.comoauth2.googleapis.comgoogleapis.combigquerystorage.googleapis.combigquery.googleapis.comPermissionsMake sure the project and account have appropriate permissions. These are common permissions to provide to the account.ViewsSupport for BigQuery views is available from the 2021.11 release onward. There are BigQuery limitations on creating views from different data sets (collections). Optionally, you can add the viewsEnabled=true parameter to the connection property when defining the connection.For read/write access to BigQuery, you can use the Spark BigQuery connector. To use this connector, ensure that the following configurations are set: viewsEnabled is set to true.materializationDataset is set to a data set where the GCP user has table creation permission.materializationProject is optional.Spark Version 2Be sure to use the Spark BigQuery connector that is compatible with your version of Spark.Also, when using Spark <3 and Scala 2.11, add the following props to the connection properties:dq.bq.legacy=true,viewsEnabled=trueConnectivity to DatabricksThere are three ways to utilize Databricks infrastructure with Collibra Data Quality:JDBC (Supported)Notebook/SDK (Supported)Spark Submit (Not Supported)JDBC (Supported)As of May 2022, certification, support and optional packaging is available.As of September 2022, Databricks JDBC driver version 2.6.27 is packaged as part of both standalone and Kubernetes download packages. The Databricks Simba driver (version 2.6.22) is no longer packaged for Kubernetes. As a result of this change, the Databricks connection template has changed, and any existing connection using the old driver (2.6.22) must be updated. For more information on updating your drivers, refer to Standalone Upgrade.Connecting to a Databricks SQL warehouseThe following table shows the connection details for the required fields of a Databricks JDBC connection.PropertyDescriptionNameThe unique name used for your connection. For example, databricks-sql.Connection URLThe connection string used to establish a connection to Databricks. This should adhere to the following format: jdbc:databricks://[Host]:[Port]/[Schema];[Property1]=[Value]; [Property2]=[Value];...For example, jdbc:databricks://<your-account-here>.cloud.databricks.com:443/default;transportMode=http;ssl=1;AuthMech=3;httpPath=/sql/1.0/warehouses/xxx;UID=token;PWD=<your-token-here>Driver NameThe driver class name used for your connection. For example, com.databricks.client.jdbc.DriverPortThe port used to establish a connection. The default is 0.Connecting to Databricks Unity CatalogConnectivity to Databricks Unity Catalog is available in Collibra DQ versions 2023.01 or later.PropertyDescriptionNameThe unique name used for your connection. For example, databricks-unity-catalog.Connection URLThe connection string used to establish a connection to Databricks. This should adhere to the following format and include the catalog name in the connection string:jdbc:databricks://[Host]:[Port]/[Schema];[Property1]=[Value]; [Property2]=[Value];...ConnCatalog=catalog_nameFor example, jdbc:databricks://<your-account-here>.cloud.databricks.com:443/default;transportMode=http;ssl=1;AuthMech=3;httpPath=/sql/1.0/warehouses/xxx;UID=token;PWD=xxxx;ConnCatalog=cdqDriver NameThe driver class name used for your connection. For example, com.databricks.client.jdbc.DriverPortThe port used to establish a connection. The default is 0.Credentialsuser:tokenpassword: <your-user-generated-token>JarYou can download the Databricks JDBC zip file by following one of the links below.For the latest Databricks driver version, refer to the official Databricks JDBC Driver page. For archived Databricks driver versions, refer to the official Databricks JDBC Driver archive.Databricks JDBC driver version 2.6.27 is packaged as part of both standalone and Kubernetes download packages.Notebook (Supported)Pyspark SDKScala SDKCollibra DQ + DatabricksDatabricks no longer supports Runtime 6.5 or 10.3. Therefore, Collibra DQ Profile 2.45 is not runnable on Databricks.https://docs.databricks.com/release-notes/runtime/10.3ml.htmlThe following table shows the latest supported versions of Collibra DQ Profiles and their matching Databricks Run times. (last updated: September 2022).Spark Submit (Not Supported)Spark Master URLDatabricks Jobs APIRestUIDQ-Databricks SubmitWhile these are not officially supported, there is a reference to architecture and implementation pattern for how to do a Databricks Job submission.CDQ Connection to Databricks via JDBCMake a Collibra DQ Connection to DatabricksMake a Collibra DQ connection to Databricks with the following steps.The Databricks Driver is packaged with the installation and can be found in the Driver folder.StepsLogin to your Collibra DQ instance.Click the icon, then click Connection.Locate the DATABRICKS driver DatabricksJDBC42. Click Add.Complete the following fields:Name - Add a name for the connection (for example, Databricks_JDBC).Connection URL - Enter the URL for the connection: jdbc:databricks://<your-account-here>..cloud.databricks.com:443/default;transportMode=http;ssl=1;httpPath=sql/protocolv1/o/3633393438801721/0915-195703-sh82m595;AuthMech=3;UID=token;PWD=<your-token-here>Port - Enter the port for the connection.Driver Name - Enter the name for the driver (for example, com.databricks.client.jdbc.Driver)Auth Type - Select the type of authorization from the drop-down list (for example, Username/Password).Username - Username is token.Password - The token you entered in the Connection
URL.Driver Location - Enter the location where the driver resides.Your connection should look similar to the following screenshot:Click Save.If your connection information is valid, you receive the following message:You have now successfully made a Collibra DQ connection to Databricks via JDBC.To view the connection, you can navigate to the Collibra DQExplorer page and click Databricks JDBC connection.Choose your dataset and continue to create your DQ Job.The following screenshot is an example of the default > nyse database.RecapInput JDBC credentials:Browse connection:Run Job:See results:Connectivity to HiveExample URLjdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal:10000/default;AuthMech=1;KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal;KrbRealm=CW.COM;KrbServiceName=hive;SSL=1;SSLKeyStore=/opt/cloudera/security/pki/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal-server.jks;AllowSelfSignedCerts=1;SSLKeyStorePwd=password;principal=hive/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal@CW.COMDriver Namecom.simba.hive.jdbc41.HS2DriverDriver Propertieshive.resultset.use.unique.column.names=falseWhat Does each option meanBase connection string = jdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal:10000/defaultAuthentication identifier = AuthMech=1 (which states Kerberos)Kerberos Hive Server FQDN = KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internalKerberos Realm used = KrbRealm=CW.COM (Not necessarily needed)Kerberos Service name = KrbServiceName=hiveEnabling SSL = SSL=1The SSL KeyStore to be used to = SSLKeyStore=/opt/cloudera/security/pki/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal-server.jks (Could use SSLTrustStore also)Allow for Self Signed certifications to be OK = AllowSelfSignedCerts=1 (our environment used self signed certs)Password to the KeyStore = SSLKeyStorePwd=password (Not necessarily needed)Kerberos Principal to use to Authenticate with = principal=hive/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal@CW.COMExample ConnectionFAQIt is very common to require this connection property when not using the default schema. Remember to add this to the connection properties when defining the connection.hive.resultset.use.unique.column.names=falseConnecting to CDH 5.16 Hive SSL/TLS/Kerberos SetupThe Cloudera Hive JDBC drivers used https://www.cloudera.com/downloads/connectors/hive/jdbc/2-5-16.htmlJDBC Connection String usedjdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal:10000/default;AuthMech=1;KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal;KrbRealm=CW.COM;KrbServiceName=hive;SSL=1;SSLKeyStore=/opt/cloudera/security/pki/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal-server.jks;AllowSelfSignedCerts=1;SSLKeyStorePwd=password;principal=hive/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal@CW.COMWhat Does each option meanBase connection string = jdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal:10000/defaultAuthentication identifier = AuthMech=1 (which states Kerberos)Kerberos Hive Server FQDN = KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internalKerberos Realm used = KrbRealm=CW.COM (Not necessarily needed)Kerberos Service name = KrbServiceName=hiveEnabling SSL = SSL=1The SSL KeyStore to be used to = SSLKeyStore=/opt/cloudera/security/pki/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal-server.jks (Could use SSLTrustStore also)Allow for Self Signed certifications to be OK = AllowSelfSignedCerts=1 (our environment used self signed certs)Password to the KeyStore = SSLKeyStorePwd=password (Not necessarily needed)Kerberos Principal to use to Authenticate with = principal=hive/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal@CW.COMWithin the Collibra DQ Web UI you have to specify the following (See ScreenShot below)Name = hivesslConnection URL = jdbc:hive2://cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal:10000/default;AuthMech=1;KrbHostFQDN=cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal;KrbRealm=CW.COM;KrbServiceName=hive;SSL=1;SSLKeyStore=/opt/cloudera/security/pki/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal-server.jks;AllowSelfSignedCerts=1;SSLKeyStorePwd=password;principal=hive/cdh-instance1.us-east1-b.c.owl-hadoop-cdh.internal@CW.COMPort = 10000Driver Name = com.cloudera.hive.jdbc4.HS2DriverUsername = userspark@CW.COMPassword = passwordConnectivity to OracleExample URLjdbc:oracle:thin:@10.589.0.31:1521:DEV Driver Nameoracle.jdbc.OracleDriver Connection Properties Recognized by Oracle JDBC DriversNameShort NameTypeDescriptionusern/aStringthe user name for logging into the databasepasswordn/aStringthe password for logging into the databasedatabaseserverStringthe connect string for the databaseinternal_logonn/aStringa role, such as sysdba or sysoper, that allows you to log on as sysdefaultRowPrefetchprefetchString (containing integer value)the default number of rows to prefetch from the server (default value is 10)remarksReportingremarksString (containing boolean value)true if getTables() and getColumns() should report TABLE_REMARKS; equivalent to using setRemarksReporting() (default value is false)defaultBatchValuebatchvalueString (containing integer value)the default batch value that triggers an execution request (default value is 10)includeSynonymssynonymsString (containing boolean value)true to include column information from predefined synonym SQL entities when you execute a DataBaseMetaData getColumns() call; equivalent to connection setIncludeSynonyms() call (default value is false)processEscapesn/aString (containing boolean value)false to disable escape processing for statements (Statement or PreparedStatement) created from this connection. Set this to false if you want to avoid many calls to Statement.setEscapeProcessing(false);. This is espcially usefull for PreparedStatement where a call to setEscapeProcessing(false) would have no effect. The default is true.defaultNCharn/aString (containing boolean value)false is the default. If set to true, the default behavior for handling character datatypes is changed so that NCHAR/NVARCHAR2 become the default. This means that setFormOfUse() won't be needed anymore when using NCHAR/NVARCHAR2. This can also be set as a java property :java -Doracle.jdbc.defaultNChar=true myApplicationuseFetchSizeWithLongColumnn/aString (containing boolean value)false is the default. THIS IS A THIN ONLY PROPERTY. IT SHOULD NOT BE USED WITH ANY OTHER DRIVERS.If set to true, the performance when retrieving data in a 'SELECT' will be improved but the default behavior for handling LONG columns will be changed to fetch multiple rows (prefetch size). It means that enough memory will be allocated to read this data. So if you want to use this property, make sure that the LONG columns you are retrieving are not too big or you may run out of memory. This property can also be set as a java property : java -Doracle.jdbc.useFetchSizeWithLongColumn=true myApplicationSetFloatAndDoubleUseBinaryn/aString (containing boolean value)false is the default. If set to true, causes the java.sql.PreparedStatment setFloat and setDouble API's to use internal binary format as for BINARY_FLOAT and BINARY_DOUBLE parameters. See oracle.jdbc.OraclePreparedStatement setBinaryFloat and setBinaryDouble https://docs.oracle.com/cd/E11882_01/appdev.112/e13995/oracle/jdbc/OracleDriver.htmlConnectivity to PrestoExample URLjdbc:presto://xyz.presto.svc.cluster.local:8080/databaseDriver Namecom.facebook.presto.jdbc.PrestoDriverConnection PropertiesThese methods may be mixed; some parameters may be specified in the URL while others are specified using properties. However, the same parameter may not be specified using both methods.Parameter Reference NameDescriptionuserUsername to use for authentication and authorization.passwordPassword to use for LDAP authentication.socksProxySOCKS proxy host and port. Example: localhost:1080httpProxyHTTP proxy host and port. Example: localhost:8888protocolsComma delineated list of HTTP protocols to use. Example: protocols=http11. Acceptable values: http11,http10,http2applicationNamePrefixPrefix to append to any specified ApplicationName client info property, which is used to set the source name for the Presto query. If neither this property nor ApplicationName are set, the source for the query will be presto-jdbc.accessTokenAccess token for token based authentication.SSLUse HTTPS for connectionsSSLKeyStorePathThe location of the Java KeyStore file that contains the certificate and private key to use for authentication.SSLKeyStorePasswordThe password for the KeyStore.SSLTrustStorePathThe location of the Java TrustStore file that will be used to validate HTTPS server certificates.SSLTrustStorePasswordThe password for the TrustStore.KerberosRemoteServiceNamePresto coordinator Kerberos service name. This parameter is required for Kerberos authentication.KerberosPrincipalThe principal to use when authenticating to the Presto coordinator.KerberosUseCanonicalHostnameUse the canonical hostname of the Presto coordinator for the Kerberos service principal by first resolving the hostname to an IP address and then doing a reverse DNS lookup for that IP address. This is enabled by default.KerberosConfigPathKerberos configuration file.KerberosKeytabPathKerberos keytab file.KerberosCredentialCachePathKerberos credential cache.extraCredentialsExtra credentials for connecting to external services. The extraCredentials is a list of key-value pairs. Example: foo:bar;abc:xyz will create credentials abc=xyz and foo=barcustomHeadersCustom headers to inject through JDBC driver. The customHeaders is a list of key-value pairs. Example: testHeaderKey:testHeaderValue will inject the header testHeaderKey with value testHeaderValue. Values should be percent encoded.Connectivity to RedshiftExample URLjdbc:redshift://redshift-cluster-name.kdkcis9g8.us-east-1.redshift.amazonaws.com:5439/devDriver Namecom.amazon.redshift.jdbc.DriverAmazon Redshift offers drivers for tools that are
compatible with the JDBC 4.2 API. For information about the functionality supported by these drivers, see the Amazon Redshift JDBC driver release notes.For detailed information about how to install the JDBC driver version 1.0, reference the JDBC driver libraries, and register the driver class, see Amazon Redshift JDBC driver installation and configuration guide.For each computer where you use the Amazon Redshift JDBC driver, make sure that Java Runtime Environment (JRE) 8.0 is installed.If you use the Amazon Redshift JDBC driver for database authentication, make sure that you have AWS SDK for Java 1.11.118 or later in your Java class path. If you don't have AWS SDK for Java installed, download the ZIP file with JDBC 4.2–compatible driver (without the AWS SDK) and driver dependent libraries for the AWS SDK:JDBC 4.2–compatible driver (without the AWS SDK) and driver dependent libraries for AWS SDK files version 1.2.55.The class name for this driver is com.amazon.redshift.jdbc42.Driver.This ZIP file contains the JDBC4.2–compatible driver (without the AWS SDK) and its dependent library files. Unzip the dependent jar files to the same location as the JDBC driver. Only the JDBC driver needs to be in the CLASSPATH because the driver manifest file contains all dependent library file names which are located in the same directory as the JDBC driver. For more information about how to install the JDBC driver, see Amazon Redshift JDBC driver installation and configuration guide.Use this Amazon Redshift JDBC driver with the AWS SDK that is required for IAM database authentication.JDBC 4.2–compatible driver (without the AWS SDK) version 1.2.55.The class name for this driver is com.amazon.redshift.jdbc42.Driver.Be sure to use ANTLR version 4.8.1. The antlr4-runtime-4.8-1.jar is included in the ZIP download link above with the JDBC 4.2–compatible driver (without the AWS SDK) and driver dependent libraries for the AWS SDK.For more information about previous driver versions, see Use previous JDBC driver versions with the AWS SDK for Java.Then download and review the Amazon Redshift ODBC and JDBC driver license agreement.If your tool requires a specific previous version of a driver, see Use previous JDBC driver version 1.0 driver versions in certain cases.Getting the JDBC URL Before you can connect to your Amazon Redshift cluster from a SQL client tool, you need to know the JDBC URL of your cluster. The JDBC URL has the following format: jdbc:redshift://endpoint:port/database.NoteA JDBC URL specified with the former format of jdbc:postgresql://endpoint:port/database still works.The fields of the format shown preceding have the following values.FieldValuejdbcThe protocol for the connection.redshiftThe subprotocol that specifies to use the Amazon Redshift driver to connect to the database.endpointThe endpoint of the Amazon Redshift cluster.portThe port number that you specified when you launched the cluster. If you have a firewall, make sure that this port is open for you to use.databaseThe database that you created for your cluster.The following is an example JDBC URL: jdbc:redshift://examplecluster.abc123xyz789.us-west-2.redshift.amazonaws.com:5439/devFor information about how to get your JDBC connection, see Finding your cluster connection string.If the client computer fails to connect to the database, you can troubleshoot possible issues. For more information, see Troubleshooting connection issues in Amazon Redshift.\https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.htmlConnectivity to SnowflakeExample URLJDBC Driver Connection Stringjdbc:snowflake://accountname.us-east-2.aws.snowflakecomputing.com?db=cdq&warehouse=cdqwDriver Namenet.snowflake.client.jdbc.SnowflakeDriver The previous driver class, com.snowflake.client.jdbc.SnowflakeDriver, is still supported but is deprecated (i.e. it will be removed in a future release, TBD).Limit Databases DisplayedAdd this connection property to limit the databases and tables displayed in the Explorer view. This will reduce the entries in the Explorer window to only those tables that the user can access.CLIENT_METADATA_REQUEST_USE_CONNECTION_CTX=TRUEConnection ParametersFor documentation on individual connection parameters, see the JDBC Driver Connection Parameter Reference.<account_identifier>Specifies the account identifier for your Snowflake account. For details, see Account Identifiers. For examples of the account identifier used in a JDBC connection string, see Examples.<connection_params>Specifies a series of one or more parameters, in the form of <param>=<value>, with each parameter separated by the ampersand character (&), and no spaces anywhere in the connection string.For documentation on individual connection parameters, see the JDBC Driver Connection Parameter Reference.Other ParametersAny session parameter can be included in the connection string. For example:CLIENT_SESSION_KEEP_ALIVE=<Boolean>Specifies whether to keep the current session active after a period of inactivity, or to force the user to login again. If the value is true, Snowflake keeps the session active indefinitely, even if there is no activity from the user. If the value is false, the user must log in again after four hours of inactivity.Default is false.For descriptions of all the session parameters, see Parameters.ExamplesThe following is an example of the connection string that uses an account identifier that specifies the account myaccount in the organization myorganization.jdbc:snowflake://myorganization-myaccount.snowflakecomputing.com/?user=peter&warehouse=mywh&db=mydb&schema=publicThe following is an example of a connection string that uses the account locator xy12345 as the account identifier:jdbc:snowflake://xy12345.snowflakecomputing.com/?user=peter&warehouse=mywh&db=mydb&schema=publicNote that this example uses an account in the AWS US West (Oregon) region. If the account is in a different region or if the account uses a different cloud provider, you need to specify additional segments after the account locator.Configuring the JDBC Driver -- Snowflake DocumentationPrivate LinkPlease let us know if you are using private link for Snowflake. Setup can vary depending on the endpoint that is created. In most cases, use the private endpoint as a normal JDBC connection.Snowflake CommunityAdvanced Private Link and ProxyHere is an example JDBC string connection we used that take into account the following setup:<ACCOUNT_NAME> is the full link to the Snowflake instance with the private link.DQ installed on-prem in a private IaaS and DQ is behind a proxy.If the Snowflake instance is using a private link, whitelist the private link URL to bypass the proxy.In addition to connectivity to the Snowflake instance, the JDBC driver tries to access Snowflake Blob storage by connecting directly to some S3 buckets managed by Snowflake.Those need to be whitelisted as well.Example URLjdbc:snowflake://<ACCOUNT_NAME>/?tracing=all&useProxy=true&proxyHost=10.142.22.37&proxyPort=8080&proxyUser=xyz&proxyPassword=xyz&nonProxyHosts=*.privatelink.snowflakecomputing.com%7Csfc-eu-ds1-customer-stage.s3.eu-central-1.amazonaws.comConfiguring Key Pair AuthenticationCollibra DQ supports key pair authentication, which is an alternative to basic authentication methods, like username and password, and provides enhanced authentication security. There are two ways to use key pair authentication on Snowflake connections:Via the Connection URL.Via the Driver Properties.Configuring key pair authentication via the Connection URLThe table below shows the properties used to configure key pair authentication with a Connection URL in the New JDBC Connection modal.PropertyDescriptionConnection URLjdbc:snowflake://<URL>?db=owluserdb&warehouse=owluserdb&authenticator=snowflake_jwt&private_key_file=/<your-file-path>/keytab/snowflake_key.p8&private_key_file_pwd=<your-password>The file name should include a .p8 extension, as shown in the example above.Connection URL parameters must be appended by ampersand (&).UsernameThe username for which the private key is created. For example, DQ_User.PasswordThe password field must be left empty.Configuring key pair authentication via the Driver PropertiesThe table below shows the properties used to configure key pair authentication with the Driver Properties in the New JDBC Connection modal.PropertyDescriptionUsernameThe username for which the private key is created. For example, DQ_User.PasswordThe password field must be left empty.Driver Propertiesauthenticator=snowflake_jwt,private_key_file=/<your-file-path>/snowflakeKeys/rsa_key2.p8,private_key_file_pwd=<your-password>The file name should include a .p8 extension, as shown in the example above.Driver properties must be comma separated, as shown in the example above. Setting up Snowflake Pushdown As of the 2022.11 release, Snowflake Pushdown is available as a public beta offering for participating customers.To get started with Snowflake Pushdown, a user with Admin access must run the following script to set up users, roles, and the Collibra DQ virtual warehouse.StepDetails1Update the following session variables:set dq_username='SERVICE_ACCOUNT_USER';set dq_password='SERVICE_ACCOUNT_PASSWORD';set dq_warehouse_name='COLLIBRA_DQ_WH';set dq_warehouse_size='XSMALL';set user_database='TARGET_DB';set dq_role_name='COLLIBRA_DQ_ROLE';dq_password must be in uppercase.Do not update the variables for Collibra DQ.2Run as an admin user.USE ROLE ACCOUNTADMIN;3Create a user and role for Collibra DQ.CREATE ROLE IF NOT EXISTS identifier($dq_role_name);CREATE USER IF NOT EXISTS identifier($dq_username) PASSWORD=$dq_password DEFAULT_ROLE=$dq_role_name;GRANT ROLE identifier($dq_role_name) TO USER identifier($dq_username);4Create a virtual warehouse to run Collibra DQ. The virtual warehouse is referenced in the connection URL to direct DQ traffic to it.CREATE WAREHOUSE IF NOT EXISTS identifier($dq_warehouse_name) WAREHOUSE_SIZE=$dq_warehouse_size
INITIALLY_SUSPENDED=TRUEAUTO_SUSPEND = 5 AUTO_RESUME = TRUE;5Assign privileges to the Collibra DQ warehouse.GRANT OPERATE, USAGE, MONITOR ON WAREHOUSE identifier($dq_warehouse_name) TO ROLE identifier($dq_role_name);6Assign metadata access to your Collibra DQ role.GRANT USAGE,MONITOR on DATABASE identifier($user_database) to identifier($dq_role_name);GRANT USAGE,MONITOR ON ALL SCHEMAS IN DATABASE identifier($user_database) to identifier($dq_role_name);7Update the session variable user_database and grant read access to objects in the user database. Run this portion for each target database within which you want to run DQ checks.USE DATABASE identifier($user_database);GRANT SELECT ON ALL TABLES IN DATABASE identifier($user_database) TO ROLE identifier($dq_role_name);GRANT SELECT ON ALL VIEWS IN DATABASE identifier($user_database) TO ROLE identifier($dq_role_name);GRANT SELECT ON ALL EXTERNAL TABLES IN DATABASE identifier($user_database) TO ROLE identifier($dq_role_name);GRANT SELECT ON ALL STREAMS IN DATABASE identifier($user_database) TO ROLE identifier($dq_role_name);GRANT SELECT ON FUTURE TABLES IN DATABASE identifier($user_database) TO ROLE identifier($dq_role_name);GRANT SELECT ON FUTURE VIEWS IN DATABASE identifier($user_database) TO ROLE identifier($dq_role_name);GRANT SELECT ON FUTURE EXTERNAL TABLES IN DATABASE identifier($user_database) TO ROLE identifier($dq_role_name);GRANT SELECT ON FUTURE STREAMS IN DATABASE identifier($user_database) TO ROLE identifier($dq_role_name);Please ensure the SQL variables are updated in the above script before proceeding.To run a Snowflake Pushdown job, you must opt in when setting up your Snowflake connection. To toggle Pushdown capabilities on, ensure that the Pushdown checkbox in the Snowflake connection modal is checked. Connectivity to SQL ServerExample URL jdbc:sqlserver://$host:1433;databaseName=ContosoRetailDWDriver Namecom.microsoft.sqlserver.jdbc.SQLServerDriverSetupNavigate to the connections pageLocate the SQL Server templateFill in the required JDBC detailsClick save to validate the connectionMicrosoft JDBC Driver for SQL Server - JDBC Driver for SQL ServerTroubleshootingThe Microsoft JDBC Driver for SQL Server requires that TCP/IP be installed and running to communicate with your SQL Server database. You can use the SQL Server Configuration Manager to verify which network library protocols are installed.A database connection attempt might fail for many reasons. These can include the following:TCP/IP is not enabled for SQL Server, or the server or port number specified is incorrect. Verify that SQL Server is listening with TCP/IP on the specified server and port. This might be reported with an exception similar to: The login has failed. The TCP/IP connection to the host has failed. This indicates one of the following: SQL Server is installed but TCP/IP has not been installed as a network protocol for SQL Server by using the SQL Server Network Utility for SQL Server 2000 (8.x), or the SQL Server Configuration Manager for SQL Server 2005 (9.x) and later.TCP/IP is installed as a SQL Server protocol, but it is not listening on the port specified in the JDBC connection URL. The default port is 1433, but SQL Server can be configured at product installation to listen on any port. Make sure that SQL Server is listening on port 1433. Or, if the port has been changed, make sure that the port specified in the JDBC connection URL matches the changed port. For more information about JDBC connection URLs, see Building the connection URL.The address of the computer that is specified in the JDBC connection URL does not refer to a server where SQL Server is installed and started.The networking operation of TCP/IP between the client and server running SQL Server is not operable. You can check TCP/IP connectivity to SQL Server by using telnet. For example, at the command prompt, type telnet 192.168.0.0 1433 where 192.168.0.0 is the address of the computer that is running SQL Server and 1433 is the port it is listening on. If you receive a message that states Telnet cannot connect, TCP/IP is not listening on that port for SQL Server connections. Use the SQL Server Network Utility for SQL Server 2000 (8.x), or the SQL Server Configuration Manager for SQL Server 2005 (9.x) and later to make sure that SQL Server is configured to use TCP/IP on port 1433.The port that is used by the server has not been opened in the firewall. This includes the port that is used by the server or optionally, the port associated with a named instance of the server.The specified database name is incorrect. Make sure that you are logging on to an existing SQL Server database.The user name or password is incorrect. Make sure that you have the correct values.When you use SQL Server Authentication, the JDBC driver requires that SQL Server is installed with SQL Server Authentication, which is not the default. Make sure that this option is included when you install or configure your instance of SQL Server.See also Diagnosing problems with the JDBC driverConnecting to SQL Server with the JDBC driverFAQSQL Server represents RDS, Azure SQL, and traditional SQL Server installationsAdding ConnectionsHow to Add DB Connection via UIWe will add a connection named metastore that connects to local Postgres server (localhost:5432/postgres)Login to DQ Web and navigate to Admin Console.From the Admin Console, click on the Connections tile.Click on Add button in Postgres box to add a Postgres connection.Default Postgres JDBC template connection is shown. This modal is populated with basic values what Postgres connection setting should look like.Replace the Connection URL to point to the Postgres server you want to run DQ Jobs against. In this example, jdbc:postgresql://localhost:5432/postgresAlso change Driver Location to the JDBC Driver for Postgres in your installation. Click on the folder icon and click on Postgres driver path. These Driver Directories are default JDBC Drivers provided by DQ installation (usually in $OWL_BASE/owl/drivers/*)The following screenshot shows what the new connection setting should look like. Make sure to provide the correct Postgres Username and Password (if using Username/Password for authentication). Press Save to continue. This action will attempt to establish a connection.Link Connection to AgentMake sure to Agent to a DQ Agent, if required.Remote file connectionsAbout remote file connectionsThis section is an overview of the supported data file formats and the limitations of connecting to a remote file. Supported file typesFile formats differ in structure, so you might need to prepare your data before establishing a connection. TypeFile structureNotesDelimited (CSV, TSV, etc.)StructuredThe default delimiter is comma (for example, CSV).ParquetStructured AvroStructured JSONSemi-structured ORCSemi-structured XMLSemi-structured DeltaSemi-structured Supported delimitersThe following table is a list of supported delimiters available in the Delimiter dropdown menu.TypeFormatDescriptionCommaCSV, is used to separate values in the file. This is the default delimiter for files. TabTSVtab is used to separate values in the file.SemicolonCSV; is used to separate values in the file.Double QuoteCSV is used to separate values in the file.Single QuoteCSV' is used to separate values in the file.PipeTXT\| is used to separate values in the text file.SOHTXTA Unicode character 'START OF HEADING' (U+0001) is an invisible control character.CustomN/AAdd a custom delimiter. Support for custom delimiters may vary.Connectivity to Hadoop Distributed File System (HDFS)PrerequisitesTo configure the HDFS connector, you need:Admin permissions in your Collibra DQ instance.Access to an HDFS cluster.StepsIn the main menu, hover over the gear icon and click Connection.The Connections page opens.Scroll down to the HDFS card.Click the Add button to add a new HDFS connection.The New Remote File Connection (HDFS) modal opens.Enter the values for each property.PropertyDescriptionNameThe unique name of your HDFS connector.Connection URLThe HDFS URL used for your connection.Target AgentThe target agent lets you select an agent for your connection.Auth TypeThe method used to authorize your connection.Note: If you use an Unsecured Auth Type, no other authorization fields are required. This is not recommended.PrincipalThe service principal used to let Collibra Data Quality access your connection.KeytabThe keytab used to authorize your connection.Note: Only applicable when you select Keytab as the Auth Type.TGTThe Ticket Granting Ticket used to authorize your connection.Note: Only applicable when you select TGT Cache as the Auth Type.Driver PropertiesThe configurable driver properties for your connection.Note: This is an optional configuration.Click Save to establish your connection.What's next?After you save your HDFS connection:A confirmation message tells you that your connection is saved and valid.You can immediately access your HDFS connection Explorer (no-code).Begin to Profile (automatic).Connecting to Temp FilesTemp files allow you to upload and run a DQ job on files directly from your local machine. This is not a recommended connection for more advanced users but can be useful when you first get started in Collibra Data Quality. PrerequisitesTo connect to a temp file, you need:A file in a supported file format saved on your local drive.To verify that the Allow Temp File Upload for DQ Job checkbox under Admin Console > Security Configuration is checked.StepsIn the main menu, click the Explorer button. >> Explorer opens.Click Temp Files. >> Temp Files expands.Click Add Temp File. >> Upload Temp File alert opens.Click Choose File.Select a file from your local drive. Click Open. >> Your file loads into the Temp Files folder.In the Temp Files folder in the application, select your file.Click Create DQ Job.Verify your file information and enter the required information.Click Load File. >> The application automatically reads your
file and opens Scope & Range. Select your DQ layers. >> You can also leave the defaults set.Click Save & Run.Enter a unique name and any additional information. >> Note: Temp files differ from other remote file connections in that they do not require an agent to run successfully. This is a legacy component.Click the Run CMD tab. >> This is a bypass step for temp files.Click Run. >> Your job is sent to the Jobs queue.All temp files are only temporarily stored in the application. At 11:59 PM EST, all temp files uploaded on a given day are automatically removed. Adding a connection to a DQ AgentHow To Link DB Connection to Agent via UI When you add a new Database Connection, the DQ Agent must be given the permission to run DQ Job via the specified agent.From Fig 3, select the chain link icon next to the DQ Agent to establish link to DB Connection. A modal to add give that agent permission to run DQ Jobs by DB Connection name will show (Fig 5). The left-side panel is the list DB Connection names that has not been linked to the DQ Agent. The right-side panel is the list of DB Connection names that has the permission to run DQ Job.Double click the DQ Connection name to move from left to right. In Fig 5, DB Connection named metastore is being added to DQ Agent. Click the Update button to save the new list of DB Connections.Fig 5: Adding DB Connection named metastore to the DQ AgentFig 6: How to add all connections to the selected DQ Agent
	 Collibra DQ FeaturesProfile (automatic)Create profiles based on a table, view, or file.Users have the option to scan the entire dataset or users can apply custom filtering to select the depth (row filtering) and width (columns). Select the ScopeYou can find detailed instructions about selecting the scope in the Explorer section. You can run limits, by time, or full table scans if you have enough resources.Select Options (or leave defaults)Save / RunView the ResultsAutomatically ProfileCollibra DQ automatically profiles data sets over time to enable drill-ins for detailed insights and automated data quality. A profile is just the first step towards an amazing amount of auto discovery. Visualize segments of the data set and how the data set changes over time.Collibra DQ offers click or code options to run profiling.Data Set ProfileCollibra DQ creates a detailed profile of each dataset under management. This profile will later be used to both provide insight and automatically identify data quality issues.Pushdown ProfilingCollibra DQ can compute the Profile of a data set either via Spark (default) or a Data Warehouse (Profile Pushdown) where the data lives as the engine. When the Profile is computed using the datasource DBMS the user can choose two levels of pushdown:Full Profile - Perform full profile calculation except for TopNCount - Only perform row and column countsThe following DBMS systems are supported for Profile Pushdown:ImpalaHiveSnowflakePrestoTeradataSQL ServerPostgreSQLRedshiftMySQLOracleDB2Pushdown and parallel JDBC cannot be used together. If you are using pushdown, do not select the parallel JDBC option.Profile InsightsBy gathering a variety of different statistics, Collibra DQ's profile can provide a great deal of insight about a data set.To see the difference between baseline (historical) and current values, Collibra DQ provides a Delta % change column. In the Delta % change column, data is represented in a pie chart for quick visualization of the changes.To elaborate on the quality metrics:The profile can discover attributes then helps delineate the relative metrics around numeric v. non-numeric discovered. Filled - [1] Integer - The percentage of data that is numeric (or non-numeric) in a numeric (or non-numeric) discovered column. Mixed - [String] Integer - The percentage of data that is non-numeric (or numeric) in a numeric (or non-numeric) discovered column. Null - [] - The percentage of data that has no value at all.Empty - [] - The percentage of data that has a string instance of zero length.Profile includes a range of statistics:Actual DatatypeDiscovered DatatypesPercent NullPercent EmptyPercent Mixed TypesCardinalityMinimumMaximumMeanTopN / BottomNValue QuartilesMinimum (String) LengthMaximum (String) LengthSensitive Data Detection (Semantic)Collibra DQ can automatically identify any type of common PII columns.Collibra DQ is able to detect the following types of PII:EMAILPHONEZIP CODESTATE CDCREDIT CARDGENDERSSNIP ADDRESSEINOnce detected, Collibra DQ tags the column in the Profile as the discovered type and automatically applies a rule. You can choose to decline any discovered tag by clicking on it and confirming the delete action. This action also removes the rule associated with the tag.Correlation Matrix (Relationship)Discover hidden relationships and measure the strength of those relationships.HistogramsOften the first step in a data science project is to segment the data. Collibra DQ automatically does this using histograms.Data PreviewAfter profiling the data, for those users with appropriate rights, Collibra DQ provides a glimpse of the dataset. The Data preview tab also provides a some basic insights such as highlights of Data Shape issues and Outliers (if enabled), and Column Filtergram visualization.Behavior (automatic)This is commonly referred to as statistical change detection or data observability. Results are found under the Behavior tab (short for behavioral analytics). This tracks changes in the heuristics of the underlying data profiling metrics. The adaptive rules (AR) modal displays a complete list of monitoring types and criteria.Evolution of Rule based Data QualityThe main goal of Collibra Data Quality is to provide enterprise data quality insight while greatly reducing the volume of Rules that need to be written manually. When a data set is brought under management, Collibra profiles the data and builds a model for each data set. This allows Collibra to learn what normal means within the context of each data set. As the data changes, the definition of normal also changes. Instead of requiring you to adjust rule settings, Collibra continues to adjust its model. This approach enables Collibra to provide automated, enterprise-grade data quality coverage that removes the need to write dozens or even hundreds of rules per data set.Behaviors is turned on by default. Monitoring will calibrate and detect DQ observations, based on the profiling activity.Using Behavioral Analytics (Change Detection)Typically, data quality checks are scheduled to run on a given data set daily. Behavior data quality, or change detection, is built on top of data calculated by the Profile activity. The default settings will often work just fine, however, Collibra lets you specify two key parameters:ParameterDescriptionBehavior LookbackThe number of DQ checks that the model encompasses.For example: A lookback of 10 means that the model is based on the combined statistics from the last 10 DQ checks of a data set.Learning PhaseThe minimum number of DQ checks that are required before behavioral scoring is applied. Collibra DQ does not attempt to apply Behavioral scoring to a data set until at least this many DQ checks are run on it.Applicable Behavioral FactorsYou can choose to forego the application of any of the above factors to the scoring of the model. For example, you can instruct Collibra Data Quality to not track MIN and MAX ranges of values in columns by unchecking the MIN and MAX checkbox. This prevents Collibra from detecting any extreme values in any column of the dataset using the Behavioral model.With each run, Collibra Data Quality profiles the data set at the column level and begins to establish a model for the data set. Initially, there is no need for any manual intervention, just keep the data coming. Within a few runs, the model becomes sufficiently robust to begin detecting data quality issues that are otherwise covered by manual rules. For example, Collibra may detect that a particular column experienced a spike in the number of NULL values (typically a manually defined rule).Collibra Data Quality's behavioral model consists of the following factors:NULL valuesEmpty valuesCardinalityDatatype shiftingRow countsLoad timeMinimum valueMaximum valueMean valueOver time, the definition of normal for any given column within the dataset can change. The data may legitimately become more sparse or decrease in volume. Collibra Data Quality continues to learn and adjust the model throughout the life of the data set. However, if there is a drastic (but legitimate) change in the data, this could still mean several days of unnecessary alerts while the model is adjusting. To accelerate model adjustment, Collibra DQ provides the ability to adjust the acceptable range for a given behavioral finding.For example, Collibra DQ learned that a particular column typically has between 10% and 20% Empty values. Today, the column is 80% Empty values. Collibra raises a data quality issue and subtracts a proportional amount of points from the quality score of today's DQ run. You may review the finding and realize that there is a legitimate business reason for why that column has more empty values. With a few clicks, you can adjust the acceptable range for that finding. Collibra incorporates the user-defined inputs into the model and adjusts the current day's quality score. Collibra Data Quality would have eventually arrived at the correct range without any input, but without user input, it may have taken a few runs to get there.Drill-in to see the predicted range of valid valuesAutomatic flagging of break records with erroneous data.The screenshot above shows some of the controls and visualizations that can be used to tune the Behavioral model. In this specific example, Collibra has detected that the cardinality of the EXCH field has doubled from 1 to 2 unique values. However, you can instruct Collibra to disregard this finding and adjust the model by manually specifying the range of values acceptable in this column. To assist the user, Collibra provides a line chart and a historical topN visualization of this column's cardinality.If you want to instruct Collibra that there can be as many as 3 valid values in the EXCH column, click the Manual button and adjust the upper bound from 1 to 3, then click the save button.Collibra adjusts the Behavioral model's baseline, removes the finding, and adjusts the quality score. From that point on, Collibra knows the acceptable range for unique values in the EXCH column is between 1 and 3.ItemDescriptionBlind SpotThe name of the column with a possible change detected during a DQ check.TypeThe type of DQ check performed on a given column.For example, Unique (Range) is the number of unique values that fall outside a given range.BaselineThe baseline value is the mean of the preceding number of scans determined by the value selected for Behavior Lookback in the Profile section of the Explorer page.Today % ChangeThe percent change from the value of one row to another.Δ % ChangeThe delta percent change from the value of one row to another.ZscoreThe number of standard deviations away from the expected baseline value.DescriptionThe description of the type of DQ check performed on a given column.ScoreThe value subtracted from your overall DQ score. The distance from the expected ranges set by the variance and boundaries of the baseline value. Expected ranges are also visible in
the AR panel with graphs available in the Details panel for each line item.ActionThe item labels you can apply to an observation that let you train the behavioral model on future runs. Available options are Validate, Invalidate, and Resolve.StatusThe status of a DQ item, for example, Observation.Profile DetailsBy clicking the Details button, a line graph lets you drill into changes over time.Adaptive RulesAs Collibra Data Quality builds and evolves the behavioral model, it exposes all of the Adaptive Rules that it learns about. The above example demonstrates how Collibra learns and automatically applies rules. You have control but if left alone, Collibra learns what Normal means for a given data set and scores the data set accordingly. This results in a large set of rules that are automatically applied and adapted as the data set changes over time.To view or modify Adaptive Rules, navigate to the Behavior tab on the findings page for the desired data set and click the View AR button on the right side of the screen. This brings up a full list of Adaptive Rules.The Adaptive Rules also provide you with the ability to adjust ranges derived from the behavior model. You can manually adjust the tolerance range and score of any Adaptive Rule. While this may at times be convenient, it is also just fine to let Collibra Data Quality handle the model tuning through its own learning process.ScoringIn adaptive mode Collibra Data Quality automatically generates a DQ item score based on the egregiousness of the line item. This measurement is directly proportional to the distance from the green range to the red line. Example below.The score can range from 0-30. This ties to the percent change and Z-Score. In cases when the Z-Score ranges from 0.0 - 6.0.FAQQ: Which Collibra DQ API contains all behavioral checks (passing and breaking)?/v2/getdqchecksdetails.Q: How is 'Mean' defined in the Behavioral Modal chart?Mean represents the average of behavioral lookback window e.g. if today is the 11th of the month, and the bhlb is set at 10, the mean will be the average of the 1st to the 10th, and the statistic on the 11th day will represent the change to that mean.Also of note: the mean only includes passing rules, not failed runs.Rules (user-defined)Apply custom monitoring with SQL.SQL Rule EngineIntroductionCollibra Data Quality takes a strong stance that data should first be profiled, auto-discovered and learned before applying basic rules. This methodology commonly removes thousands of rules that will never need to be written and evolve naturally overtime. However there are still many cases to add a simple rule, complex rule or domain specific rule. Simply search for any dataset and add a rule. You can use the optional Column Name/Category/Description to add meta-data to your rules for future reporting.Customized discovery routines can be run using the Rule Library together with Rule Discovery.Query BuilderQuery builder will help generate SQL for more complex rules. You can apply to one or two tables (Table A on left and Table B on right). The query builder can help build up multi-part conditions.As with any SQL generator, there are limitations for more complex scenarios.Break RecordsStoring break records is only available for Freefrom and Simple rule types. Rule library rules uses one of these types as well.Enable additional storage with the -linkid flag. This allows you to store complete sets of break records. See the DQ Job LinkID for more details.Stat, Native, and Data Type (global) rules are not eligible for storing exception records. Quick TipsIf joining more than one data source, make sure both sets of drivers are in the -lib. Or separately supply a -libsrc pointing to the appropriate directory/jar file location. Versions later than 2021.11 use the -addlib for additional directories to add to the classpath.Native SQL uses your native DB syntax. The score is total break records / rows from the scope (query / -q) of the defined DQ job.Spark SQLThis is a complete list of Spark SQL operators and functions available. https://spark.apache.org/docs/latest/api/sql/index.htmlAdding a RuleTo add a rule, go to the Rules page. There are two ways to access the Rules page in Collibra DQ:From the left navigation bar.From the findings page.To access the Rules page from the left navigation bar, click the wrench icon and then Rule Builder. From the Rule Builder page, select a data set and a rule type. To access the Rules page from the findings page, open a DQ Job to display the findings page. From the findings page, click Rules in the metadata box in the upper right of the page. The Rule Builder opens. Since you're navigating to the Rule Builder from the findings page directly, you do not have to select a data set. In this case, select a rule type to get started. InstructionsSearch for a data set or navigate to the Rule Builder page in the left navigation panel.Rules can only be applied to data sets once a DQ job runs onceClick Load.The schema and any previously saved rules populate.Select a rule type with the dropdown next to the Type labelSelect a rule name If applying a preset rule, the rule name will be auto populatedInput a rule condition Only if applying a simple, freeform sql, stat, or native rule type.Provide a value in the condition/sql/function input field.Keystroke Ctrl+Space provides IntelliSense.Select Low, Medium or High for scoring severity (optional).Add any custom DQ dimensions for reporting (optional).Click submit to save the rule.The rule is measured on the next DQ job run for that particular data set.Rule Types Rule typeDescriptionExampleSimple rulesSimple rules are used when you want to filter a condition on a single column in a single table.City = 'Baltimore'Freeform SQL rulesFreeform SQL rules are used when you want to apply a condition across multiple tables/columns and generally when more flexibility or customization is desired.select * from dataset where name = 'Collibra'Preset rulesPreset rules are used for quickly adding strict condition checks. Commonly used conditions are available to add to any data set columns. All built-in Spark functions are available to use. Visit https://spark.apache.org/docs/2.3.0/api/sql/ for simple and freeform sql rules.Points and Percentage For every percentage the x condition occurs, deduct y points from the data quality score. If a rule was triggered 10 times out of 100 rows, break records occurred 10% of the time. If you input 1 point for every 1 percent, 10 points would be deducted from the overall score.Creating Your First Rule Let’s create a simple rule using the below information. The data set name.Search for “shape_example” and click “Load”Select “Simple Rule”Rule Name = lnametest@shape_example.lname = “hootbeck” (should hit one time day over day).Points = 1Percentage = 1Click “Submit”Once the rule has been submitted please find the below list of rules with the new rule we just defined as shown below.Seeing Your First Rule Get Triggered Rule scores will appear under the Rules tab on the findings page. You can also see more details in the bottom panel of the Rules page under the Rules and Results tabs.ScoresEach rule definition has a specific score. Depending on the severity, rules can be hard or soft, and can contribute a different weight that affects your overall DQ score.This is calculated by points per threshold. The ratio is calculated from the total rows of the associated DQ job scan.DimensionsEach rule can be associated with a dimension. You can also apply metadata like primary column and description. While not mandatory, these can be particularly useful when using the DQ Connector and Custom.Rule TypesSQL-Based RulesDepending on the complexity, you can choose from short-form or long-form rules.SimpleJust the condition (short-form). For example, using the column email_address. This runs against the dataframe and uses Spark SQL syntax. Simple rules can be thought of as everything after the where clause.email_address is not null and email_address != '' FreeformWhere 'Simple' rules just use the condition, 'Freeform' rules use the complete SQL statement. When more complex SQL is required, you can express more with Freeform including joins, CTE's and window statements.select * from @DATASET_NAME where email_address is not null and email_address != '' All built-in spark functions are available to use. (https://spark.apache.org/docs/2.3.0/api/sql/) for simple and freeform sql rules.NativeNative rules use the SQL dialect of the underlying connection and database. Files are not eligible for native SQL rules. This is ideal if you want to use pushdown profiling and you want to use existing SQL logic. When coupled with pushdown profiling, you can achieve a very minimal infrastructure footprint.See the Native section for more details.Stat rulesWrite rules against meta data and profiling stats. Complex counts and ratios can be referenced with simple syntax.See the Stat Rules section for more details.Data TypeEmpty checkRule type: EMPTYCHECKDescription: Checking whether the target column has empty values or notNull checkRule type: NULLCHECKDescription: Checking whether the target column has NULL values or notDate checkRule type: DATECHECKDescription: Checking whether the target column has only DATE values or notInteger checkRule type: INTCHECKDescription: Checking whether the target column has only INTEGER values or notDouble checkRule type: DOUBLECHECKDescription: Checking whether the target column has only DOUBLE values or notString checkRule type: STRINGCHECKDescription: Checking whether the target column has only STRING values or not.Mixed datatype checkRule type: DATATYPECHECKDescription: ---SQL Based RulesCollibra Data Quality uses ANSI-compliant SQL and offers pushdown rules that leverage specific database syntax.SimpleThis is the condition after the where clause.Depending on the complexity, users can choose from short form or long form rules.SimpleJust the condition (short
form). For example, using the column email_address. This runs against the dataframe and uses Spark SQL syntax. Simple rules can be thought of as everything after the where clause.email_address is not null and email_address != '' All built-in spark functions are available to use. (https://spark.apache.org/docs/2.3.0/api/sql/) for simple and freeform sql rules.FreeformFully defined SQL for more detailed checks.Where 'Simple' rules just use the condition, 'Freeform' rules use the complete SQL statement. When more complex SQL is required, you can express more with Freeform including joins, CTE's and window statements.select * from @DATASET_NAME where email_address is not null and email_address != '' Freeform rules should include a semi-colon at the end of the rule value. All built-in Spark functions for non-Pushdown connections are available for use. See (https://spark.apache.org/docs/2.3.0/api/sql/) for Simple and Freeform SQL rules.Cross-Connection LibrariesWhen applying cross-connection rules please use the -addlib to submit the job with the appropriate jar files. In this example, a secondary set of jars is added through the Explorer. These files are located in the /opt/owl/drivers/mysql directory. The path should not contain double quotes or single quotes. It should point to a directory without spaces in the path.Cross-Data Set RulesBest practice for cross-table joins is to define a view and scan the view.Only in circumstances when a view cannot be created should you define cross-table joins with 2 separate data sets (DQ Jobs) and express the join in the rule.If you're doing multiple lookups, this will improve long-term performance and consolidate maintenance. Cross-dataset rules require -libsrc (prior to 2021.11) or -addlib (post 2022.01)In-Clause (Single Column)select * from @table1 where id not in (select id from @table2)Except (Multi-Column)select id, app_id, email, guid_num from @table1EXCEPTselect id, app_id, email, guid_num from @table2Referencing secondary data setsWhen you create a Freeform SQL rule with secondary data sets, there are three important points to consider in order to avoid missing data set exceptions.Ensure that the name of your first data set matches the name of the main data set on which your rule is created.The column names in your table must be exact matches with the syntax of your query. >> If the column name uses CAPS, then your query must also use CAPS.Ensure that any data set referenced in your rule maintains a score of greater than or equal to (>=) a passing score of 75. These three points apply to all rules, not just Freeform Rules. JoinsA join lets you reference two or more data sets in one rule. Joins are useful when you want to compare the values of a data set from a previous, or when you want to verify that all values are valid across your data sets. Join exampleSELECT *FROM @table1 A LEFT JOIN @table2 B ON A.id = B.idwhere B.id is null OR (A.email != B.email)Sample ResultsCross-Table (Guided). Use our wizard to do ad-hoc analysis and visual setup.Join Example Example (vs. cross-table guided seen above).Multi-part condition rules with the rule builder. Combines profiling metrics & builder in one screen.NativeWith Native SQL expressions we provide capability to use your existing validation statements, even if they use database-specific (Postgres/DB2/Oracle/MSSQL/etc.) functions or expressions.This is commonly used when using pushdown profiling and/or pre-existing SQL validations exist in a specific syntax. Native rules are often referred to as pushdown rules.If you have rules already written in Oracle, Sybase, or DB2 syntax - Copy/Paste the rule directly into the Native SQL section.When creating a Native SQL rule, keep the following in mind:The SQL query must be a valid expression that can be run as a subquery. To avoid pulling large amounts of data into memory, Collibra Data Quality will wrap your expression so it only fetches the number of rows returned. Rules should be written such that the query returns the anomalous rows.The SQL query must take less than 30 minutes to run. It is recommended to use partitioned columns for efficiency.When testing the SQL query from the app, it is helpful if it takes less than 30 seconds to run. You can add a limit to reduce query time, or test the query in your SQL Editor.Testing native rules can be done quickly by limiting the results or using an external SQL IDE as well.This rule type is not eligible to store break records, just the score itself! Additionally the rule will apply the logic directly to the JDBC connection. Native rules will run on the entire population of the data, regardless of any scope set for the DQ job (-q flag defined in the scope section of Explorer). Any filter or predicate clause entered in the -q flag should be added to the logic of the Native rule as well.Stat RulesOne really powerful technique is to access the profile statistics in your rules. These are typically sub-second operations that do not require scanning or iterating. There are several cases where SQL struggles to support rules, such as: isNull but not null count or nullRatio or nullPercent. Or having access to types without doing crazy cast() operations. These are simplified below, i.e. fname.$type == 'String'select * from @dataset where fname.$type != 'String' AND $rowCount < 800 Dataset Level StatRule ExampleDescription$totalTimeInSeconds$totalTimeInSeconds > 25Alert when DQ job runs longer than 25 seconds.$totalTimeInMinutes$totalTimeInMinutes > 5Alert when DQ job runs longer than 5 minutes.$totalTimeInHours$totalTimeInHours > 1Alert when DQ job runs longer than 1 hour.$rowCount$rowCount < 9000Alert when row count less than 9,000.$runDate$runDate='2020-01-24'Use the ${rd} variable in rules.$daysWithoutData$daysWithoutData > 4Alert when a dataset has missing or no rows for 5 days.$runsWithoutData$runsWithoutData > 4Alert when a dataset runs but has missing or no rows for 5 days.$daysSinceLastRun$daysSinceLastRun > 4Alert when a dataset has not run for 5 days. Column Level StatRule ExampleDescription.$typefname.$type != 'String'Alert when fname is not a string..$minfname.$min > 'apple'Lexicographical sort works for strings and numbers..$minNumage.$minNum > 13Type casted to a numeric for simple number checks..$meanrow_id.$mean > '4.500'Alert when the mean is greater than a given value..$maxfname.$max > 'apple'Alert when the max is greater than a given value..$maxNumage.$maxNum > 13Alert when the numeric value falls outside an acceptable range..$uniqueCountid.$uniqueCount != $rowCountAlert when the uniqueCount of a field doesn't match the rowCount..$uniqueRatiogender.$uniqueRatio between .4 and .6Alert when the ratio of uniqueCounts of a given field doesn't match the rowCount..$nullRatiolname.$nullRatio not between .4 and .6Alert when the ratio of nulls no longer falls within acceptable range..$nullPercentlname.$nullPercent not between 40 and 60Alert when the percent of nulls no longer falls within acceptable range.$nullCountlname.$nullCount >= 1Test for a single null..$emptyRationc.$emptyRatio > 0.2Alert when the ratio of empties no longer falls within acceptable range..$emptyPercentnc.$emptyPercent > 20Alert when the percent of empties no longer falls within an acceptable range..$emptyCount Alert when the emptyCounts of a field no longer fall within an acceptable range..$mixedTypeRationc.$mixedTypeRatio > 0.2Alert when the ratio of mixed data types no longer falls within an acceptable range.For example, Strings and Ints in the same field..$mixedTypePercentnc.$mixedTypeRatio > 20Alert when the percent of mixed data types no longer falls within an acceptable range.For example, Strings and Ints in the same field..$mixedTypeCountid.$mixedTypeCount >= 1Alerts when the mixed data typeCount no longer falls within an acceptable range. For example, Strings and Ints in the same field.Known limitation. Cannot combine stat rules or distribution rules with regex rules in the same rule. Example car_vin rlike '$[asdf][0-9]' and car_vin.$uniqueCountDistribution RuleThere is a common case in DQ where you want to know the distribution of a column's value. Consider gender. It can be expected that a column named gender consists of roughly 40-60% males and roughly 40-60% females if the data set is large and represents the population. This can be difficult to express in plain SQL, but it is very easy with the below syntax.gender['Male'].$uniquePercent between 40 and 60Column Value LevelRule.$uniqueCountcredit_rating['FAIR'].$uniqueCount > 7.$uniquePercentcredit_rating['GOOD'].uniquePercent between 40 and 60Data Type RulesData TypeRuleRule typeDescriptionEmpty checkEMPTYCHECKChecks whether the target column has empty values or not.Null checkNULLCHECKChecks whether the target column has NULL values or not.Date checkDATECHECKChecks whether the target column has only DATE values or not.Integer checkINTCHECKChecks whether the target column has only integer values or not.Double checkDOUBLECHECKChecks whether the target column has only DOUBLE values or not.String checkSTRINGCHECKChecks whether the target column has only STRING values or not.Mixed datatype checkDATATYPECHECKChecks the dataType of the field.Rule TemplatesIdeal for rules that apply to more than one data set. Write once, apply many.Templates are great for regex, format, and compliance checks.A template rule substitutes the data set and column at runtime. This can save hundreds of redundant rules that do the same thing but on different column names.Template rules are located in the Type dropdown as well as the Quick Rules dropdown. The complete list of template rules is located in the Rule Library section. These meant for global rules that are ideal for code sets, compliance checks, and regex checks. These are ideal for checks that apply to many tables.Rule templates use SQLG (simple) and occasionally SQLF (Freeform) types under the hood. Rule templates appear in the Rule Library once they are created.See
the Rule Library section for more details.Customized discovery routines can be run using the Rule Library together with Rule Discovery.Rule LibraryAn organized repository of all your rule templates.The rule library contains both OOTB and custom-built rule templates.OOTB RulesCollibra DQ shares all of its out-of-the-box rules with each user/tenant. This makes it easy to get started quickly and lets the team add common rules for specific use cases. Below is a list of one-click rules that can be added to any data set. It is important to note that Collibra DQ often self-identifies these columns and automatically provides the proper protection.EmailZipCredit CardSSNEINState CodePhoneGenderIP AddressDateIntDoubleYou can also apply common Data Type and Global rules from the Quick Rule dropdown under the Preview tab.Customized RulesAdd to the Rule LibraryCreate a rule once using the Create Generic Rule builder and re-use the rule across any column on any data set. This is called a global rule, or a rule in the Rule Library that you can use for global use across many data sets. Collibra Data Quality substitutes the data set and column to which the rule applies at runtime. This commonly saves hundreds of redundant rules that do the same thing but on different column names.To add a rule to the Rule Library:Select a data set from the search bar on the Rule Builder page.Click the Create Generic Rule tab.Enter the required information.OptionDescriptionTypeThe type of rule being created.Is RegexSelect Is Regex if your rule is a Regex rule.Rule Operatorrlike is the default operator.WhereEnter your query. Only available for non-Regex rules.RegexEnter your Regex query. Only available for Regex rules.InputEnter your Regex input values as single values or a comma-delimited list of values. Optional field only available for Regex rules.Rule nameEnter a unique name for your rule. This is stored in the Rule Library once the rule is saved. Required field for both Regex and non-Regex rules. Descr Enter a description for your rule. Optional field for both Regex and non-Regex rules.Click Save.The Rule Library hosts out of the box and custom global rules. See data concepts and semantics for advanced use of global rules.The Rule Library hosts out-of-the-box and custom global rules. See Rule Discovery for advanced use of global rules.Rule DiscoveryRule PreviewSet a Preview LimitRule Previews allow you to set Preview Limits by the row, enabling you to drill in to your data even further. Limits can be set to any positive number. 6 is default.Best practice is to apply a limit of 1000 or less. Increasing the limit above 1000 should only be done if your Postgres has sufficient CPU and memory.Set a preview limitCreate a new DQ Job and navigate to the Rule Builder page.Select your dataset and click the Search button.Select a rule type from the Select a type button.Create your SQL rule in the Expr field and enter a unique name for your rule in the Name field.Enter an even number in Preview Limit (Rows).Click Save.Run the DQ Job to execute the rules assigned to the dataset.Freeform and Simple rule are the only two rule types supported at this time.View and Export ResultsAnother key feature of Rule Previews is that you have the ability to easily export the details of your drill-in.View and export your resultsClick the + icon in the Rule Name column to expand the table to view your results.Click Export with Details to download the break records to your local machine.Rule preview is currently available for Freeform and Simple rules.Rule DiscoveryCustom data discovery and enforcement using rule templates (data concepts and semantics).Data CategoriesA data category is the category or family of a data set, for example, stock data, interest rate data, etc. By giving data categories, or classifying data sets, we can transfer (apply) common understanding, rules, and ML to data sets. This allows data stewards to set up concepts once and enables organizations to unify and standardize common rules and terms, solving many metadata scale challenges.Data set levelSecurity reference data - Bloomberg financial data - home loan data - mortgage application data.Data ClassesColumn LevelEMAIL, ZIP CODE, SSN, CUSIP, GENDER, ADDRESS, CURRENCY CD, SKU, EIN, IP ADDRESS, PHONE, LICENSE, VIN, CREDIT CARDA data class is the semantic type of a column or attribute of a data set, for example email, zip code, and so on. All columns have a physical type, such as String, Int, and Date, but the semantic understanding of what type of String is in the column can be very important. Data classes allow Collibra Data Quality to enforce DQ validation rules out of the box.Collibra Data Quality's semantic scanning self-identifies standard columns and automatically provides the proper protection. This makes it easy to get started adding common rules for specific use cases.Collibra Data Quality offers out of the box rules for 1-click rule creationRun DiscoveryWith the Run Discovery modal, you can run a DQ Scan to detect for the semantics assigned to a selected data concept. The Run Discovery algorithm automatically selects the best match if a column matches two or more data classes. Data class match criteria are determined by percent match and name distance.You can access the Run Discovery feature via:CatalogDQ JobVia CatalogIn Catalog, select your dataset.In the Actions dropdown menu, click Data Concept.Select an option from the Data Concept dropdown and click Run Discovery.Via DQ JobFrom the DQ Job page, select your DQ Job.Click the Rules tab in your DQ Job.Click the Rule Discovery button.In the Data Concept window, select your Data Concept.Click Run Discovery.Sensitive DataColumn LevelPII - personally identifiable information MNPI - materially non public informationPCI - credit information like a credit card number PHI - HIPAA medical informationData Discovery: The Power of Combining All Three into One DomainNow imagine if you could classify your datasets as concepts, then automatically have all the columns be recognized semantically(with validation rules in place) as well as have the columns labeled with sensitivity tags. It might look something like the following screenshot.StepsStep 1: Create a DQ Job with Semantic Detection turned on.From the Profile options page, create a new DQ Job and select ON from the Semantic Detection dropdown.Step 2: In Catalog, select and apply your Data Concept.Navigate to your dataset in Catalog and select the Data Concept you would like to apply with the Actions dropdown menu.See below sections on how to Administer Data Concepts as well as how to Create and Manage Semantics.Step 3: Rerun your DQ Job with applied Data Concept.Please rerun your DQ Job so that Collibra Data Quality can 1) profile your data, 2) auto-generate the rules based on the Semantics under the Data Concept, and 3) highlight any break records.Success! Review FindingsOn the Profile page, observe the newly tagged Semantics on the applicable columns.On the DQ Job page, browse your newly created rules based on Semantics, as well as any corresponding rule breaks.Creating and Managing SemanticsCreate, test, and manage your Semantics in Collibra Data Quality in your Rule Builder wizard on the Create Generic Rule tab. Below is an example of creating a RegEx Semantic.Administering Data ConceptsSetup your data concepts once and let the entire organization benefit by unifying all datasets to a common understanding in the admin Data Concepts page.Physical Schemas to SemanticsBelow you can see the benefit of organized metadata. PDEs or physical data elements organized/tagged by semantics. This allows for sub-second searches while in catalog or searching for data to figure out where all your PII data lives, or what systems have loan data.Above you can see Data Concepts in Yellow, Semantics in Gray and Sensitive labels in Orange. Enabling you to organize all your data in classes, search and discover types no matter what system they live in or what the PDE column name is. Transforming technical types into business metadata.Business Unit Roll up ReportingNow that we have all PDEs discovered and tagged and rolled up into business terms, we can roll up technical assets like database tables and files into business reports across departments and non technical concepts.MoreCollibra DQ advanced features.When specific DQ challenges require specific DQ detection techniques, Collibra DQ offers a wide variety of advanced functionality. While Schema and Shapes utilize auto-discovery, other detection algorithms are best suited for users that understand their data and have specific use-cases in mind. Read more to understand if specific dimensions can be applied to your data.Explorer (no-code)A no-code option to get started quickly and onboard a data set.Getting StartedThis page can be accessed by clicked the Explorer option (the compass icon).All UI functionality has corresponding API endpoints to define, run, and get results programmatically.Select Your Data SourceCreate a new DQ Job by clicking +Create DQ JobView Data is an interactive option to run queries and explore the dataThe bar chart icon will take you to a profile page of the dataset created prior to Explorer 2Select The Scope and Define a QueryPick Date Column if your dataset contains an appropriate time filterClick Build Model -> to Save and ContinueTransform Tab (advanced / optional)TransformClick Build Model -> to Save and ContinueProfileUse the drop-downs to enable different analysis. Best practice is to leave the defaults.Pattern (advanced / optional)Toggle on Pattern to enable this layer.Click +Add to define a group and series of columns.Patterns (advanced)Click Save to and Click Outlier to ContinueOutlier (advanced / optional)Outliers (advanced)Click Save to and Click Dupe to ContinueDupe (advanced / optional)Duplicates (advanced)Click Save to and Click Source to ContinueSource (advanced / optional)Navigate to the source dataset.Click Preview to
interlace the columns.Manually map the columns by dragging left to right or deselect columns.Source (advanced)Click Save to and Click Save/Run to ContinueRunSelect an agent.Click Estimate Job.Click Run to start the job.*If you do not see your agent, please verify the agent has been assigned to your connection via Adding a connection to a DQ Agent.Terminating a DQ JobIf a DQ Job is in progress, incorrectly submitted, or stuck in Staged status, you can terminate the job by clicking the Actions drop-down list and selecting Terminate job. If you have an email address configured for alerts to be sent, two alerts are sent when a job is terminated.Jobs in the Spark UI display a Finished status when terminated, even though they are terminated from the Collibra DQ UI.Schema (automatic)Detect schema evolution and unexpected schema changes.Data set schemas are the columns or fields that define the dataset. They are often located in the header row of a tabular file or database table. However, JSON and XML are two examples of formats that include schema columns that are not in the header but rather nested throughout the document. OwlDQ automatically without needing to turn on any features detects the schema columns as well as reads or infers their data types (varchar, string, double, decimal, int, date, timestamp, etc.). Owl observes each data set so if a column is ever altered, removed or added it will automatically raise the event via its standard composite scoring system.Scoring... Alerting... Schema Detection... AutomaticallySchema Evolution is one of Owl's 9 DQ dimensions. It can be an important measurement for data stewards to understand how the data set is changing overtime. The orange bar on the chart shows a change in schema and allows for drilling in over time.Shapes (automatic)Collibra Data Quality automatically detects inconsistencies in data formats. These inconsistencies are where Data Scientists spend an enormous amount of time cleaning the data before building a ML model. Many reports have documented that over 80% of the time it takes to build a credible model comes from first understanding all the different formats and then writing munging or ETL style code to clean it before processing. What about all the patterns the process or person doesn't even know about?Drill-in to any Shape anomaly and see a visual exampleSee an itemized list view of the most infrequent or odd shapes in your datasets.Shape TuningBy clicking the gear icon in the upper right corner of the SHAPE tab on the HOOT page.Duplicates (advanced)This is an advanced opt-in feature.General Ledger. Accounting use-casehttps://owl-analytics.com/general-ledgerWhether you're looking for a fuzzy matching percent or single client cleanup, Owl's duplicate detection can help you sort and rank the likelihood of duplicate data.-f file:///home/ec2-user/single_customer.csv \-d , \-ds customers \-rd 2018-01-08 \-dupe \-dupenocase \-depth 4User Table has duplicate user entryCarrisa Rimmer vs Carrissa RimerATM customer data with only a 88% matchAs you can see below, less than a 90% match in most cases is a false positive. Each dataset is a bit different, but in many cases you should tune your duplicates to roughly a 90+% match for interesting findings.Simple DataFrame ExampleOutliers (advanced)This is an advanced opt-in feature.Numerical OutliersKodak Coin! In 2018 Kodak announced themselves as Kodak Coin and witnessed a steep change in their stock price. Collibra Data Quality automatically captured this event and provided the ability to drill into the item.Complex outliers made SimpleEven though DQ uses complex formulas to identify the correct outliers in a dataset, it uses simple terms when displaying them. If you notice below the change happened gradually, therefore if you only compared avgs or previous values you would not understand the full impact of this price change. 0% changed from yesterday and its moving/trailing avg would have caught up.Dynamic history optionsData may not always enter your data pipeline on time and as expected due to weekend, holidays, errors, etc. To help capture outliers in spite of gaps, there are two main options:1) Extend the lookback period (to 10 days from 5 days, for example)2) Utilize additional flags per below (fllbminrow new as of 2021.11)FlagDescriptionExamplefllbminrowFile Lookback Minimum Rows: determines minimum number of rows that a previous file scan needs to be counted as file lookback-fllbminrow 1 (counts nay DQ scans with 1 or more row in minimum history)-fllbminrow 0 (default behavior, row count does not matter)dllbDate Lookback: determines how many days of learning-dllb 5 (5 days)Upper & Lower Bound LimitsCollibra DQ automatically detects and flags data that falls outside of preset Upper Bound or Lower Bound limits. If data is detected outside of these limits, an alert is generated to notify of an outlier. Setting these limits allows you to finetune your ability to identify outliers.Categorical OutliersCategorical Outliers are much different than numerical outliers and require separate techniques to automatically capture meaningful anomalies. The details regarding Owl's methodology and testing can be found below, 3 minute read on the topic.Categorical Outliers Don't ExistDQ will automatically learn the normal behavior of your String and Categorical attributes such as STOCK,OPTION,FUTURE or state codes such as MD,NC,D.C. When a strange pattern occurs (e.g NYC instead of NY), DQ will show this as a categorical outlier.DQ is able to detect Categorical Outliers both with and without taking time into account. If a time dimension is not provided, DQ will calculate the distribution of categorical values within the available data, and identify the values that fall into the most infrequent percentile (configurable).If a time dimension is provided, DQ will first identify infrequent categories in the historical context and then in the context of the current Owlcheck. Only values that are historically infrequent or non-existent, and are infrequent in the current run will be considered Outliers.Training Outlier Detection ModelAlthough DQ uses different techniques to detect Numerical and Categorical Outliers, the training process is very similar.At a minimum, DQ requires historical data that can be used as the training dataset. If no other input is provided, DQ will calculate the normal range for each selected column and look for numerical and categorical outliers within the training dataset without any further context. The output will essentially consist of infrequent values that fall outside the normal range fo each column.To obtain more targeted results, the DQ requires a key column. This column will be used to provide context by grouping each column by the key column. Defining a good key column tends to provide results that are a better indicators of actual data quality issues instead of simply infrequent values.Another input that can make outlier detection more precise is a data/time column and a look back period. This enables a more precise calculation of the normal range for a column and in the case of numerical outliers, makes it possible for DQ to establish a trend. Given a time column and key column, DQ will not only identify numerical outliers, it will plot the historical trend of the column value trailing the outlier.DQ also allows further refinement of the time dimension by defining time bins and processing intervals. By default, when given a time column, DQ will bin the data into days and process the data in daily interval. However, if the data is high frequency, day bins and day intervals might be too coarse grained. In this case, it might make more sense to group the data into bins on the minute and process the data in hour or minute intervals. The same concept applies in the other direction. What if the data is already aggregated on the month or year? In this case, it makes more sense to set the bins and intervals to month by month or month by year.Some data may be measured in really small or large units or contain a lot of noise. In this case, DQ allows the user to adjust the sensitivity level and unit of measure for outlier detection on each column. Click the advanced tab to make these adjustments.Once Outlier detection is complete for a given run, it's time to tune the scoring of the model. DQ allows the user to label any outlier findings as legitimate, thus preventing that outlier from being detected in the future or effecting the score of the current run. In addition, it is possible to define the significance of an outlier finding to a given dataset. This can be accomplished by setting how many quality points should be deducted for each outlier finding on any given run on that dataset. It is also possibly to adjust sensitivity and unit of measure of future runs by clicking on the small gear icon on the far left of the screen.Spark DataFrame ExampleReal World ExampleImagine you are the data manager at Iowa Department of Commerce, Alcoholic Beverage Division. As part of the Department's open data initiative, the monthly Iowa liquor sales data are available to the public for analysis. (Thank you Iowa!)An Iowan data analyst emails you about a data quality issue with address for store #2508 in the year 2016. You quickly run a SQL query on your data warehouse to see what is going on.-- Assuming Postgres DBselect date_trunc('MONTH', date) date_month, address, count(*) sales_countfrom iowa_liquor_sales where date >= '2016-01-01' and date < '2017-01-01' and store_number = '2508'group by date_trunc('MONTH', date), addressorder by date_month, addressdate_monthaddresssales_count2016-01-01 00:00:001843 JOHNSON AVENUE, N.W.4222016-02-01 00:00:001843 JOHNSON AVENUE, N.W.4512016-03-01 00:00:001843 JOHNSON AVENUE, N.W.5792016-04-01 00:00:001843 JOHNSON AVENUE, N.W.4042016-05-01 00:00:001843 Johnson Avenue, N.W.6252016-06-01 00:00:001843 Johnson Avenue, N.W.6952016-07-01 00:00:001843 Johnson Avenue, N.W.4572016-08-01
00:00:001843 Johnson Avenue, N.W.7442016-09-01 00:00:001843 Johnson Avenue, N.W.6812016-10-01 00:00:001843 Johnson Avenue, N.W.7282016-11-01 00:00:001843 Johnson Avenue, N.W.10622016-12-01 00:00:001843 Johnson Avenue, N.W.992Because store_number is an unique number assigned to the store who ordered the liquor, the inconsistent address values for the same store pose data quality problem. But address is a string value that can take many forms. For store #2508, the reported address value has a shifted behavior from all capital letters starting on May 2016. For other cases, it might be completely different behavior change that you would have to manually check one by one. With over 2,000 unique stores, 19 million rows, and 8 years of data, you need an automated way to detect meaningful categorical outliers.The following command shows an example of running monthly OwlDQ Checks, from the month of Jan 2016 to the month of December 2016. Each monthly run looks back 3 months of data to establish a baseline for categorical columns that you suspect would have similar data quality issues: store_name, address, andcity./opt/owl/bin/owlcheck # connection information to data -lib /opt/owl/drivers/postgres/ -driver org.postgresql.Driver -c, jdbc:postgresql://localhost:5432/postgres -u, postgres, -p, password # Specify dataset name -ds iowa_liquor_sales_by_store_number_monthly # Specify date filter for the last filter, e.g. date >= '2016-12-01' and date < '2017-01-01' -rd 2016-12-01 -rdEnd 2017-01-01 # SQL query template (${rd} and ${rdEnd} matches with -rd and -rdEnd -q select distinct on (date, store_number) date, store_number, store_name, address, city from iowa_liquor_sales where date >= '${rd}' and date < '${rdEnd}' # Turn on Outliers -dl # Group on store_number (optional if no grouping) -dlkey store_number # Specify column that is of date type (optional, if running OwlCheck without time context) -dc date # Specify columns to run Outlier analysis (if not specified, all the columns in query are included in analysis) -dlinc store_name,address,city # Specify 3 month lookback for each OwlCheck -dllb 3 # Run Monthly OwlCheck -tbin MONTH # backrun Convenient way to run 12 preceding MONTHly owl check -br 12ResultsThe -br 12 option ran 12 monthly OwlChecks for every month of 2016. The figure below shows OwlCheck Hoot page for the lastest run of dataset iowa_liquor_sales_by_store_numbers_monthly. The Hoot page shows that OwlCheck identified 24 Outliers among 4.8k rows of unique date x store_number for month of December, 2016.Since the original data quality issue that inspired us to run OwlCheck is from May 2016, we can navigate to specific run date 2016-05-01 by click on the line graph on top. Then searching for store #2508 on the key column shows outlier detected for column address. Press [+] for that row to see contextual details about this detected value.We can verify that OwlCheck identified the outlier of interest among other 60 data quality issues. Using OwlCheck, you can identify issues at scale for past data (using backrun), current (using simple OwlCheck), and future (using scheduled jobs).*Tech Preview [TP] Outlier Calibration*Use CaseWhen A) using Outliers and B) faced with an event such as a stock split or currency devaluation, it may be helpful to calibrate the outlier boundaries within Collibra DQ to avoid surfacing non-issues for a period of time.Example Step #1: No Action NecessaryIn the video below, Collibra DQ Outliers were set to a high sensitivity. The USDEUR conversion rate on January 6th in the sample dataset may be considered reasonable and the user can 1) rerun the dataset with lower sensitivity or 2) downtrain the unintended Outlier anomalies.Example Step #2: Macro Event That User Understands e.g. Currency Devaluation or Stock SplitWhen examining the outlier on January 11th, the dataset depicts that the USDEUR conversion shot up to 3.14, which in our hypothetical example coincides with an explainable macroeconomic phenomenon. As such, the user may not want Outlier anomalies to trigger for a period of time.Example Step #3: User Wants To Suppress OutliersOnce Outlier Calibration is enabled, a user can select the boundaries and duration of the 'suppression' period. And once the DQ Job is re-run for the selected date(s), the outliers will not trigger an anomaly / downscore.Patterns (advanced) This is an advanced opt-in feature.Owl uses the latest advancements in data science and ML to find deep patterns across millions of rows and columns. In the example below it noticed that Valerie is likely the same user as she has the same customer_id and card_number but recently showed up with a different last name. Possible misspelling or data quality issue?Training Anti-Pattern Detection ModelWhen the Patterns feature is enabled, DQ builds a collection of patterns that it identifies within the data. It will then use that collection to identify values that break established patterns. For example, in the image below, DQ learned that a bike route that starts at MLK library will end at San Jose Diridon Caltrain Station. However, when the current day's data cross referenced against this pattern, DQ detects an anti-pattern where a trip starts at MLK Library but ends at Market at 4th. DQ raises this anti-pattern as a data quality issue and highlights the what it believes the end_station value should have been.To build a Pattern model, DQ requires historical data that contains the valid patterns and if possible, a date/time column. The user can then needs to define the date/time column, the look back period, and what columns make up the pattern. In the image below, the pattern was composed of end_station, start_terminal, start_station.It is possible that an apparent anti-pattern finding is actually valid data and not a data quality issue. In this case, DQ allows the user to further instruct the existing Patterns model on how to properly score and handle the findings. For example, if it turns out that Market at 4th is actually a valid end_station for a bike trip, the user can negate the identified anti-pattern by labeling it as valid. This action instructs DQ to not raise this particular anti-pattern again. DQ also rescores the current Owlcheck results to reflect the user's feedback. In addition, it is possible to define the weight of an anti-pattern finding on the current dataset by setting the numerical value to deduct per finding.Fraud Detection?Think about a scenario where a dataset has a SSN column along with FNAME, LNAME and many others. What if your traditional rules engine passes because one of the rows has a valid SSN and a valid Name but the SSN doesn't belong to that person (his or her name and address, etc.)? This is where data mining can derive more sophisticated insights than a rules based approach.Records (advanced) This is an advanced opt-in feature.Where did my rows go?Collibra DQ is constantly learning which records or rows in a dataset are most common. In the case below the NYSE had a reasonable dataset volume (row count).Row Count TrendWe can see the rows dipping just slightly outside their predicted range. Arguably a subtle drop, yet abnormal to not represent these companies that typically do trade on the NYSE. Were they de-listed?Source (advanced) This is an advanced opt-in feature.Does your data-lake reconcile with your upstream system?Copying data from one system to another is probably the most common data activity to all organizations. Collibra DQ refers to this as source to target. As simple as this activity sounds, DQ has found that most of the time files and database tables are not being copied properly. To ensure and protect against target systems getting out of sync or not matching the originating source, turn on -vs to validate that the source matches the target.A row count is not enough...The most common check we encounter is a row count. However, a row count does not account for:Schema differences - Boolean to Int, Decimal to Double with precision loss, Timestamps and Dates.Value differences - Char or Varchars with whitespace vs Strings, null chars, delimiter fields that cause shifting, and much more.DQCheck Created from WizardThe DQ Wizard GUI creates the below OwlCheck which it can execute from the GUI by clicking RUN or by pasting at the cmdline.-lib /home/ec2-user/owl/drivers/valdrivers \-driver org.postgresql.Driver \-u user -p password \-c jdbc:postgresql://ec2-34-227-151-67.compute-1.amazonaws.com:5432/postgres \-q select * from public.dateseries4 \-ds psql_dateseries2 -rd 2018-11-07 \-srcq select dz, sym as symz, high as highz, low as lowz, close as closez, volume as volumez, changed as changedz, changep as changepz, adjclose as adjclosez, open as openz from lake.dateseries \-srcu user \-srcp password \-srcds mysqlSYMZ \-srcd com.mysql.cj.jdbc.Driver \-srcc jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rds.amazonaws.com:3306/lake \ -valsrckey SYMZ \-vs \-valsrcinc dz,symz,openz,highz,lowz,closez,volumez,changedz,changepz,adjclosezEnd of Day Stock Data from Oracle to MysqlIn this example we loaded NYSE_EOD data in both Oracle and Mysql and then used Collibra DQ's Source Validation feature. We see 3 main classes of issues. 1) The row count is off by 1 row, this means a row was dropped or went missing when the data was copied. 2) The schemas don't exactly match. 3) In 2 cases the values are different at the cell level. NULL vs NYSE and 137.4 vs 137.42.Latest View in 2.13+PushdownPushdown feature descriptionSome of the Collibra DQ features support pushdown to avoid transferring large dataset from data source (Database, Cloud storage, file systems etc.) into Spark. When pushdown is enabled and supported, the DQ Job will generate SQL queries to offload the compute to the data source, reducing the amount of data transfer and Spark computation of the DQ Job. Not all features support pushdown nor pushdown completely eliminate data transfer.Why use pushdownTo analyze a dataset for DQ
findings as part of a DQ Job, CDQ uses Spark as the compute engine to power the analysis. This requires the dataset to be loaded into Spark as a Spark DataFrame, and the DQ Job performance (job completion speed) is limited by Spark resources available and the complexity of the job. This data transfer from data source to Spark is dependent on two of the following factors:Bandwidth limitation at the data sourceIf the DQ Job requires pulling 100 million rows from a SQL Database, then the Input/Output limit of transferring data out of SQL Database into the Spark cluster will greatly increase the overall speed of the DQ Job.Compute limitation at the data source for complex queriesIf the DQ Job requires complex queries to create the dataset (via -q), then this computation is done at the SQL Database level. Some examples of complex queries are:-q SELECT * FROM public.very_long_table_of_transactions WHERE date = ${rd} and department = 'finance'This query can take long time at the database level due to WHERE clause filtering a very long table on columns date and department that may not be indexed properly, leading to a full table scan without a LIMIT clause specified.-q SELECT * FROM public.very_long_table_of_transactions transactions INNER JOIN public.departments departments ON transactions.department_id = departiments.id WHERE transactions.date = ${rd} and departments.name = 'finance'This query can take long time at the database level due to a join between tables.Resource limitation at the data sourceThe data source may not have enough hardware resource available to efficiently fulfill the query and/or handle multiple DQ Jobs & other non-CDQ applications requesting data.The bottleneck due to data transfer can be viewed in Jobs page > Job Logs > LOAD stage. This data loading step is the first step for all DQ Jobs. However, pushdown feature can be used to reduce (NOT eliminate) the data transfer & compute to Spark from the data source, if the DQ Job specified does not require loading all the data into Spark.In summary, speed of loading the data from data source to Spark is a -q query compute time at data source + network transfer of -q result between data source and Spark. Pushdown can reduce both elements, but the efficiency gained is dependent on the complexity of -q query and how big the dataset from -qresult would have been without pushdown.How pushdown is efficientSome of the Spark compute performed by the DQ Job can be translated into SQL queries that most relational databases support natively. In such a case, the DQ Job does not need to load all the rows of the dataset. Instead, the DQ Job can query the data source for the results of those SQL queries and reduce the amount of data transferring out of the data source. The results of these SQL queries are almost always lead to smaller amount of data compared to the full dataset defined by -q. Only some of the DQ Job features require the full dataset to be loaded into Spark. Therefore, pushdown can be a useful tool to speed up the overall DQ Job speed -- provided that the speed of executing these SQL queries are faster than the speed of transferring the data out of the data source into Spark. In most use cases, pushdown leads to faster DQ Job execution for large datasets. If the -q query is sufficiently complex, then the speed reduced by transferring less data into Spark can be cancelled out by the multiple frequent SQL queries made to the data source by the Pushdown process (because each query may have have redundant compute due to the complexity of -q).How pushdown works in CDQUsing pushdown only reduces the amount of data transferred out of the data source. It does NOT skip the LOAD stage in DQ Job. Every DQ Job requires a small sample of rows (10-20) of the dataset defined by -q in order to generate Data Preview and analyze schema information for the dataset run. This means the -q query may be fully computed at data source before the sampling can occur (depending on the complexity of the -q). In such a case, sampling 10-20 rows of data is not a quick and immediate LOAD stage and only efficiency gain comes from lack of transferring data between data source and Spark.Therefore, pushdown feature would be most efficient if -q is a simple select query with simple where filtering. The benefit comes from the fact that if your dataset defined by -q results in 100 million rows, only 10-20 rows of the dataset defined by -q will be loaded into Spark.Profile with pushdown will then generate a series of SQL queries and query the data source again for aggregate metric data. Depending on the dataset, these multiple SQL queries can be more efficient than loading all the data into Spark and computing these aggregate metric in Spark. The results between Profile with pushdown and Profile without pushdown are (practically) identical.Profile: pushdown vs no pushdownHere is the summary of Profile activity with details regarding pushdown supportFeatureSupports pushdownDescriptionRow CountYesComputes row count of the dataset.Distinct CountYesThe number of distinct values in a column.MeanYesThe average of all the values in the column. Supports numeric columns only.Min / MaxYesThe minimum and maximum values of the column. Supports numeric and boolean columns only.NULL CountYesThe number of null values in the column.EMPTY CountYesThe number of empty values in the column. Supports string columns only.TYPE CountYesThe number of different types inferred in a column (if any).TopN / BottomNNoComputes the top 5 most frequent (TopN) and least frequent (BottomN) values. Supports all types.This result is displayed as a frequency bar chart in Profile page. If pushdown is enabled, then TopN and BottomN values are not displayed. Related features like Stat Rules (Distribution) are also disabled.Data Shape DetectionNoDetects shapes of the values based on Shape parameters provided (automatic or manual).HistogramNoCreates histogram of the values in the column.Correlation MatrixNoCreates correlation matrix. Supports only numeric columns. Snowflake PushdownAs of 2022.11, Snowflake Pushdown is available as a public beta. Since this is a beta feature, some capabilities may be limited. For more information on our beta program, refer to Public betas.Pushdown is an alternative computation method for running a DQ job, where all of the job's processing is submitted to a SQL data warehouse, such as Snowflake. Snowflake Pushdown jobs generate SQL queries to offload the compute to the data source, reducing the amount of data transfer and Spark computation of the DQ Job.By running a Snowflake Pushdown job, you can:Reduce latency.Eliminate dependencies on Spark compute to run Collibra Data Quality, and increase processing speeds.Eliminate the egress costs for running DQ Jobs against large data sets.Auto-scale based on your processing requirements.For more information on Snowflake, see the Snowflake documentation.PrerequisitesBefore running Snowflake Pushdown jobs, a user with Admin permissions must:Successfully run the Pushdown setup script.Enable Pushdown from the Collibra DQ UI.Pushdown vs. Pull UpCollibra DQ Pull Up is a DQ Job without pushdown, where all of the processing is executed inside the Apache Spark compute engine. Source data is stored inside a database, where Spark reads it out, and the parameters you set when you select a scope, define a range, and add build layers, are partitioned and sorted. The results of the profile job are then recorded in the DQ Metastore. Depending on the size of your data set and the number of DQ checks performed, this process can greatly slow run times because Spark has its own compute resources, such as memory and CPUs. Pull up has limited support for profiling but you can't run it without setting up Spark.With Snowflake Pushdown, the Collibra DQ Agent, which creates the Apache Spark DQ Job, is no longer needed. No agent is required to submit a Snowflake Pushdown job because all of the processing is sent directly to Snowflake. Therefore, Agent ID is always set to 0 for Snowflake Pushdown jobs. With Snowflake, you can also scale your compute needs based on the specific requirements of your DQ Job. This is because Snowflake's architecture features auto-scaling, which allows you to automatically scale up, or burst, to 64 or 128 nodes when you require greater processing needs. Snowflake also automatically scales down when your DQ Job does not require robust processing. With auto-scaling, the processing of your data is enhanced, improving runtime performance and removing the egress costs of reading large amounts of data.Features and Limitations of Snowflake PushdownAs of 2022.11, Snowflake Pushdown is available as a public beta. Since this is a beta feature, some capabilities may be limited. For more information on our beta program, refer to Public betas.This section describes the features and limitations of using Collibra Data Quality's Snowflake Pushdown capability to run a DQ Job.To use Snowflake Pushdown, you must be a participant in the public beta. This feature is currently unavailable for non-participants.FeaturesThe following table shows the features unique to DQ Jobs run using Snowflake Pushdown processing.FeatureDescriptionDynamic date filterA togglable option that allows you to filter column data dynamically by runDate $.Configurable number of connectionsAllows you to set the number of open connections between 1-5 so you can run jobs in parallel and improve the performance of profile jobs.Cancel jobsUnlike Spark compute jobs, you can cancel the SQL queries of Snowflake Pushdown jobs.No agentPushdown runs the database engine to execute jobs directly, removing the need for agents. Agent ID = 0.More control over AdaptiveRulesWith minimal clicks, you can apply AdaptiveRules, such as row count and uniqueness, from the UI.LimitationsCurrently, there are some limitations with Snowflake Pushdown because it is in public beta as of 2022.11:Outlier detection is not yet fully
supported.Pattern detection is not yet supported.We do not currently support Okta integration. Support for this integration is planned for a future release. You cannot currently run a job from the command line. This functionality will be supported in an upcoming release.Running a Snowflake Pushdown jobAs of 2022.11, Snowflake Pushdown is available as a public beta. Since this is a beta feature, some capabilities may be limited. For more information on our beta program, refer to Public betas.This section shows you how to get started with the three scanning methods of a Snowflake Pushdown job.StepsFrom Explorer, select your Snowflake connection with the icon next to it. For the icon to be visible, you need to enable Pushdown when you establish your Snowflake connection.Select your schema.Click Create DQ Job.The Job creator page opens.Select a scanning method. Since the steps and procedures vary by scanning method, refer to the documentation associated with each scanning method for further instructions.Scanning methodDescriptionFull ScanScans your full table to show all results. This is the standard scanning method.Partial ScanScans a section of your table for more targeted results than a full scan.SQL QueryAllows you to manually write and compile a SQL query for an advanced scan of your table.AdaptiveRulesAdaptiveRules are common metrics used to observe changes to your data. These can be applied or removed from the AdaptiveRules tab on the Add Layers workflow by selecting or deselecting AdaptiveRules.The following table shows a list of AdaptiveRules measured by Collibra DQ and whether they are applied by default.AdaptiveRule typeSubtypeDescriptionDefault?AvailabilityN/AObserve changes to the row count and loading time in your table.N/A Row countMonitor the row count change in your table.True Loading timeMonitor loading time changes.FalseDistributionN/AObserve the number of unique values in a table.N/A UniquenessMonitor a column's cardinality within the range of previous DQ JobsTrueConformityN/AObserve columns with values that fall outside of the normal range.N/A MinMonitor columns with min values outside the normal range.False MeanMonitor columns with mean values outside the normal range.False MaxMonitor columns with max values outside the normal range.FalseCompletenessN/AObserve columns in your table containing null values or empty fields.N/A Null valuesMonitor columns for null values.True Empty valuesMonitor columns for empty data.TrueYou can always apply or remove AdaptiveRules, but if you bypass the configuration, the DQ Job will still run correctly with the default AdaptiveRules applied. ShapesA shape is the format of data in a string column. Enabling Shapes lets you discover inconsistencies in the data formats of a column. For example, when analyzing a date column, Collibra DQ may detect different string formats of the same meaning, such as 11-15-2022, 11/15/2022, and 11.15.2022.The Shapes feature is on by default, but you can choose to toggle it off. You can also manually control the advanced options by checking the Manual checkbox.OptionDescriptionOccurrencesSet occurrences between 0.001-5 to show shapes that occur less than the percentage you set.Format per column Set format per column between 0-100 to identify columns with more formats than the number you set. This helps identify columns that are too noisy, meaning they do not have a consistent format for detection.Character lengthSet character length between 0-100 to identify string lengths that are greater than the number you set. Character lengths beyond the set value are considered free from fields and do not have a format for detection.Data shape granularConsiders the length of the shape and differentiates between numerical and letter formats. For the length of a shape to be detected, data shape granular must be enabled.ReplayReplay gives you a historical behavior profile of your data by looking back into past runs to show how the data looked on a certain day, month, or year. To enable Replay, select the dropdown icon on the Run button and select Replay.OutliersOutliers are values that differ significantly from the rest of the data and may indicate bad or erroneous data. Numerical outliers are detected using the IQR and box plot methods.You can detect for outliers by selecting the Outliers tab on the Add Layers screen. Click the Add Outlier button to open the new Outlier detection bucket's setup options. The following table shows the setup options and their descriptions:OptionDescriptionColumnThe column(s) used to detect outliers. You can select multiple columns for outlier detection. Required.TypeThe type of data in a given column. For example, VARCHAR.Key The column used for grouping detected outliers. When assigned, outliers are grouped to their assigned column when detected. Optional.DateThe column used for bucketing. Optional.Click Save to save your outlier bucket.Optionally click the three dots menu icon to configure Quartiles, Lookback, and determine whether or not to detect for Categorical outliers. The following table shows the configuration options and their descriptions:OptionDescriptionQuartile 1The boundaries beyond which low (Q1) outliers are detected using the IQR formula. Use the slider or enter a value in the text box between 0.01 and 0.45.Quartile 3The boundaries beyond which high (Q3) outliers are detected using the IQR formula. Use the slider or enter a value in the text box between 0.55 and 0.99.LookbackThe period used to look back through the dataset using the date column. Use the slider or enter a value in the text box between 0 and 30.IntervalThe unit of measurement of the lookback period, such as DAY.CategoricalSelect this option to detect for Categorical outliers instead of Numerical outliers.Optionally click the pencil icon near Advanced Options to adjust outlier detection sensitivity. Use the slider to adjust outlier detection Sensitivity from Low to High for a given column. You can also change the Unit of outlier detection sensitivity with the dropdown menu. Click Save.Click the pencil icon to edit a saved Outlier bucket, or click the trash can icon to remove it.Running a Full ScanAs of 2022.11, Snowflake Pushdown is available as a public beta. Since this is a beta feature, some capabilities may be limited. For more information on our beta program, refer to Public betas.A full scan is a scan of your entire table. When running a full scan, you do not need to select columns or apply filters to rows because all columns are selected by default. Various DQ Layers, such as AdaptiveRules, are also applied by default. A full scan is commonly used to obtain a high-level overview of your data.PrerequisitesYou have an Connectivity to Snowflake and Pushdown enabled.StepsFrom Explorer, select your Snowflake connection with the icon next to it. For the icon to be visible, you need to enable Pushdown when you establish your Snowflake connection.Select your schema.Click Create DQ Job.The Job creator page opens.Select Full Scan.Optionally add layers or toggle default settings.Certain AdaptiveRules are enabled by default. You can optionally toggle them on and off.Shapes are enabled by default. You can optionally toggle them on and off, and configure more advanced options by selecting the Manual checkbox.Click Next.The Review page opens.Review your DQ scan. Select Run.A dialog appears and tracks the status of your Snowflake Pushdown job.What's next?After running a Full Scan, go to the Jobs page to Profile (automatic).Running a Partial ScanAs of 2022.11, Snowflake Pushdown is available as a public beta. Since this is a beta feature, some capabilities may be limited. For more information on our beta program, refer to Public betas.A partial scan only scans the sections of your table that you specify Select columns, apply row filters, and add DQ layers to fine tune your DQ scan and obtain a targeted understanding of your data.PrerequisitesYou have an Connectivity to Snowflake and Connectivity to Snowflake.StepsFrom Explorer, select your Snowflake connection with the icon next to it. For the icon to be visible, you need to enable Pushdown when you establish your Snowflake connection.Select your schema.Click Create DQ Job.The Job creator page opens.Select Partial Scan.The Select columns view appears.Select your columns by checking or unchecking the checkboxes associated with a particular column.Click Next.Alternatively, you can click Select rows from the left workflow menu.The Select rows view appears.Select a filter type to apply a specific filter.Filter TypeDescriptionTime SliceScans a range of dates or times.Row FilterScans a section of rows.LimitScans a random sample of rows.Click Next.Alternatively, you can click Add layers from the left workflow menu.The Add layers view appears.Optionally add layers or toggle default settings.Certain AdaptiveRules are enabled by default. You can optionally toggle them on and off.Shapes are enabled by default. You can optionally toggle them on and off, and configure more advanced options by selecting the Manual checkbox.Click Next.The Review page opens.Review your DQ scan.Select Run.A dialog appears and tracks the status of your Snowflake Pushdown job.Time SliceTime slice is a filter that lets you select a range of dates or times for your DQ scan. To apply a time slice filter, select Add, configure your preferences in the Add Time Slice modal, then select Save to save your filter. When a filter is successfully saved, a badge displays on the Time Slice tile and the number of applied filters is reflected in the left workflow menu.Edit Time Slice modalComponent DescriptionColumn of referenceSelect a column from your table for the application to analyze.Date When toggled on, the date filter lets you filter column data based on run date ${rd}.VisualizeDisplays an autogenerated bar chart of days where data is available in your data set.OperatorSelect an operator, such as =or >, upon which the app bases its
operation.Run DateSelect a run date to allow the application to scan sections of your table, add a new date to it, and then run again. By selecting Run Date, a dynamic result is returned at runtime.Row FilterRow Filter scans a section of rows from your table. To add a Row Filter, select Add, configure your preferences in the Add Filter modal, then select Save to save your filter. When a filter is successfully saved, a badge displays on the Time Slice tile, and the number of applied filters is reflected in the left workflow menu.Add Filter modalComponentDescriptionColumn of referenceSelect a column from your table for the application to analyze.Date VisualizeDisplays an autogenerated bar chart of days where data is available in your data set.OperatorSelect an operator, such as =or >, upon which the app bases its operation.Value LimitLimit scans a random sample of rows based on the maximum number of rows you set. To apply a limit, specify the number of rows greater than 0 for DQ to scan.What's next?After running a Partial Scan, go to the Jobs page to Profile (automatic).Scanning with SQL QueryAs of 2022.11, Snowflake Pushdown is available as a public beta. Since this is a beta feature, some capabilities may be limited. For more information on our beta program, refer to Public betas.The SQL Query option lets you write and compile a query manually for an advanced scan of your table.PrerequisitesYou have an Connectivity to Snowflake and Connectivity to Snowflake.StepsFrom Explorer, select your Snowflake connection with the icon next to it. For the icon to be visible, you need to enable Pushdown when you establish your Snowflake connection.Select your schema.Click Create DQ Job.The Job creator page opens.Select SQL Query.The SQL view opens.Write and compile a SQL query.To switch to Standard view and return to the Running a Partial Scan workflow, select the three-dots menu icon and select Standard view. Any changes made to your SQL query are lost when you switch between views.Click Next.Alternatively, you can click Add layers from the left workflow menu.The Add layers view appears.Optionally add layers or toggle default settings.Certain AdaptiveRules are enabled by default. You can optionally toggle them on and off.Shapes are enabled by default. You can optionally toggle them on and off and configure more advanced options by selecting the Manual checkbox.Click Next.The Review page opens.Review your DQ scan.Click Run.A dialog appears and tracks the status of your Snowflake Pushdown job.What's next?After scanning with SQL Query, go to the Jobs page to Profile (automatic).SummaryClick or CodeCollibra DQ offers easy to use no (low) code options for getting started quickly. Alternatively, more technical users may prefer programmatic APIs.Core ComponentsCollibra DQ offers a full DQ suite to cover the unique challenges of each data set.9 Dimensions of DQBehaviors - Data observabilityRules - SQL-based rules engineSchema - When columns are added or droppedShapes - Typos and Formatting AnomaliesDuplicates - Fuzzy matching, Identify similar but not exact entriesOutliers - Anomalous records, clustering, time-series, categoricalPattern - Classification, cross-column & parent/child anomaliesRecord - Deltas for a given column(s)Source - Source to target reconciliationCheck out our videos to learn moreBehaviorImagine a column going null, automatic row count checks - does your data behave/look/feel the same way it has in the past.RulesAssures only values compliant with your data rules are allowed within a data object.SchemaColumns add or dropped.ShapesInfrequent formats.DupesFuzzy matching to identify entries that have been added multiple times with similar but not exact detail.OutliersData points that differ significantly from other observations.PatternRecognizing relevant patterns between data examples.SourceValidating source to target accuracy.RecordDeltas for a given column.

	Cross-Data Set Rules
	In-Clause (Single Column)
	Except (Multi-Column)
	Referencing secondary data sets
	Joins
	Sample Results
	Data Type
	Features
	Limitations
	Steps
	Shapes
	Replay
	Outliers

	Running a Full Scan
	Prerequisites
	Steps
	What's next?

	Running a Partial Scan
	Prerequisites
	Steps
	Time Slice
	Row Filter
	Limit
	What's next?

	Scanning with SQL Query
	Prerequisites
	Steps
	What's next?
	 Collibra DQ ScorecardsOverviewScorecards allow you to visualize the health and consistency of a data set over time. DQ highlights macro and micro trends, for example, weekend loads vs weekday loads or behavioral item changes per day, and display them on the dataset scorecard.Data Quality Over Time, Drill-In and Roll-UpData quality doesn't mean a one time check or once a year project. Data is the life blood flowing through your organization. It's mandatory to know how your data is behaving right now, yesterday and over time to gain an understanding of the trends. For insights to be meaningful, we need to see both the lowest granularity and the big picture. DQ's approach lets you drill all the way into the exact moment the issue arose, as well as zoom out to see how your data is behaving month to month. This makes DQ useful at many different levels in your organization's heirarchy - a Data Steward might be more concerned with a recent change in data and want to correct it using Service Now immediately, whereas a Chief Data Officer might be more concerned with the overall health of the organization's data.ScoringScoring can be completely controlled by the end-user with out of the box defaults.Collibra Data Quality provides a data quality assessment that scans nine dimensions of a data set to assure the integrity of that data. The nine dimensions include behavior, rules, outliers, pattern, source, record, schema, duplicates, and shapes.OwlCheck produces a data quality score from 0-100. 100 represents no integrity issues found in the data set. The score numerically represents the integrity of that data. For example, the score of 100 tells the data analyst that there are zero data quality issues in that data set.DQ scans your data with the same frequency. You load your data - Owl scans nine dimensions of DQ and summarizes the results into a score from 0-100.Aggregate ScoreEach dimension can be custom weighted and rules can contain custom scoring severity. In this example, the deducted score (59) from the starting score (100) equals an overall score of 41.Page ViewVisually and logically group data sets together to create a heat map of blindspots.Similarly to job control and build frameworks like Jenkins, we always want to know the health of our data sets. Did it recently fail? Does it commonly fail on Mondays? What is the aggregate or composite score for multiple data sets? DQ allows you to define scheduled health checks that depend on the success/failure status of any number of data sets. This protects the downstream process consumers from pulling erroneous data into their models.List ViewFind DQ issues across all data sets in your data lake. Rank them, sort them, search them and limit them by time.How Do I Take Action on Lots of Alerts?One of the most frequently asked questions is how to operationalize and take action on all of the issues that are seemingly valid yet overwhelming. DQ seems to find many valid issues in your data sets, but there are many more issues in your data than expected. The list view helps by first limiting to a time range, for example, issues that have occurred less than five days, or possibly even just issues that occurred today. This will likely result in a large reduction in the issue count. In addition, you might limit issues to those DQ issues that have a business impact. This means other downstream processes or data sets are connected to this data set and field. You only get the business impact feature if you have enabled the DQ Graph module. This results in another drastic reduction in issues because now you are limited to issues that recently occurred and have impact to the business. Finally, you might filter by the class or type of DQ issue, such as Rules or Outliers. It is common in a large data lake that after taking these steps you are left with the one or five top ranking issues in your lake. These are likely the issues that should be prioritized and moved into a remediation queue.Pulse ViewThe Pulse View page provides a great snapshot of Collibra DQ Jobs that were executed, whether manually or via a schedule. On the Pulse View dashboard, you can view a heat map of your Jobs and health by business unit, connections, users, scheduled frequency, and more.The following screenshot shows an example of the type of data you can view when you hover over a heat map label, for example, a grade, score, and scheduled frequency.The following table describes the heat map labels you can toggle for additional data about Jobs that ran for Collibra DQ. The charts are based on criteria you select from the drop-down lists on the Pulse View page.LabelLabel iconDescriptionMissingA run that either failed at run time or was never created/started/picked up.0 RowsA run that is passing or complete and has resulted in 0 rows of data.0 Rows & FailingA run that is failing or incomplete and has resulted in 0 rows of data.PassingA run that is passing or complete and has resulted in rows of data.FailingA run that is failing or incomplete and has resulted in rows of data.show failedWhen you check this check box, only the runs that failed display. When the check box is unselected, every job that ran displays, whether the score was passing or failing.Jobs that are run ad-hoc or manually will not appear on the Pulse View page.
	 Collibra DQ SchedulerSchedule a JobAfter you successfully run a job, you can schedule that job to run automatically. Do this by updating the template (if needed) and clicking the schedule icon in the hoot page. To change the template, you can use the -rd variable: $ in your query to set dynamic dates or date ranges for your scheduled job.Here you can choose the Agent to run the job, the frequency (daily/monthly/quarterly) and the time of day:If your monthly or quarterly jobs are loaded after the month or quarter has ended, you can schedule the job for the day when the data has landed, but set the offset to the proper run date required for charting/reporting.Schedule ManagementEnable Scheduled Jobs from your environment variable in owl-env.sh:SCHEDULE_ENABLED = TRUE/FALSE (Default = TRUE)Limit Scheduler Open Time-slots:If you don't want automated jobs to be running during business hours, or for a particular day/time on any given day of the week, you can set off-limit times so authorized users don't select them when scheduling a job.View/Re-Run Scheduled JobsYou can view your schedule jobs from the scheduled tab on the jobs page.
	 Collibra DQ AlertsEmail AlertsEmail alerts let you send emails to specified recipients when an alert condition is met for a given dataset.Setting up an email server using the WebAppTo configure the SMTP server, click the gear icon in the left navigation pane and then click Alerts.Setting a condition to send an alertYou can set specific conditions so that an email alert is sent to recipients when those conditions are met.Go to the Alert Definitions page under Alerts.Select a dataset from the Alert Builder searchbar. Enter an Alert Name, for example, score less than 75.Define a Condition.Condition TypeDescriptionExampleBuilt-inConditions that do not require any predefined rules to trigger alerts. To use built-in conditions, enter the condition, an operator, and a value. Available built-in conditions are:scorerow countscore < 75RulesConditions that are tied to datasets as predefined, saved rules. To use rule conditions, enter the rule upon which the alert condition is based.Rule conditions can be configured based on:SQL Based Rules previously saved to a dataset.Stat Rules previously saved to a dataset.You can configure dataset-level stat rules as conditions without previously saving them to a dataset.Because rule validation does not occur in the Alert Builder, it is not recommended to use rules that are not already saved to a dataset.$rowCount > 1Optionally enter a Batch Name.Enter an Alert Recipient as a recipient of email alerts, for example, test.user@collibra.com.Optionally enter a Custom Message, for example, Alert when a score is less than 75.Click Save.For more information on creating rules to use as rule conditions, see Adding a Rule.To use the batch name to create a consolidated list of alerts and distribution lists for a set of notifications per dataset, see Email Batch Alerts.DQ Alerts for datasetsYou can set DQ alerts for datasets so that you are notified based on certain conditions that are triggered on the datasets. Below is what a dataset email looks like in your inbox. Make sure your email client didn't mark the email as spam and that the SMTP server was set up properly.DQ Alerts for failed jobsAnother scenario is when the DQ Job fails to run or has an exception and, therefore, never gets the chance to score the data or run the alert condition. This is a failed alert that's automatically sent to the email address based on the Admin/SMTP settings defined in the To Email (Default) fields in the Admin console.Alert Notification in Web UIThere are also alert notifications in the web UI. This can be helpful to confirm that the email alerts were sent out and who should have received the notifications.Setting up the email server programmaticallyIf you are in a notebook or pipeline, you may prefer to use the Scala/Spark API to create the Email Server. val emailServer = OwlUtils.createEmailServer(smtp-relay.sendinblue.com, 587) emailServer.setUsername(abc@owl-analytics.com) emailServer.setPassword(abc) emailServer.setCurrentSet(1) Util.EmailServerDaoFactory.delete(emailServer) Util.EmailServerDaoFactory.insert(emailServer)Setting up DQ Alerts for jobs stuck in Staged statusOccasionally, jobs become stuck in Staged status after an attempted run. When you create a dataset in Explorer, you can set up alerts from the Config tab by entering an email address in the Email field before the first run of a newly created job.When an email address is assigned to a dataset, an initial alert is sent 1 hour after a job becomes stuck in Staged. Additional alerts are sent every 24 hours a job remains in Staged, and these alerts persist until the job is no longer stuck. After resolution, previous runs of a job no longer in Staged are marked as Unknown.Alerts for jobs stuck in Staged include: The Job ID.The name of the dataset.The agent status.A descriptive reason for why the job is stuck in staged and possible actions to take for remediation.If multiple alerts are configured for a particular job, an alert is sent for each one that is configured.Setting up SMTP alerts without a username or passwordSome alert settings are configurable without requiring a username or password when you set up an email server. To configure this type of alert:Select the gear icon in the left navigation pane and then select Settings.From Settings, select App Config in the upper right and then select Add Custom.Enter a property in the name field and a value in the value field.Select Add.PropertyDefault ValueDescriptionmail.smtp.authTrueWhen set to True, the server attempts to authenticate the user using the AUTH command. When set to False, username and password authentication are turned off. mail.smtp.starttls.enableTrueWhen set to True and TLS is supported by the server, this enables the use of the STARTTLS command to switch the connection to a TLS-protected connection before issuing any login commands. When TLS is not supported by your mail server, this property must be set to False. These properties are preset to their default values. For example, mail.stmp.auth is preset to True.Email Batch AlertsThe Batch Alerts functionality allows you to setup a single alert with multiple recipients. Click the Alerts icon in the left navigation pane and then click Alert Definitions.In the Batch Name field, specify a batch name for the multiple recipients. Multiple recipients are specified by comma (,) AND/OR semicolon (;) delimiters.You can specify either single or multiple recipients.The accepted formats for email are name@email.com OR name1@email.com,name2@email.com OR name1@email.com;name2@email.com.You can update the batch at any time.After a job runs, it checks the data set with condition email not sent and batch name not empty. If this condition is met, an email is sent to all recipients in the batch.You can also run the DQ jobs manually from DQ Job tab.Alert for Batch Schedulehttps://dq-docs.collibra.com/scheduler/schedule-owlchecks
	 Collibra DQ ReportsBuilt-InCollibra DQ provides various out of the box reports that allow you to access insights quickly.Completeness ReportThis section provides information on how to generate a Collibra DQ Completeness Report to determine what percentage of your data is complete.What is Data Completeness?Completeness answers the question of what percentage of your data is complete, or filled in (i.e., not EMPTY or NULL). Using this report, you can view the completeness of a column, a collection of tables, a business unit or data set (file or table), or almost any completeness query.Completeness of your data is important because it shows whether data is inaccurate, invalid, the wrong type, or missing altogether, which can leave you without any data. Sometimes data values can be missing for valid reasons, which requires a better understanding of the context of whether the missing data is bad for business or acceptable. StepsTo generate a Completeness report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.Click the Completeness Report link.From the BizUnit/Dataset drop-down list, select one of the following options: Business Unit LevelFrom the Business Unit drop-down list, select a business unit, or All.Proceed to step 5.Dataset LevelIn the Dataset search field, enter a data set for which you want to run the report. You can also enter a partial word to locate data sets in the system.Proceed to step 5.From the Lookback/Custom drop-down list, select one of the following options: LookbackFrom the Lookback drop-down list, select the number of days back to include in the report. You can choose up to 30 days back.From the Mode drop-down list, select one of the following options: All: includes all jobs in the system.DRAFT: includes only the jobs that are in draft mode.PUBLISHED: includes the jobs that have been published.Proceed to step 6.Custom RangeFrom the RunDate/UpdateTime drop-down list, select one of the following options: Run Date: date/time the data represents.Update Time: time the DQ job ran.In the Date Range field, select a date range by clicking in the from/to fields and choosing the dates using the interactive calendars. From the Mode drop-down list, select one of the following options: All: includes all reports in the system.DRAFT: includes only the reports that are in draft mode.PUBLISHED: includes the reports that have been published.Proceed to step 6.Click GO.The results display based on your input.When looking at completeness over time, you should differentiate between the time the DQ job ran (update time) or the date/time the data represents (run date). For example, you could load stock data today but the data loaded was for last week. All ViewThe All view represents the completeness of data sets throughout the entire Collibra DQ app. The % Completeness chart measures all the data, which shows around 93% complete in the following example. The Volume Weighted Completeness chart also measures the volume of the data, which shows around 97%. Column View The column view shows the completeness of specific data sets, which makes it easy to see the columns that are least complete and, therefore, of possible concern. The columns range from 0% to 100% complete.Behavioral Analytics for CompletenessFor a different approach to completeness management, see the Collibra DQ Behavior feature. This approach uses the data itself to create baselines and profiles to understand which completeness issues matter and, therefore, require you to take some kind of action.To generate statistical process around completeness in the events you are most concerned about, and alert you to a change in slope (a drastic change in completeness), see the Collibra DQ Job Back Run and Profile (automatic) features.Coverage ReportWhat is a Data Quality Coverage ReportThe Coverage Report provides a view that shows DQ coverage across all your technical data sets (for example, schemas, files, tables, and items in the database) via a donut chart, as well as time-series bar charts that show the DQ run level information aggregated by month.StepsTo generate a Coverage Report, follow these steps.Log in to the Collibra DQ instance.Click the Explorer icon in the left navigation pane. The Explorer view opens.In Connections, select one of the databases, for which you want to generate a report and click Generate Report. The Coverage Report displays. The report includes a donut chart showing the percentage of all schemas in the database that are running data quality on them and interactive bar charts showing which data sets are running data quality jobs on a monthly basis.To see how many new data quality jobs have been added, click one of the following bar charts (the green color represents new DQ jobs and the gray are the existing jobs):ViewDescription1mShows new and existing jobs after one month.3mShows new and existing jobs after three months.6mShows new and existing jobs after six months.YTDShows new and existing jobs year-to-date.1yShows new and existing jobs after one year.AllShows new and existing jobs for the entire range of months.5. To generate a Coverage Report for a specific schema, expand the schema and click GenerateReport. The Coverage Report displays for that schema. You can click into the charts to see specific information for DQ coverage for this schema.In the following screenshot, (22/44) next to the PUBLIC schema represents 22 out of 44 tables that have DQ jobs running on them and (24/24) represents 24 out of 44 jobs that have been cataloged, meaning they are registered and have metadata.Data Set FindingsWhat is the Data Set Findings ReportThe Data Quality Data Set Findings Report allows you to search for a particular data set and generate, view, copy, print, and export the report to an Excel or CSV file format. As of the 2022.08 release, PDF is no longer a supported file format for exporting and printing reports. These functions are now restricted to the CSV file format only.StepsTo generate a Data Set Findings Report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.Select the Data Set Findings tile.In the search bar in the upper right corner, enter the name of your target data set.A list of available data sets populates in the drop-down menu.Select the data set for which you want to view and export results.The Data Set Findings page displays for your data set.The report includes the name, source, RunDate, and host of your data set, as well as columns that highlight specific data about it.Select the RunDate from the drop-down list to display the data in the table for that particular RunDate.Toggle the icon at the top of the column to sort the data that displays in the columns in ascending or descending order.Filter the report results by entering information in the search bar. For example, if you enter a number in the search field, any report result that includes the number displays.Click Copy, Excel, CSV, or Print at the top right of the columns to copy, print, or export your reports.Navigate the pages of your report by clicking the Previous and Next pagination buttons, located bottom-right of the columns.The following screenshot is an example of a Data Set Findings Report for the lake.nyse data set.Summary ReportsCollibra Data Quality Summary reports provide information about your data sets rolled up in high level summaries. These reports include the Weekly Summary Report and Data Quality Checks Report.These reports provide a look at the most simplistic form of the rule. However, this view does not associate itself with a run's score.What is the Weekly Summary Report?When you operate a large data lake or several large data environments, it's helpful to have a way to report across different dimensions at an executive summary level. You may want to know the health or coverage per line of business, department or tenet, or per database.The Collibra Data Quality Weekly Summary Report automatically aggregates a simple series of the high level trends for each data set, which allows you to see the DQ scores and trends, as well as row counts and passing runs in a weekly report. You can copy, export, and print this report to an Excel or CSV file format.As of the 2022.08 release, PDF is no longer a supported file format for exporting and printing reports. These functions are now restricted to the CSV file format only.StepsTo generate a Weekly Summary report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.Select the Data Summary tile.The Weekly Summary report displays.The following table describes the report columns.ColumnDescriptionDatasetThe data sets scanned over one week.ScoreThe average data quality score of a data set over one week.Score TrendA line graph representation of data quality scores over one week.Hover over the blue dots to see the score trend.RowsThe total number of rows of a particular data set scanned over one week.Rows TrendA line graph representation of row count over one week.Hover over the blue dots to see the rows trend.Pass/FailTotal number of DQ scans, whether they pass or fail.Passing TrendA histogram of DQ scans that passed (blue) or failed (red) over one week.Hover over the blue dots to see the passing trend.Table/File NameThe name of the table or file in use.Toggle the icon at the top of the column to sort the data that displays in the columns in ascending or descending order.Filter the report results by entering information in the search bar. For example, if you enter a number in the search field, any report result that includes that number displays.Click Copy, Excel, CSV, or Print at the top right of the columns to copy, export, and print the report.Navigate the pages of your report by clicking the Previous and Next pagination buttons, located at the bottom of the columns.What is the Data Quality Checks Report?The Data Quality Checks Report provides a number of automatic checks of your data sets that are continually updated, based on observation and learning. This report includes the type of check performed and the check value and break value per data set. The top portion of this report rolls up the highest results of the checks. As of the 2022.08 release, PDF is no longer a supported file format for exporting and printing reports. These functions are now restricted to the CSV file format only.The Schema Evolution, located in the automatic checks summary at the top of the report, is a schema finding that shows how the schema has evolved from the last run.StepsTo see the Data Quality Checks report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.Select the DQ Check Summary tile.The Data Quality Checks report displays.This report includes a summary of the number of checks that Collibra DQ automatically ran at the top of the report and the details, which are described in the following table.ColumnDescriptionData SetThe name of the data set.Check TypeThe type of check that DQ ran.Check ValueThe value associated with this check.Break ValueThe number of points associated with a rule break, which are then subtracted from a data quality score.Toggle the icon at the top of the column to sort the data that displays in the columns in ascending or descending order. Filter the report results by entering information in the search bar. For example, if you enter a number in the search field, any report result that includes that number displays.Navigate the pages of your report by clicking the Previous and Next pagination buttons, located at the bottom of the columns.Profile ReportWhat is the Profile ReportThe Profile Report allows you to search for a particular data set and generate, view, copy, print, and export the report to an Excel or CSV file format.As of the 2022.08 release, PDF is no longer a supported file format for exporting and printing reports. These functions are now restricted to the CSV file format only.StepsTo generate a Profile Report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.Select the Profile Report tile.In the search bar in the upper right corner, enter the name of your target data set.A list of available data sets populates in the drop-down menu.Select the data set for which you want to view and export results.The Profile Report page displays for your data set.The report includes the name, source, RunDate, and host of your data set, as well as columns that highlight specific data about it.Select the RunDate from the drop-down list to display the data in the table for that particular RunDate.Toggle the icon at the top of the column to sort the data that displays in the columns in ascending or descending order.Filter the report results by entering information in the search bar. For example, if you enter a number in the search field, any report result that includes the number displays.Click Copy, Excel, CSV, or Print at the top left of the columns to copy, print, or export your reports.Navigate the pages of your report by clicking the Previous and Next pagination buttons, located at the bottom of the columns.The following screenshot is an example of a Profile Report.Missing Jobs ReportWhat is a Missing Jobs Report?The Missing Jobs report provides a view of Collibra DQ jobs that were expected but didn't run on schedule.StepsTo generate a Missing Jobs report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.From the Reports page, click the Missing Jobs Report tile.For x-axis, select one of the following options from the drop-down list:countupdt_tsFor y-axis, select one or more of the following options:countupdt_tsFor the type of chart you want to display, select one of the following options from the drop-down:LineAreaColumnScatterNavigate the pages of your report by clicking the Previous and Next pagination buttons, located bottom-right of the columns.Sample SQL queryYou can use the following sample SQL query for a Missing Jobs report.SELECT jsa.updt_ts::date AS updt_ts, jsa.dataset, bus.name AS business_unit, js.freq, js.active, js.mon, js.tue, js.wed, js.thu, js.fri, js.sat, js.sun FROM job_schedule_attempt jsa JOIN job_schedule js ON js.dataset::text = jsa.dataset::text LEFT JOIN dataset_scan ds ON ds.dataset::text = jsa.dataset::text AND ds.updt_ts::date = jsa.updt_ts::date LEFT JOIN business_unit_to_dataset bu ON jsa.dataset::text = bu.dataset::text LEFT JOIN business_units bus ON bus.id = bu.id WHERE ds.updt_ts IS NULL AND jsa.updt_ts >= (now() - '20 days'::interval) ORDER BY (jsa.updt_ts::date) DESCHardware Usage ReportWhat is a Hardware Usage Report?The Hardware Usage report provides a view of the Collibra DQ jobs that have consumed the most hardware.StepsTo generate a Hardware Usage report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.From the Reports page, click the Hardware Usage Report tile.For x-axis, select one of the following options from the drop-down list:num_executorsexecutor_memorytotal_memorytotal_coresexecutor_coresavg_row_countdatasetFor y-axis, select one or more of the following options:num_executorsexecutor_memorytotal_memorytotal_coresexecutor_coresavg_row_countdatasetFor the type of chart you want to display, select one of the following options from the drop-down:LineAreaColumnScatterNavigate the pages of your report by clicking the Previous and Next pagination buttons, located bottom-right of the columns.Sample SQL queryYou can use the following sample SQL query for a Hardware Usage report.with most_current_dataset_scan as (select dataset, avg(rc)::Int as avg_row_count from dataset_scan group by dataset) select opt.dataset, num_executors, executor_cores, executor_memory, (executor_cores * num_executors) total_cores, (NULLIF(regexp_replace(executor_memory, '\D', '', 'g'), '')::numeric * num_executors) as total_memory, ds.avg_row_count from opt_spark opt, most_current_dataset_scan ds where opt.dataset = ds.dataset order by total_cores desc limit 75Oversized Job ReportWhat is an Oversized Job Report?The Oversized Job report provides a view of the Collibra DQ jobs that have more hardware assigned than is available to run. For example, say you have a scenario where 20 jobs all request 100 servers to kick off at the same time, but 2,000 servers are not available to run. The Oversized Job report identifies those 20 jobs, which are oversized. Those jobs can now be resized to the optimal amount of executors, cores, ram, etc.StepsTo generate an Oversized Job report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.From the Reports page, click the Oversized Job Report tile.For x-axis, select one of the following options from the drop-down list:datasetreasonrecommended_total_memoryrecommended_total_coresrecommended_num_executorsrecommended_executor_memorynum_executorsexecutor_coresexecutor_memorytotal_corestotal_memoryavg_row_countcolumn_countavg_total_time_in_minutescell_countFor y-axis, select one or more of the following options:datasetreasonrecommended_total_memoryrecommended_total_coresrecommended_num_executorsrecommended_executor_memorynum_executorsexecutor_coresexecutor_memorytotal_corestotal_memoryavg_row_countcolumn_countavg_total_time_in_minutescell_countFor the type of chart you want to display, select one of the following options from the drop-down:LineAreaColumnScatterNavigate the pages of your report by clicking the Previous and Next pagination buttons, located bottom-right of the columns.Sample SQL queryYou can use the following sample SQL queries for an Oversized Job report.DROP VIEW IF EXISTS report_oversized_jobs;CREATE OR REPLACE VIEW report_oversized_jobs AS(WITH most_current_dataset_scan AS (SELECT dataset_scan.dataset, avg(dataset_scan.rc)::integer AS avg_row_count FROM dataset_scan GROUP BY dataset_scan.dataset), dataset_schema_col AS (SELECT dataset_schema.dataset, count(*) AS column_count FROM dataset_schema GROUP BY dataset_schema.dataset), dataset_activity_time AS (SELECT dataset_activity.dataset, round(avg(dataset_activity.total_time_in_minutes), 2) AS avg_total_time_in_minutes FROM dataset_activity GROUP BY dataset_activity.dataset), highest_hardware_usage AS (SELECT opt.dataset, opt.num_executors, opt.executor_cores, opt.executor_memory, opt.executor_cores * opt.num_executors AS total_cores, NULLIF(regexp_replace(opt.executor_memory::text, '\D'::text, ''::text, 'g'::text), ''::text)::numeric * opt.num_executors::numeric AS total_memory, ds.avg_row_count, sch.column_count, dat.avg_total_time_in_minutes, ds.avg_row_count * sch.column_count AS cell_count FROM opt_spark opt, most_current_dataset_scan ds, dataset_schema_col sch, dataset_activity_time dat WHERE opt.dataset::text = ds.dataset::text AND sch.dataset::text = ds.dataset::text AND dat.dataset::text = ds.dataset::text AND opt.executor_memory IS NOT NULL AND opt.executor_memory::text NOT LIKE ''::text ORDER BY (opt.executor_cores * opt.num_executors) DESC) SELECT highest_hardware_usage.dataset AS dataset, CASE WHEN (highest_hardware_usage.cell_count::numeric / highest_hardware_usage.total_memory) > 20000000::numeric THEN 'Too Much Memory'::text WHEN (highest_hardware_usage.cell_count / highest_hardware_usage.total_cores) > 190000000 THEN 'Too Many Cores'::text ELSE 'Too Much Memory & Cores'::text END AS reason, GREATEST(highest_hardware_usage.cell_count / 20000000, 1::decimal) AS recommended_total_memory, GREATEST(highest_hardware_usage.cell_count / 119000000, 1::decimal) AS recommended_total_cores, GREATEST(highest_hardware_usage.cell_count / 119000000 / 2, 1::decimal) AS recommended_num_executors, GREATEST(highest_hardware_usage.cell_count / 20000000, 1::decimal) / GREATEST(highest_hardware_usage.cell_count / 119000000 / 2, 1::decimal) AS recommended_executor_memory, highest_hardware_usage.num_executors, highest_hardware_usage.executor_cores, highest_hardware_usage.executor_memory, highest_hardware_usage.total_cores, highest_hardware_usage.total_memory, highest_hardware_usage.avg_row_count, highest_hardware_usage.column_count, highest_hardware_usage.avg_total_time_in_minutes, highest_hardware_usage.cell_countFROM highest_hardware_usageWHERE ((highest_hardware_usage.cell_count::numeric / highest_hardware_usage.total_memory) < 20000000::numeric OR (highest_hardware_usage.cell_count / highest_hardware_usage.total_cores) < 119000000) AND highest_hardware_usage.executor_cores > 1 AND highest_hardware_usage.num_executors > 1); Observability Score Roll-Up ReportWhat is an Observability Score Roll-Up Report?The Observability Score Roll-Up report provides aggregated scores of all adaptive rules (includes all data sets and all columns), as well as averages passing and breaking for all columns over 30 days. The scores are aggregated by check type and dimension.StepsTo generate an Observability Score Roll-Up report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.From the Reports page, click the Observability Score Roll-Up Report tile.For x-axis, select one of the following options from the drop-down list:check_typedimensionavg_observability_scoreFor y-axis, select one or more of the following options:check_typedimensionavg_observability_scoreFor the type of chart you want to display, select one of the following options from the drop-down:LineAreaColumnScatterNavigate the pages of your report by clicking the Previous and Next pagination buttons, located bottom-right of the columns.Sample SQL queryYou can use the following sample SQL query for an Observability Score Roll-Up report.with a as (select dataset, col_nm from dataset_schema), b as (select distinct dataset, 'Row Count', 'ROW_COUNT', 'AVAILABILITY' from dataset_scan where updt_ts >= (NOW() - INTERVAL '30 DAY') and updt_ts <= NOW()), c as (select * FROM (VALUES ('NULL', 'COMPLETENESS'), ('EMPTY', 'COMPLETENESS'), ('TYPE', 'SCHEMA'), ('CARDINALITY', 'DISTRIBUTION'), ('MIN', 'CONFORMITY'), ('MAX', 'CONFORMITY'), ('MEAN', 'CONFORMITY')) as t (type, dimension)), d as (select * from a,c), e as (select * from d UNION (select * from b)), f as (select dataset as be_dataset, be_score, field, issue_type, run_id from behavior), g as (select * from owl_catalog), h as (select distinct dataset, run_id, rc from dataset_scan where updt_ts >= (NOW() - INTERVAL '30 DAY') and updt_ts < NOW()), i as (select e.dataset, col_nm, type, dimension, run_id, rc from e, h where e.dataset = h.dataset), j as (select distinct dataset, col_nm, col_semantic from dataset_schema), k as (select * from business_unit_to_dataset), l as (select * from business_units), m as (select i.col_nm, type, case when be_score is null then 100 else be_score end as score, i.dimension, i.run_id, rc, be_score, issue_type, i.dataset, g.source_name, g.source, g.table_nm, g.run_mode, g.data_concept_id, j.col_semantic, l.name from i LEFT join f on f.be_dataset = i.dataset and f.field = i.col_nm and f.issue_type = i.type and f.run_id = i.run_id INNER JOIN g on i.dataset = g.dataset LEFT JOIN j on i.dataset = j.dataset and i.col_nm = j.col_nm LEFT JOIN k on i.dataset = k.dataset LEFT JOIN l on l.id = k.id) select avg(score) as avg_observability_score, type as check_type, dimension from m group by type, dimension order by dimension Rules Passing Fraction Roll-Up ReportWhat is a Rules Passing Fraction Roll-Up Report?The Rules Passing Fraction Roll-Up report provides the passing and total rows scanned for user-defined rules over the past 30 days, which are aggregated by dimensions.StepsTo generate a Rules Passing Fraction Roll-Up report, follow these steps.Login to the Collibra DQ instance and click the Reports icon in the left navigation pane.The Reports page opens.From the Reports page, click the Rules Passing Fraction Roll-Up Report tile.For x-axis, select one of the following options from the drop-down list:avg_percent_rows_passingdimensionFor y-axis, select one or more of the following options:dimensionavg_observability_scoreFor the type of chart you want to display, select one of the following options from the drop-down:LineAreaColumnScatterNavigate the pages of your report by clicking the Previous and Next pagination buttons, located bottom-right of the columns.Sample SQL queryYou can use the following sample SQL query for a Rules Passing Fraction Roll-Up report.with a as (select * from rule_output where updt_ts >= (NOW() - INTERVAL '30 DAY') and updt_ts <= NOW()), b as (select * from dataset_scan where rc > 1), c as (select * from owl_rule), e as (select * from dq_dimension), g as (select * from owl_catalog), h as (select * from business_unit_to_dataset), i as (select * from business_units), j as (select distinct dataset, col_nm, col_semantic from dataset_schema), f as (select a.dataset, a.rule_nm, CASE WHEN c.column_name = '' THEN 'global' WHEN c.column_name is null THEN 'global'ELSE c.column_name END as column_name, CASE WHEN e.dim_name is null THEN 'UNSPECIFIED' else e.dim_name END as dim_name, c.dim_id, ROUND(a.perc) as perc, ROUND(a.perc * b.rc) as breaking_rows, (100 - (ROUND(a.perc * b.rc) / b.rc)) as score, b.rc as row_count, a.run_id, g.alias, g.catalog_rank, g.db_nm, g.run_mode, g.source_name, g.table_nm, i.name, j.col_nm, j.col_semantic from a LEFT JOIN b on a.dataset = b.dataset and a.run_id = b.run_id INNER JOIN c on a.dataset = c.dataset and a.rule_nm = c.rule_nm LEFT JOIN e on e.dim_id = c.dim_id INNER JOIN g on g.dataset = a.dataset LEFT JOIN h on h.dataset = g.dataset LEFT JOIN i on i.id = h.id LEFT JOIN j on a.dataset = j.dataset and c.column_name = j.col_nm)select case when avg(score) < 0 then 0 else avg(score) end as avg_percent_rows_passing, dim_name as dimension from f group by dim_nameCustomCustom reports can be leveraged by connecting your favorite BI tool on the underlying reporting mart. Below are a few queries that can be used as inspiration for building your own reports. Please refer to the ERD diagram for a larger list of tables.Long Running Jobsselect dataset,run_id,total_time from dataset_activity where total_time is not null order by total_time descJobs Submittedselect * from owlcheck_qJobs by Userselect count(*) as owlchecks, username from owlcheck_q where updt_ts < now() group by username order by owlchecks descJobs by User, Datasetselect count(*), user_nm, dataset from dev.public.owl_check_history group by user_nm, dataset order by count descLargest by Row Countselect dataset,rc as row_count from dataset_scan order by rc descJobs by Monthwith grp as (select date_trunc('MONTH', run_id) as by_month from dataset_scan where run_id < now()) select count(*) as owlchecks, by_month from grp group by by_month order by by_month descRules by Userselect count(*) as rules, user_nm from owl_rule group by user_nm order by rules descBy Spark(Cluster) Usageselect * from opt_spark order by num_executors descJobs IDs from Agentselect remote_job_id from agent_q where remote_job_id is not nullDataset Activityselect dataset,run_id,total_time from dataset_activity where total_time is not null order by total_time descJobs with Enriched Metricswith activity as (select dataset,run_id,total_time from dataset_activity where total_time is not null order by total_time desc limit 100), scans as (select * from dataset_scan where dataset in (select dataset from activity)), configs as (select * from opt_spark where dataset in (select dataset from activity)), schema as (select count(*) as col_cnt, dataset from dataset_schema where dataset in (select dataset from activity) group by dataset) SELECT A.dataset, A.run_id, C.total_time, A.rc, D.col_cnt, B.driver_memory, B.num_executors,B.executor_cores, B.executor_memory, B.master FROM scans A INNER JOIN configs B ON A.dataset = B.dataset INNER JOIN activity C ON A.dataset = C.dataset and A.run_id = C.run_id INNER JOIN schema D on A.dataset = D.dataset ORDER BY C.total_time descJobs. Load Times and Resourceswith activity as (select dataset,run_id,total_time from public.dataset_activity where total_time is not null order by total_time), scans as (select * from public.dataset_scan where dataset in (select dataset from activity)), configs as (select * from public.opt_spark where dataset in (select dataset from activity)), schema as (select count(*) as col_cnt, dataset from public.dataset_schema where dataset in (select dataset from activity) group by dataset) SELECT A.dataset, A.run_id, A.updt_ts, C.total_time, A.rc, D.col_cnt, B.driver_memory, B.num_executors,B.executor_cores, B.executor_memory, B.master FROM scans A INNER JOIN configs B ON A.dataset = B.dataset INNER JOIN activity C ON A.dataset = C.dataset and A.run_id = C.run_id INNER JOIN schema D on A.dataset = D.dataset ORDER BY A.updt_ts desc limit 10Dataset Scans and Scores By Schemaselect * from public.dataset_scan where dataset like 'public.%';Dataset Scans and Scores By Nameselect * from public.dataset_scan where dataset ='public.atm_customer';Scans By Month By Schema - 'Public'select dataset, DATE_TRUNC('MONTH', run_id) as run_id, count(*) as Total_Scans from dataset_scan where dataset like 'public%' group by dataset, run_id order by run_id ascRule Breaks Past 30 Daysselect * from rule_output where run_id < NOW() - INTERVAL '30 DAY';Scheduled Jobs Queueselect job_id,agent_id,dataset,run_id,status,activity,start_time from public.owlcheck_q;Column Counts from Dataset Schemaselect dataset, count(*) from dataset_schema group by dataset;Profiling Statsselect dataset, run_id, field_nm, (null_ratio * 100) as null_percent, (empty_ratio * 100) as empty_percent, ROUND(CAST((100 - ((null_ratio * 100) + (empty_ratio * 100))) as numeric), 3) as completeness from public.dataset_field where updt_ts > '2020-06-01' and dataset = 'ProcessOrder' and run_id > '2021-03-17 00:00:00+00' order by completeness descMetadata / Schema / Datatypesselect * from public.dataset_schema;Profile Statsselect * from public.dataset_field;Locate Similar Columnsselect distinct dataset, field_nm, max_abs from dataset_field where max_abs = 'Wireless Telecommunications'Same Column Namesselect distinct dataset, field_nm from dataset_field where field_nm = 'authenticated_user'Similar Column Namesselect distinct dataset,field_nm from dataset_field where field_nm like '%id%'Behavior Findingsselect * from behavior where dataset='esg_data'All Columns for Schema from Postgres StatsSELECT table_name FROM information_schema.tables WHERE table_schema = 'public' ORDER BY table_name
	 Collibra DQ WorkflowsAssignments QueueThe Assignments Queue is a summary of existing DQ Job runs that can be filtered by behavior model assessment, user, and run status.Collibra DQ provides observations that sometimes require review to validate. It often makes sense to assign the validation to a user who has access to the source data.Assignments are handled by Collibra DQ internally, or via an existing ServiceNow queue when configured. Collibra DQ is the default configuration, but you can configure ServiceNow from the Assignments Queue section of the Admin Console.To assign an observation to a user, go to the findings page of a previously run DQ Job. From the Action dropdown, select Validate or Resolve. Resolving a finding retrains your Job's quality score if any points were deducted. Alternatively, if you validate a finding, you can assign an item to a Collibra DQ user for further investigation.If you do not select an assignee, the item is marked as valid but unassigned: Acknowledged.Optionally, you can enter a description to provide details for the assignee.External Queues are where the source of the assignment is tracked. Tracking options include:Internally via the Internal Assignment page.Externally via External assignment.Internal AssignmentCollibra has a built in Assignments Queue. You can assign any item to a user that has previously logged into the application. Select OwlDQ from the assignment dropdown after choosing the Validate option from the actions dropdown. External assignmentCollibra DQ has the ability to link to an Assignment Queue. You can assign any item to a user that has previously logged into the application and has a matching Service Now account. Choose the configured queue from the assignment drop-down list after selecting the Validate option from the actions drop-down list as previously described.To configure a queue, you must have ROLE_ADMIN or ROLE_CONNECTION_MANAGER. Go to the Admin Console and click Assignment Queues.\Add or Edit a ServiceNow configuration from the corresponding page.\FAQCan anyone assign an item?Anyone with access to the dataset and TRAIN role (if enabled) can assign an item. Users who have been assigned an item can resolve without the TRAIN role.How do I add people to the assignment listOnce a person logs into the Collibra DQ Application they will get a profile and become eligible for assignment.Labeling / TrainingItem LabelingQuickly click findings to trigger retraining.Action labeling optionsThe following action labels instruct Collibra on how to handle a finding:ActionDescriptionValidateInstructs Collibra to either assign a finding to a specific user for review, which then appears in the Assignments Queue, or acknowledge without an assignee that the finding is a valid observation.Note: Validating a finding does not improve your score.InvalidateInstructs Collibra to ignore a finding and allow the value to pass. There are two invalidation options: Save and Save & Retrain.Save: Allows you to mark a finding as invalidated.Save & Retrain: Allows you to invalidate a finding and any previously saved invalidated findings (if any).Note: When you have many findings to invalidate, it may be best to use the Save option to invalidate them at the same time, once all findings are reviewed.ResolveInstructs Collibra to mark the finding as an observation and prevents it from appearing in future runs. Resolving a finding does not immediately affect data quality scores.Available actions by featureFeatureAvailable actionsBehaviorsValidate, ResolveRulesValidate, ResolveOutliersValidate, Invalidate, ResolvePatternValidate, Invalidate, ResolveSourceValidate, Invalidate, ResolveRecordValidate, ResolveDupesValidate, Invalidate, ResolveSome findings are ineligible for all labeling options. For example, you can only apply Validate and Resolve labels to findings that result from Rules.Validating a findingWhen you apply a validate label to a finding, you can assign it to another DQ user to review. This marks the finding for future runs and sends it to the internal Assignments Queue. You can also configure DQ to send assignments to an external queue, such as External assignment.Invalidating a findingSometimes the findings page flags issues with your data that DQ discovers during a job run, but maybe you want DQ to ignore certain flagged issues. The invalidate label allows you to do that. After you add a descriptive annotation of your action, you can then select either Save or Save & Retrain.SaveIf you have a large number of findings that DQ has flagged, and you want to invalidate all of them at once instead of clicking through one at a time, select Save for all of the findings you would like to bulk invalidate. On your last finding, select Save & Retrain. All previously saved invalidated findings are removed and DQ retrains your data set.Save & RetrainWhen you Save & Retrain your data set, any previously deducted points from a flagged finding are restored and reflected in your overall data quality score. If you do not have many findings to invalidate, you can Save & Retrain individually instead of in bulk.Resolving a findingSome features, such as Behavior and Rules, only permit Validate and Resolve actions. When you cannot Validate a finding but you want to apply a label, select Resolve. The Resolve label prevents a finding from appearing in future runs of your data set, and does not immediately affect your data quality score when applied.Recalling labeled findingsTo modify a previously labeled finding, you can always access them through the Labels tab. Here you can edit an annotation or delete a label entirely. If you delete a label, it returns to the findings page, unlabeled. From there you can again choose to Validate, Invalidate, or Resolve it.To closely analyze when a finding has received a label, who has applied it, and more, see also the Dataset Audit Trail.Peak vs Off PeakBut my Weekend runs are not the SameA common scenario that can fool behavioral analytics and machine learning is when you have a few different but normal patterns. Collibra has a rich labeling system that allows a user to fork the training model to learn these cycles individually without confusing the model.Click the Green ButtonBy clicking the green button, you can label the day of the week as peak vs off peak. You can also chose your time zone - this will help determine the day of the week accurately. You only need to click the peak scheduler once and the model will learn and forecast this understanding for every run in the future. This feature commonly prompts for a re-train.Time ZonesUpdating time zonesBy default, Collibra Data Quality's time zone associated with the RunID is located in Coordinated Universal Time (UTC). To update the server time zone, select the Update Time Zone link from the findings page. An Update Time Zone dialog displays with the option to select your time zone from the dropdown menu. Click the Update Time Zone button to confirm your selection.Since the server time zone can differ from the configurable RunID time zone on the findings page, data sets in List View may have different dates than the date listed on the findings page of the same data set. For example, a data set with a RunID in the default UTC time zone may appear as 2022-01-15 00:00:00 on the findings page, but because the server is located in US/Central time, the date appears as 2022-01-14 19:00:00.
	 Collibra DQ DIC IntegrationDQ ConnectorCurrent Status: [Tech Preview]BenefitsThe Native DQ Connector brings intelligence from Collibra Data Quality into Collibra Data Intelligence Cloud. Once this integration is established, you will be able to bring in your Data Quality user-defined rules, metrics, and dimensions into Collibra Data Catalog.Please note: Only data sources ingested by both Collibra Data Catalog and Collibra Data Quality will be able to synchronize Data Quality assets.Step 0: PrerequisitesResourceNotesCollibra Edge SiteDQ Connector is a capability of EdgeCollibra Data Intelligence Cloud2021.07 Release (or newer)Collibra Data Quality2.15 (or newer)Database(s) and Driver(s)Proper Access and Credentials (Username / Password)Let's proceed after gathering all prerequisites!Step 1: Create and Configure Edge and DQ Connector1A. Create Edge site and Add Name e.g. 'Collibra-DQ-Edge' and Description (One-Time)For more detailed information on Edge installation and configuration, see Installing an Edge site.1B. Establish Edge’s Connection To Each Data Source (One-Time For Each Source)Additional Steps in Collibra DG include:Provide Connection Name, which exactly matches Connection / System Name in Collibra DQSelect Connection type e.g. Username / Password JDBC driverInput Username and Password to connect to your data sourceInput fully qualified driver class nameUpload Driver jar (to reduce potential conflicts, use same driver jar from Collibra DQ)Input Connection String Input credentials e.g. username / password or Kerberos config fileReminder: All of the above information should be the same as in Collibra DQAdditional Steps in Collibra DQ include:Verify Connection ‘Name’ in DGC matches Connection ‘Name’ in Collibra DQVerify ‘Connection string’ in DGC matches ‘Connection URL’ in Collibra DQVerify ‘Driver class name’ in DGC matches ‘Driver Name’ in Collibra DQVerify ‘Driver jar’ in DGC matches Driver used in ‘Driver Location’ in Collibra DQ (may require SSH) Verifying the driver jar is only possible on standalone installs. This is not possible with container builds (k8s deployments), unless you kubectl into the pod and lookup the directory and jar directly.Important: Connection / System name (in this example, ‘postgres-gcp’) must exactly match the Connection / System Name in Collibra DQ1C. Establish Catalog JDBC Ingestion Capability On Edge (One-Time For Each Data Source)1D: Configure Destinations For DQ Assets (Rules, Metrics, Dimensions) Within DQ Connector (One-Time)Option A: Create New DestinationsCreate New Rulebook Domain (suggested domain type) for DQ Rules and DQ Metrics Global Create -> Search for and select 'Rulebook' under 'Governance Asset Domain' -> Select desired 'Community' e.g. 'Data Governance Council' -> Input name of Rulebook domain e.g. 'CDQ Rules', 'CDQ Metrics'Record your domain resource ID e.g. 2xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx (can be found in your URL) for Step 1G.Create New Business Asset Domain (suggested domain type) for DQ Dimensions Global Create -> Search for and select 'Business Asset Domain' -> Select desired 'Community' e.g. 'Data Governance Council' -> Input name of domain e.g. 'CDQ Dimensions'Record your domain resource ID e.g. 2xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx (can be found in your URL)Option B: Use Existing Domains from existing Rulebook and Asset domainsRecord your domain resource ID e.g. 2xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx (can be found in your URL) for Step 1G.You have now established destinations for where Collibra should ingest your User-Defined Rules, Metrics, and Dimensions.1E. Assign Permissions for New Domains of DQ Assets (Rules, Metrics, Dimensions) (One-Time)Please assign your Edge user as a Technical Steward in each of the domains specified in 1D, such that Edge can create and update assets into each respective domain. Ensure that your Edge user also has admin permissions assigned in order to create and update assets in the Catalog.This step provides Edge with the proper permissions to create and update assets into the domains from the previous step.1F. Allow DQ Assets To Attach To Tables and Column Assets (One-Time)Now we need to add a few relations and update global assignment characteristics:Table: Settings -> Operating Model -> Relations -> Search in any column for 'Table' -> Global Assignment -> Characteristics -> Edit (larger of the two buttons) on right -> Add characteristic -> Search for and select 'governed by Governance Asset' -> SaveColumn: Settings -> Operating Model -> Relations -> Search in any column for 'Column' -> Global Assignment -> Characteristics -> Edit (larger of the two buttons) on right -> Add characteristic -> Search for and select 'is governed by Data Quality Rule' -> Save1G. Establish DQ Connector (One-Time)DQ Connector is an Edge capability that will facilitate communication with your Collibra DQ instanceSettings -> Edge -> Capabilities -> Add Capability -> Select 'DQ Connector' -> Input your Collibra DQ URL e.g. 'customerdq.collibra.com:port' input username and passwordUnder the JWT Issuer, please ensure that you have the correct schema name for the database you are connecting to (either 'public' if single tenant, or the name of tenant).Remember from previous step 1D, you will need to provide your resource / UUIDs for your specified domains for DQ Rules, Metrics, and Dimensions.Specify DQ Asset Destinations Within DQ ConnectorYou've now completed the initial one-time configuration.Step 2: Register Edge Connections to Collibra Catalog2A. Create System Asset Within Collibra Catalog To Connect To Edge Important: Connection / System name (in this example, ‘postgres-gcp’) must exactly match the Connection / System Name in Collibra DQ.2B. Register Edge Data Source to Collibra CatalogStep 3: Start Ingesting Collibra Data Quality Into CatalogPrerequisite: Catalog will have ingested schemas on Edge. Prerequisite: Ensure targeted schemas have User-defined Rules, Metrics, and/or Dimensions within Collibra DQ that have been Executed 3A. Synchronize Data Quality for Selected Schemas3B. Verify Data Quality Results in Collibra Catalog The example output was successful.Appendix: Synchronization For Single Table in Data Quality and Data CatalogFAQQ: Known LimitationsOnly 1 source tenant from Collibra DQ can be specifiedOn-demand ingestion (vs. scheduled)Can only specify 1 domain destination for each of Rules, Metrics, and DimensionsOnly JDBC sources supported (no file sources)Q: DQ Dashboard In DGC: I can verify the DQ Connector is synchronizing Data Quality Rules and Data Quality Metrics, but why don't Data Quality Dashboard Charts display?A: Ensure correct Aggregation Paths and Global Assignments (or create, if none exist) for Table and Column below.Q: DQ Dashboard In DGC: Why won't my DQ Dimension charts display in my Dashboard?A: Please 1) add a new custom Relation 'Data Quality Metric classified by Data Quality Dimension', 2) Global Assignment for 'Data Quality Metric', 3) UUID of the new Relation into the DQ Connector setup in Step 1G, 4).Q: I've connected and configured data sources correctly, why aren't DQ Rules and DQ Metrics being synchronized?A: Please ensure Connection / System Names between Collibra Data Quality, Collibra, and Edge exactly match.A: Please ensure Edge user has admin permissions to write the assets into Catalog.A: Please ensure correct URL specified within the DQ Connector capability e.g. http://cdq.customer.com:9000/.Q: Is DQ Connector unidirectional?A: Yes, from Collibra DQ to Collibra Catalog in Data Intelligence Cloud.Q: How many DQ Connectors can I run simultaneously?A: Currently, one.Q: Does the DQ Connector work with On-Prem Collibra DGC?A: No, any work with on-prem Collibra DGC would be custom API development via Collibra Professional Services or a partner SI.Q: If I delete a rule from Collibra DQ that I have already synchronized into Collibra Catalog, will it be deleted from Catalog in the next synchronization?A: No, the DQ Connector only upserts into Catalog. If a rule is deleted from Collibra DQ, it will not be automatically deleted in Catalog.Q: Why are my scores different in Collibra DQ and Collibra Catalog?A: Currently, the DQ DQ Connector pulls in the most recent user-defined rules from Collibra DQ. Other components that affect score such as Behaviors, Outliers, Patterns, Dupes, Source are not yet included.Q: Getting errors when trying to delete both domain that Edge created for DB and the Connection?A: Please delete Edge created domain via API.Q: I've hit the synchronize button, how can I tell if my job is complete?A: Check the Activities circle (button on top right of menu) for the status of your DQ Synchronization.DQ WorkflowsBenefits The DQ Workflows package listed on Collibra Marketplace allows you to 1) create and manage Data Quality Issues, 2) receive Notifications on Rule Metrics, and 3) request Rule Creation and Modification within Collibra Data Intelligence Cloud. Data stewards will be able to organize and prioritize all requests within DIC before they take any action within Collibra Data Quality.Once deployed, the workflows will facilitate quicker data issue remediation by involving business analysts and other personas who can now participate in your data quality workstreams.Please note: DQ Workflows are listed on Collibra Marketplace and are templates to get customers started. Collibra-provided Marketplace listings are not subject to the same SLA obligations (https://marketplace.collibra.com/marketplace-terms/) In addition, they can only be leveraged within Collibra Data Intelligence Cloud. In the future, we will work towards releasing bi-directional workflows.Step 0: Prerequisites ResourceNotesCollibra Edge SiteDQ Connector is a capability of EdgeCollibra Data Intelligence Cloud2021.07 Release (or newer)Collibra Data Quality2.15 (or newer)Collibra DQ ConnectorSynchronized Rules from Data Quality to CatalogAfter gathering all the prerequisites, you can now proceed to the next step.Step 1: Download, Deploy and Start DQ Workflows 1A. Download Package from Collibra Marketplace and Unzip Files**1B. Deploy Workflows **1C. Adjust Workflow Settings (One-Time Setup)Workflow Configuration SettingDQ Rule / DQ Sync RequestDQ Rule ModificationDQ Data RemediationDQ Issue ResolutionManage DQ SubscriptionsNotify of DQ MetricsApplies ToAssetAssetAssetAssetGlobalGlobalApplies To Asset TypeColumn, TableColumn, Table, Data Quality RuleColumn, TableIssue Other: Any Signed In User Can Start WorkflowYY YYOther: Perform Candidate User Check on Workflow StartYYY YYOther: This Workflow Can Only Run Once At Same Time on Specific Resource YYOther: Show In Global Create YYRoles: Start Workflow SysadminSysadminRoles: Stop Workflow SysadminSysadminRoles: Reassign Tasks SysadminSysadminStep 2: Create Data Quality Requests / Issues2A. Create Data Quality IssuesWorkflowMain Requestor PersonaDescriptionSteward Taking ActionDQ Data RemediationData StewardBusiness AnalystTracking / management for confirmed data issues which may require underlying data remediationData Lake Admin, ETL EngineerDQ Rule RequestBusiness AnalystProposing data quality rules in plain language e.g. flag any German phone numbers in this dataset or identify customers with churn risk based on engagement time with our platformData StewardDQ Rule ModificationBusiness AnalystProposing adjustments to existing rules e.g. values, dimensions, passing thresholdsData StewardDQ Sync RequestBusiness AnalystRequest for synchronization of the DQ Connector to synchronize and/or onboarding a new dataset with pre-populated rulesData StewardStep 3: Manage Data Quality Issues3A. Setup Data Helpdesk FilterData HelpdeskSelect IssuesNavigate to 'Filters'Properties > Attributes > Relations > Issue **categorized by **Issue Category > Input 'Data Quality Issue' > ApplySave button > Save View as > 'Data Quality Issues'Optional settings for View: Can pin, promote, make public, make default3B. Manage Issues From Data Helpdesk View3C. Alternate: Manage Issues From TasksStep 4: Receive Notifications Of DQ Issues And Metrics4A. Set Up DQ Metric SubscriptionWho? Anyone can set up a DQ subscription, for yourself or for your teammates.Alerts will be sent based on reviewing rules and metrics associated with Tables or Columns that violate the specified Threshold.Assuming an e-mail is associated with the Subscriber within Collibra, the Subscriber will receive e-mail notifications by default at 12pm local server time. This, along with other settings within the provided workflow, can be adjusted in Eclipse, Collibra's recommended workflow editor.4B. Review DQ Metric AlertsEnsure that the DQ alerts set for you are providing helpful details.4C. Update Subscription SettingsFor every subscription set up for a Subscriber, the Manage DQ Subscriptions modal will cycle through for your review. You can update Threshold, add or delete Notification Days, add or delete Tables or Columns, rename the Subscription title, Save the new settings, or simply Unsubscribe.
	 Collibra DQ CatalogOverviewSmart Catalog - Bringing Data Science to CatalogingWhile Collibra DQ does not pride itself on being a catalog tool it does automatically maintain a dataset and process catalog. It is a necessary control for DQ and helpful to the end user. Without a smart catalog a user could technically overwrite another user's OwlCheck (DQ check). For example -ds Trade and -ds Trade. DQ believes a healthier habit is to store the full natural name of the dataset and allow the user to alias the name in the event that they wish to make a short-name. By doing this DQ protects users from mixing up their results and stops the constant renaming of common objects which leads to more unnecessary business level mapping. This approach makes it effortless for a user to create a new OwlCheck in the wizard because DQ will warn the user if there is a naming collision. DQ learns all the server hosts, the database schemas and table names and keeps things automatically organized. One less catalog to setup, manage and eventually untangle.Automatic Sensitive Data (PII) DetectionDQ automatically understands the semantic schema of your data such as CREDIT CARD, EMAIL, SSN and much more. Additionally, DQ will label sensitive data with PII and MNPI classifications.Data Table View of PIIDQ applies many labels to the header of a field / column. These labels be seen in the data preview table with highlighted errors and findings.The catalog offers a global view and filtering to see where PII existsBusiness UnitsCollibra DQ allows its users to run large sets of DQ jobs. Business units provide a way to categorize and group these.Through the admin console the user can navigate to the business units management page. This page will contain a table of your business units and a button to create new units.By clicking the Add Business Unit button the user will be able to fill out the business unit form. A unique name is required and a parent business unit can be optionally selected. Each unit can have one parent and many children. On the business units table you can click the blue plus icon to expand all children for that unit. If any children have children unit they will also have a plus sign to indicate the children rows can be expanded.Each business unit has actions. The business unit can be edited or deleted. If the unit is assigned to at least one data set, it cannot be deleted. If the user wishes to create children of a unit they can choose the Add Child action to have the new business unit form pre-populated with the selected unit as the parent.There are two different ways to assign a business unit to a data set. On the Catalog page there is an action option to manage the business unit. One the profile page the user can click the add/edit business units icon to open a control to manage the assigned business unit.Once a business unit has been assigned to a data set the user can filter by that business unit on the Catalog and Pulse View.Catalog Bulk ActionsBulk DeleteThe catalog allows user to delete multiple datasets in one action through the catalog. Click the Bulk Actions button dropdown in the top right corner. Select Bulk Delete.Each data set row will now have a checkbox in the Actions column. All filters can be applied now and the user can check all data sets they wish to delete. Once desired data sets are selected, the checkbox can be clicked. The user will be prompted to confirm they wish to delete data sets. The user can also click the X button to cancel.Bulk Manage Business UnitsAnother bulk feature allows the user to manage the assigned business unit to multiple datasets. Click the Bulk Actions button dropdown in the top right corner. Select Bulk Manage Business Units.Each data set row will now have a checkbox in the Actions column. All filters can be applied now and the user can check all data sets they wish to delete. Once desired datasets are selected, the user can select a business unit from the business unit dropdown control in the top right corner and click the checkbox. The user will be prompted to confirm they wish to change the assigned business unit to the data sets.
	 Collibra DQ SolutionsUse CasesData ProjectsHere are the articles in this section:Builds a Better DQ DashboardEnsures CCPA & GDPRMakes your Data Lake betterSpeeds Migrations/Enables ReplicationsBuilds a Better DQ DashboardDQ Dashboards. Many DQ problems result from an improper or a too slow observation of business rules related to the data. What is not caught by handmade visual inspection or a potentially outdated man-made rule can only be flagged by AI Machine Learning. Conversely, what does get flagged should also be easily triaged and then immediately fixed with the aid of AI. The most important metric for a DQ Dashboard is the time to fix, not simply the overall DQ score.Ensures CCPA & GDPRAggregation from hundreds of locations: The dashboard for what is within spec based on AI observation – not handmade rules.Then push-down fix: The rules are created and then immediately applied via self-service. The problem is immediately identified and a fix (recommendation engine) is applied.The value of this for both companies: The DQ problem never corrupts the whole. The longer the bad quality exists the bigger problem it can create.Makes your Data Lake better.Data Lakes support analytics, which will ultimately drive actions that increase revenue, support compliance, prevent churn, etc. However, whether that action is near to real-time or not, none of those can be performed without first performing a DQ check. For example, can you trigger an action before first checking the “GDPR Remove” list? A Data Quality check must always be the first step in any action. OwlDQ with Schema Learned can perform 100+ owl checks. However beyond simply those checks, it is OwlDQ's unique Spark-based architecture listed below that enables innovation. Churn, credit check, AML, infosec checks developed in the Data Lake could be added as part of Owlcheck on the streaming data.Data and Privacy in Place. Data never has to move for a DQ OwlCheck. The latency saved from operating in place, the added hybrid flexibility, the privacy maintained serves many new use cases that were not possible before. It also removes any unnecessary consolidation for the sake of simply consolidation. DQ doesn't have to start by first moving it into a Data Lake.DQ or Any Rules applied in the Stream. The DQ rules learned by DQ can be applied back to the source on data in the stream. However, other non-DQ rules learned in the Data Lake can also be added to the OwlDQ check.Self-Service and DQ push-down fix. DQ can enable a self-service push-down fix (recommendation engine) to anything flagged at the source. The best time to fix DQ is when and where the problem started. This enables tighter integration with Data Governance tools since DQ is maintained at the source once, not downstream where corruption beyond just the data can occur.Multi-cloud/On-prem/Hybrid. OwlDQ can scan/alert/report at the source or can operate natively on the target Data Lake such as Databricks Delta in Azure or Snowflake on AWS, or Qubole on GCP. Why compromise DQ just because your data is not in one place? Why settle on a DQ strategy that only works if the data is first migrated or moved?DQ Dashboards. Many DQ problems result from an improper or a too slow observation of business rules related to the data. What is not caught by handmade visual inspection or a potentially outdated man-made rule can only be flagged by AI Machine Learning. Conversely, what does get flagged should also be easily triaged and then immediately fixed with the aid of AI. The most important metric for a DQ Dashboard is the time to fix, not simply the overall DQ score.Speeds Migrations/Enables ReplicationsSpeed Migrations/Enable Replications. Batch collection with subsequent excel compare is very problematic. Instead, rules are generated by the data itself, and anomalies are triggered on the fly at the source system. This type of schema learned approach will speed migration and enable replications with much less overhead.Assists Data AggregationGreatly Reduce Support Costs. Apply AI-generated rules to maintain consistency across all accounts, rather than apply hand-made rules per every account. You are not managing 100+ variations of rules, but a consistent set that is learned from all.Capitalize on Real-time. Batch collection with excel compare will never support real-time. Instead, rules are generated by the data itself, and anomalies are triggered on the fly at the source system.Rapid Onboarding. Universal and already tested scans are applied quickly.Improve Customer Satisfaction. Monitor the real-time speed of the DQ pushdown fix, not just the overall DQ score over time.Improved SLAs. When DQ is fixed immediately, all SLAs can be improved not just DQ SLAs.Creating a Data Quality PipelineOrganizations that leverage data as an asset to make decisions into their future must entrust the data, from which important business decisions are derived. While almost all businesses leverage their own collected or generated data (or plan to) for internal use, how many actually scrutinize their data? Companies that sell a product must ensure that it is run through some sort of quality assurance suite of tests/runs before it is available to a customer. So organizations that use data internally as their own asset/product should have the same or more confidence in the quality of their data. Owl-Analytics is a data quality product that observes the data to surface behaviors, patterns, outliers, schema changes, record changes, and more.Data Scientists are trying to find insights in data to solve complex problems for their business. However, 80 percent of their time is spent discovering the data to cleanse it to make it ready for the model. Over time, models deteriorate as data underneath changes or new trends/ patterns arise. Leveraging Owl-Analytics to validate the quality of the data during the data pipeline and before the data is presented to the Data Scientist reduces time to value for business insights as Data Scientists get time back, not cleaning / prepping the data, and helping the model maintain a longer life.Azure Databricks allows the ability for Scala code to be written in a Jupyter Notebook against an Azure backed Databricks cluster to scale the work out to more nodes. This is to support the model and the amount of data being crunched by a business’s Data Scientists. The simplistic nature of Azure and Databricks and the unification of Spark and Jupyter Notebooks, on top of a robust infrastructure (from storage to compute), allow for Owl-Analytics Data Qualified pipelines to be built and executed seamlessly. This reduces the time it usually takes to obtain valuable insights.Here is how you can build such great DQ pipelines.Step 1: Build a Databricks Cluster in Azure.Within the Azure portal find Azure Databricks Service and create a cluster, after the cluster is built you should be able to launch the Workspace as shown below.Step 2: Create a Cluster, add the Owl jar and create a Notebook.1.) Inside the Azure Databricks UI, create a cluster, provide a cluster name (in this example we will be using DBOWL2 as the cluster name) and select the Databricks Runtime Version that DQ currently supports (as of this blog post), which is Runtime: 5.2(Scala 2.11, Spark 2.4.0).2.) After the cluster is created, make sure to import DQ's jar file onto the cluster so that the Notebook can access the methods exposed in the jar file.3.) Now that the Jar file has been added, create the Notebook and attach it to the cluster.Now the cluster is running with the DQ jar loaded on the cluster. Open the Jupyter notebook attached to the cluster and begin looking at a data set as a Data Engineer would, prepping the data for use by a Data Scientist by leveraging a DQ Pipeline as shown in the below screen shot.This Scala code imports the DQ jar and loops through the dates residing in files on Azure blob storage, pulls them into a Spark Data Frame (DF), and executes a DQ job to scan for the quality issues on the Spark DF. Once the scan is completed, the results are stored into the metadata repository under DQ’s web application and visible through your browser, as shown in Figure 4 below.The reason for a score of 49 on the raw data (as shown below in Figure 5) is due to the file having string values sprinkled in the file when something is Not Applicable (N.A.). When reading data in a column of a file that has a mix of numeric and string values the column will automatically conform to a string regardless if the majority class are integers. Also, within the files there is a single record in this file that has meta data information about the file “META_ZZ” this is also adding empty strings for all other columns. This record will also cause all columns to conform to strings.You should now have an understanding of the raw file and how you need to conform it before analysts can start to glean business value from the contents itself. First, ETL or cleanse the data that you discovered as being in error by filtering out the erroneous record and flipping all the N.A. values to null as the next step in our ETL and DQ pipeline.The DQ block of code is essentially the same, however, there is a new DQ property added to auto filter values “props.nullValue = ‘N.A’”. This finds every cell that has the value of N.A. and conforms it to a “null”. Once the file is read into a Spark DF, you use Spark to “Filter” out the erroneous record on line 36 in the code snippet above. Notice we are also adding an Owl_Run_ID date as this data set did not have a date that conforms easily. After the ETL process cleanses the data, you then have DQ’s Data Quality engine scan the newly processed Spark DF, storing the results into a data set called CleanCSVFiles (as shown in Figure 7 below).Notice the composite scores in the boxes are substantially better for the CleanCSVFiles data set than what they are for the original RawCSVFiles. In the next article, we will look deeper at the intelligence a DQ
scan garners on a data set when run over several days and how DQ surfaces different patterns, behaviors, trends and more in the data itself.Our ApproachBecause: Using raw data to drive key decisions, leads to incorrect answers and end-user distrust.Collibra Data Quality is singularly focused on providing your end-users with the highest standards of data quality. We are purpose-built to solve the problem of data quality and to ensure end-user trust.Whether you use a BI tool to visualize data or you are responsible for serving data to downstream subscribers, you always want to trust that your data is accurate. Showing inaccurate data in a bar chart or PDF report leads to a lack of confidence in the data provider. For example, see the data pipeline below. There are four main stages: Data Loading, Data Preparation, Data Verification (DQ), and Data Reporting, which covers a broad category of all ways to see and deliver data.To avoid getting lost in the latest marketing jargon, a fundamental description is provided under each of the four stages. There are many ways to ingest and transform data; the descriptions are not meant to be exhaustive. Imagine a scenario where data is loaded in either a batch or stream, then joined to another dataset with some column transformations, and finally made viewable in a BI tool for consumption. But what about quality? What checks and verifications are in place to guarantee data accuracy and completeness? After all, showing someone a housing report with incorrect estimated housing values or a stock report with the wrong stock prices won’t go over well. Figure 2 below shows popular company logos overlaid in each stage to bring more context to the discussion. There are easily 30+ software companies in each of the four stages, DQ chose three popular companies in each sector at random. DQ is not ranking companies. Gartner is of course an obvious choice if you are looking for companies rankings per sector.So, What’s the Problem?Detecting data issues is nuanced, manual and time consuming. The traditional solution is to write bespoke code or use a rules engine to validate specific columns in a data set. If missing data is a concern, a common remedy is to write a nullcheck. Another common example is a row count check; a piece of logic that checks if the number of rows in a data set is greater than a specified number. Of course, DQ and business rules can get much more complicated. Scale becomes a huge issue, because it is nearly impossible to write all the rules that a business truly needs to be confident in their data. Often times, the math is f(x) = columns * dbTables. 100 columns on average and 500 tables in a single warehouse equals 50,000 rules if you only wrote 1 rule per column. The reality is you need many rules per column, and your business has more than 500 tables and files. But there are even bigger problems with this strategy. Rules are a reactive approach to solving the problem; they are manually written and don’t adapt (they are static). With a rules-only approach, you can measure your franchise risk by the number of rules you can write. This requires coders, domain experts and a tool to write and then manage the rules.How Can Predictive DQ Help?DQ intentionally solves the problem using a machine learning first, rules second based approach. DQ automatically puts all columns under quality control. This includes nullchecks, emptychecks, statistical profiles, and sketches. DQ creates snapshots and baselines to benchmark past data and discover drift. DQ automatically creates an ML labeling system for users to collaborate and down-train items with a click of a button. The reason for this approach is to maximize coverage while reducing the dependency of manual rule building. The greater technical benefit is that all of DQ's generated checks and rules are adaptive. DQ is constantly learning from new data and will make predictions in many cases for typos, formatting issues, outliers and relationships. This is a paradigm shift from, risk being a measure of how many rules one can dream up and write, to simply click the DQ [RUN] button. Why a Unified DQ Solution?Aren't their other DQ companies and solutions on the market? Yes, absolutely. The challenge lies in the vast number of ways IT groups consume and process data. You need to find a product that can plug into Files the same way it plugs into DB Tables, Cloud File Systems, Data Frames and Kafka Topics, etc. You need a product that offers a consistent feature set and covers all nine dimensions of DQ. For most companies, DQ is an after thought, they will add-on a single dimension of DQ, such as rules or data drift.DQ offers a full data quality suite to cover the unique challenges of each data set. Complete coverage and consistency drives trust. A single scoring and reporting framework with nine pluggable features that can be activated in a tailorable DQ pipeline. DQ is horizontally scaleable, it can scan data from any location with infinity scale. Data quality needs to be abstracted from data ingestion for management to have a single normalized view of data health.Do One Thing Extremely WellDQ believes that data quality is such an important part of the data lifecycle that it requires a company that is solely committed to revolutionizing the way enterprises manage data quality. This is why DQ has a prescriptive approach to data quality (ML first, Rules second). The DQ software is purpose built for predicting and detecting data quality issues. Much like how Jira is used as the standard for software project management, even though it is absolutely possible to manage project line items in an excel sheet. Businesses that manage a lot of data require Score Cards, Alerts, Reports, List Views, Collaboration, Down Training, Cataloging, Scheduling and much more.Get StartedEmail us: info@collibra.comDoes your DQ Solution Have? Unified DQThe ability to score and manage and report on all datasets (files, tables, topics) agnostically. Providing a single pane of glass for DQ across all data sources.CollaborationThe ability for end-users to down-train, annotate and audit each DQ itemAuto DiscoveryThe ability to figure out issues in your data without requiring domain experts and rule writersAnomaly DetectionThe ability to detect numeric and categorical outliers in a datasetCorrelation AnalysisThe ability to measure the lift or relationship between numeric columnsRelationship AnalysisThe ability to discover and make predictions on hidden relationships in your dataAlertingThe ability to send out alerts when DQ scores dropSchedulingThe ability to schedule DQ jobs with a click of a button in the UIProfilingThe ability to provide descriptive statistics about the current run overlaid with the past runs for trend analysisReconciliationThe ability to validate the source and target dataset in timeline snapshotsDuplicate DetectionThe ability to find exact and similar matches in data recordsLineage GraphsThe ability to asses business impact via a business impact score by understanding how connected each dataset isSchema EvolutionThe ability to detect changes in data types, additions and removalsRulesThe ability to write custom rules for simple and complex scenariosOur StoryBackgroundThe Collibra DQ team comes from a variety of backgrounds. While some spent a decade building technology to detect financial crimes, others were architecting data fabrics at fortune 100 companies.Regardless of the industry or experience, we all faced similar challenges as it related to data quality.These unique vantage points have allowed us to understand the most common data quality challenges organizations are facing.What Did We Notice?We tried many of the traditional tools and techniques. The biggest problem was always the amount of time it took to do everything needed to implement and maintain data quality controls.You get left with half-baked data quality coverage and the right controls are added only after issues occur.It turned out teams were doing the same tasks for every data set and for each department, building the exact same tools over and over again.The result was a never-ending cycle of data issues, fire drills, and a mad scramble to fix it fast. All within the context of real-time business operations. Traditional ApproachTraditional approaches are very manual.Start by opening a sample or spreadsheet and conduct analysis (table-by-table, column-by-column, query-by-query, and item-by-item).Next, manually craft the rules, conditions, tolerances, and thresholds.Then stitch together the dashboards, scoring, workflows, alerts, and reporting. And you wonder why bare-minimum coverage is common.You're only as good as the rules you thought to write. Fast ForwardNow that the surface area of the data in an organization is so much larger, these traditional techniques don't hold up.What Did We Need?What we needed didn't exist. As lifelong data enthusiasts, we wanted a tool that could alert us when data changes occurred without complicated setup and lengthy analysis. We sought something that could work on big, medium, and small data and across all storage formats. Upon evaluating all the commercially available tools, and assessing costs and time of homegrown solutions, there were no great options.DQ is the differenceLake vs SwampThe difference between a business-critical lake and a swamp is data _quality_. One organization’s data lake may be another's data swamp. The difference lies in how data is curated. A data lake describes a vast amount of data that can be stored, assessed, and analyzed. A data swamp has little data governance, DQ automation, or contextual metadata.The accuracy and cleanliness of data is directly proportional to the quality of insights end-users will derive. Data lakes that gain broad adoption have strong governance programs. The challenge is, adding a DQ program typically takes 6-12 months but the project never really ends due to the volume, variety and velocity
of incoming data. OwlDQ uses autoML so solve this problem. OwlDQ constantly monitors the lake with native integration and unlimited scale. Use OwlDQ to generate the equivalent of 10K rules, while continuously adapting to the natural variance in your data. When erroneous data enters your lake OwlDQ will alert the data steward and provide a rich visual displaying the break records and explainable AI describing the issue. OwlDQ's approach is to learn from data and become incrementally smarter each day to ensure a statistically defensible DQ program.What is CDQCDQ is an intelligent data validation tool.8 Ways to Add Value Using CDQCrowdsourcing“People that have never written SQL are now helping with data quality”Rule Coverage“Did in 20 days what took 2 years with our legacy tool”Audit & Identify Gaps“Audited our existing checks and could not imagine the gaps we uncovered.”Automate Repeatable Processes“DQ cut 60% of our manual workloads”Technology Limitations“We now scan files and Kafka, avoiding downstream issues”Getting standard“No more piecemeal reports. Files, Warehouse, Lake. All metrics in one, transparent place.”Building Reports, Visuals, Workflows“This takes the place of 3 tools”Prioritized Efforts“Easy to see top priorities for improvement”What Savings Does CDQ Provide?Save Hours of Effort with Auto-generated Data Validation ChecksTop 10 BankReduced 60% of their manual Data quality workload + $1.7M cost savingsTop 3 Healthcare OrganizationSaved 2,000 hours during a cloud migration requirementTop Insurance OrganizationSatisfied Regulatory Second Line Controls in a 4 weeks (what originally took 2 years using their previous tool)While Reducing System-Wide Pain PointsOverwhelmed with ticketsBusiness users find issues firstTouchy pipelines break with minor updatesToo busy responding to fire drills to implement new projects {% endhint %}How Can CDQ Help?Click a button and smile - knowing baseline validation checks are applied - instead of spending hours manually digging through data & stitching together scripts Implementing ChecksAutodiscoveryGenerates SQL validations, parameters & thresholdsRule suggestions Taking InventoryBulk Profiling & Metadata CollectionData Mapping with Column IdentificationMap Column Fingerprints, Cross-Table Matches & PII Checks Consolidating SystemsNo more closed-systems or confusing scriptsMacro & micro views for measuring effectiveness over timeGlobal management Across Sources / Platforms / Environments Enabling More UsersSelf-Service, Easy to use Rule EditorPre-Built Analytics and ChartsExtensible APIs, Open ArchitectureBoost productivity. 80% faster than manual coding. Minimize development costs. Get faster, easier access to data quality metrics. Show line of business users how to self-service.What makes CDQ unique?CDQ is The Only Tool Business & Technical Users Will LoveEvery feature, visual, and component within Collibra DQ is intended to make the analysis and implementation of data checks easier.Why?Because Humans Can’t Predict Every Which Way Data Can Go Wrong.{% tabs %} {% tab title=Billing Issue Example %}{% endtab %}{% tab title=Financial Data Example %}{% endtab %}{% tab title=API Example %}{% endtab %}{% tab title=IoT / Meter Example %}{% endtab %} {% endtabs %}****Prescriptive PersonasCollibra DQ has four prescriptive personas to manage user permissions: Analyst, IT Admin, Observer, and Steward. Click the user icon located on the bottom left of the blue DQ Menu bar and select User Profile. The persona type can be assigned under the access tab in Profile Management.Bank LoansIt is common for banks to lend money in return for monthly payments with interest. However, to do so a bank must make sure that the applications are valid and well formed to begin the underwriting and approval process. The following list comprises some basic lending concepts to Collibra DQ.Credit Score ValidationSSN ValidationLoan to Value ValidationInterest Rate ValidationDuplicate Loan ApplicationsLoan Amount ValidationLoan Completeness Validation1. Credit ScoreBusiness CheckOwlDQ FeatureManual vs AutoIs the credit score a whole number?BEHAVIORAUTOIs the credit score within a valid range?(between 300 - 850)RULEcredit_score between 300 and 850Is the credit score NULL or Missing?BEHAVIORAUTO2. SSN ValidationBusiness CheckCollibra DQ FeatureTextIs the SSN format valid?RULEAUTO-SSN detectionSSN is PII.SENSITIVITYAUTO-SSN labeledIs the SSN NULL or Missing?BEHAVIORAUTODoes the SSN belong to the Applicant?PATTERNSSN -> first_name, last_name3. Loan to ValueBusiness CheckCollibra DQ FeatureTextAre loan amount and asset value (home or auto) valid numbers?BEHAVIORAUTO95% loan to value ratio to approve?RULEloan / asset_value < .954. Interest RateBusiness CheckOwlDQ FeatureTextInterest rate between min and max allowable range for the loans credit rating.RULE COMPLEXloan l join rates r on l.credit_rating = r.credit_ratingwhere l.rate between r.min_rate and r.max_rate5. Duplicate Loan ApplicationsBusiness CheckOwlDQ FeatureManual vs AutoEnsure we don't issue the same loan twice.DUPEfirst_n, last_n, SSN, Address6. Loan AmountBusiness CheckOwlDQ FeatureManual vs AutoLoan amount within lendable rangeOUTLIERAUTOLoan amount within lendable range.Only lend money between 50K and 3M.RULEloan_amount between 50000 and 3000000Resulting OwlCheck-lib /home/opt/owl/drivers/postgres \-cxn postgres-gcp \-q select * from public.loan_risk_grade where last_pymnt_d = '2019-04-01' \-key member_id -alias loan_risk \-ds public.loan \-rd 2019-04-01 \-dl -loglevel INFO \-h 10.142.0.29:5432/owltrunk \-numexecutors 10 -executormemory 1g -drivermemory 4g \-master yarn -deploymode cluster \-sparkprinc user2@CW.COM \-sparkkeytab /tmp/user2.keytab -tbin MONTH \-dupe -dupeinc purpose -fpgon -fpgkey grade \-fpginc grade,sub_grade -fpglb 365 -fpgdc last_pymnt_d \-record member_id -dupecutoff 60 -dupepermatchupperlimit 99 Which components did we use?We made use of Profiles, Duplicates, Outliers and Rules in this example. The experiments were automatically cataloged and put on a job scheduler. The next time a loan issue arises, we will be able to take remediation action using the workflow Q. Over time we can see how the bank loan program is running via the report section.Files that can be used to replicate this example interest_rates.csvBinary Owl Dataset (2).csvBinaryBloomberg DataCollibra DQ finds over 50 data quality issues per day in common market data through pattern mining. Sequential pattern mining is a tool that finds statistically relevant patterns between data examples where the values are delivered in a sequence.Cyber Anomalies in Real-TimeWith an increasing number of cyber threats, most of the cyber security team doesn’t have the capacity to manually detect, monitor, and defend against all of them. Effective cyber threat management requires leveraging automation to inform decisions.The Collibra DQ framework, provides organizations the ability to load and process diverse security data feeds at scale to detect network data anomalies. The DQ alerts enable network admins to respond to these events in timely manner.The following scenario demonstrates how to detect anomalies with network traffic data sets.Perform IP address validation.Detect the unusual network traffic patterns based on locations.Identify the suspicious packets based on size.Detect the malicious activity based on source and destination IP addresses.Infosec data set previewData set contains Timestamp, Source Workgroup, Source IP, Source Port, Destination Workgroup, Destination IP, Destination Port, Application, Protocol and Packet size information.IP Address format validationBusiness CheckCollibra DQ FeatureTextIs IP a valid format?RULEAUTO-IP detectionIs the IP address NULL or Missing?BEHAVIORAUTOSource and destination workgroupsBusiness CheckOwlDQ FeatureTextIs it usual network traffic based on locations?PATTERNSource_Workgroup -> Destination_WorkgroupSource and Destination IP Address validationBusiness CheckCollibra DQ FeatureTextIs it usual network traffic based on source and destination IP?PATTERNSource_IP -> Destination_IPPacket SizeBusiness CheckCollibra DQ FeatureTextIs the Packet Size NULL or Missing?BEHAVIORAUTOPacket Size within normal range?PATTERNSource_IP -> Packet_SizeBResulting OwlCheck-f file:///home/danielrice/owl/bin/demos/infosec/ -d tab \-fullfile -fq select * from dataset -encoding UTF-8 -ds infosecv2 \-rd 2020-04-04 -dl -dlinc Destination_IP,Packet_SizeB,Source_IP \-dlkey Source_IP -fpgon -fpginc Destination_Workgroup -fpgkey Source_Workgroup \-df yyyy-MM-dd -loglevel INFO -h 10.142.0.29:5432/owltrunk -owluser admin \-fpgsupport .000000001 -fpgconfidence 0.4 Which components did we use?DQ addresses the issue of efficient network traffic classification by performing unsupervised anomaly detection and uses this information to create dynamic rules that classify huge amounts of Infosec data in real time.By providing Infosec data sets, along with anomaly records DQ outlier and pattern algorithms found the anomaly in the network traffic. It mainly detects the following anomalies:Traffic between Atlanta->Texas.The packet size extremely low between Atlanta->Texas.Atlanta source IP and Texas Destination IP.Realtime DQ provides the alerts on network traffic anomalies, which can help network admins to do further deep analysis and takes preventative measure, which is a daunting task with huge amount of data.Sample Data set infosec-anomaly.csvBinaryFinancial FxRate DataCollibra DQ Automatically Alerts to Incorrect Foreign Exchange (FX) Rate Data without a Single RuleFX Rate data commonly looks like the below table. Often you have a TO currency and a FROM currency with the RATE being the multiplier column for conversion. For example, in March you would need to spend $1 US Dollar and 18 US cents to receive $1 Euro. In exchange for:TO_CURRFROM_CURRRATEDATEUSDEUR0.822019-03-12EURUSD1.182019-03-12USDYEN111.02019-03-1228,000 Currency PairsThere are roughly 28,000 currency
pairs and the exchange rates change throughout the day but at a minimum most banks are concerned with the daily close of the FX Rate. Now imagine trying to write a rule for each currency pair. You'd have to know the relationship and adjust a static threshold for each of the 28K pairs every couple of days to keep the rule intact. Our minds quickly jump to a conclusion that we might be able to solve this with simple math. We can get closer using averages or percent change formulas but these formulas quickly come up short when some currencies commonly fluctuate more than others. Our minds then quickly graduate from stats 101 to 201 and we could consider the individual variance of every combination. But even this only gets us so far as time is an important dimension, the length of time or window can often be tricky to calculate. The problem gets harder when you run your basic stat model and receive multiple false positive alerts. Signal-to-noise ratio is important, confidence factors are important and down-training individual foreign currencies that don't seem to fit your statical model are important. Knowing if you copied the data incorrectly, truncated nine levels of precision on the decimal, or if the source provider sent the wrong information is important. Needing the ability to flag exceptions in production on a single currency pair while not flagging the other 27,445 pairs. Using a feedback loop so that the data steward interactions are captured and learned from vs having to take the same corrective action over and over. What happens when there is a typo in the currency pair or a single pair goes missing? The answer is that rules don't scale and we need much more than just one off statistical metrics to have a robust and trust worthy data quality program.ConsistencyEven when it is possible to deploy a team of smart people to build a solution to handle this use case, the question then becomes but what about all my other data, don't I want similar yet different controls on everything? Especially since FX Rate data by itself doesn't mean that much and is often combined with a number of other data sets to produce value. What if those data sets aren't accurate either? But those data sets have very different columns, different relationships and different time windows. DQ takes an auto-learning approach whereby it interrogates and runs fitness tests against each data set individually to devise the best statistical and learning approach. The goal being to provide an automated and elegant way to have consistent controls across all your data sets.Auto Adapting OwlCheck for FxRate Data-ds fx_rate \-rd $rd \-dl \-dlkey TO_CURR,FROM_CURR \-q select * from FX_RATE where date = '${rd}' \-cxn dbConnName \-dupe -dupeinc TO_CURR,FROM_CURR -depth 0What this OwlCheck DoesAutomatic correlation and relationship analysisHistograming and segmentation analysisAnomaly detectionCurrency pair trackingSchema evolutionRemoves 28K static rulesDuplicate detection for redundant currency pairsHealthcare Data QualityCollibra DQ connects all members of the healthcare continuum with trustworthy, timely, and meaningful patient data, while reducing the time, expense, and effort required by 70 percent.Poor data quality in healthcare is the leading problem that maligns patient outcomes. Hospitals and health information exchanges (HIEs) still struggle with patient matching issues, with most citing data quality problems and poor algorithms as top barriers to patient matching. Correctly linking patient data across organizations is a key element of value-based care, patient safety, and care coordination. Duplicate or mismatched records can result in privacy risks, claim denials, redundant medical tests or procedures, and reporting errors.The lack of accurate and reliable data quality in healthcare leads to dire consequences that are completely preventable, as shown in DQ's troponin example below. Complete and accurate data is a vital component of our complex health system, and anything less is an unacceptable risk. DQ provides the predictable data quality that healthcare organizations need to deliver high-quality care that we all strive to achieve.Health Insurance Claims DataPoor data quality is the primary cause for diagnostic providers receiving incomplete health care payments during Revenue Cycle Management (RCM).Revenue Cycle Management is the process of identifying, collecting and managing the practice’s revenue from payers based on the services provided. A complete RCM process is critical for a healthcare practice to maintain financial viability and continue to provide quality care for their patients.Inaccurate claims data, is the primary cause for diagnostic providers receiving incorrect payments for their services. Most providers struggle with the quality of the data that they receive, and without direct access to the patients, it can be an expensive, laborious process to correct incomplete, or missing data that is required for claim reimbursement.Cleaning up or correcting incomplete data is not a step in the claims process that can be skipped. It must be done to assure the reimbursement process is accurate, and complete in the agreed time frame. Automating the data quality during intake is the key to the timely completion of the reimbursement process, and saving the cost and effort of correcting the data down stream.Increase revenue from insurance and patient paymentsSpend less time tracking down missing patient informationLower error processing ratesReduce operating costsImprove claim processing speedThe revenue cycle includes all the administrative and clinical functions that contribute to the capture, management and collection of patient service revenue, according to the Healthcare Financial Management Association.Preregistration - Collecting preregistration informationVerification - Patient eligibility and benefit is verified Transcription - recording the diagnoses and procedure Medical Coding - Properly coding diagnoses and procedures.Charge capture - Medical services into billable charges.Claim submission - Submitting claims to insurance companies.Claim Rejection - when necessaryPayment Posting - Determining patient balances, collectionSecondary Claim SubmissionDenial Management - Applying or rejecting payments remittance Medical Appeals - Examining the necessity of medical services.Refund - where aplicableIntraday PositionsIt is common for financial organizations to receive a steady stream of files that have hourly or minutely data. The files might trail the market in a near real-time fashion. Below is an example:--positions/ |--2019/ |--01/ |--22/ position_2019_01_22_09.csv position_2019_01_22_10.csv position_2019_01_22_11.csv position_2019_01_22_12.csvFile Contents @ 9amTIMECOMPANYTICKSIDEQTY2019-01-22 09:00T&GxyzLONG3002019-01-22 09:00FisherabcSHORT202019-01-22 09:00TradeServdefLONG120File Contents @ 10amTIMECOMPANYTICKSIDEQTY2019-01-22 10:00T&GxyzLONG2802019-01-22 10:00BlackTRghiSHORT45Notice that during the day you may or may not have a position for every company recorded. We need a way to link the company to its position throughout the day but not alert in cases where they simply did not trade or adjust their position. Collibra DQ offers real-time outlier detection for this scenario (see code snippet below). We also need to ensure that each company's position is only represented once per file (per hour in this case) because positions are already the aggregate view of the trades, so they should be unique. DQ offers duplicate detection (see code snippet below).Collibra DQ Pipeline// Part of your pipeline includes the ingestion of files that have the date// and hour encoded in the file name. How do you process those files using Owl?//// Format: <name>_<year>_<month>_<day>.csv val filePath = // <set this> positions/2019/01/22/positions_2019-01-22_09.csv // Configure Owl.val opt = new OwlOptionsopt.dataset = positionsopt.load.delimiter = ,opt.load.fileQuery = select * from datasetopt.load.filePath = file.getPath opt.outlier.on = trueopt.outlier.key = Array(COMPANY)opt.outlier.timeBin = TimeBin.HOUR opt.dupe.on = trueopt.dupe.include = Array(COMPANY, TICK)opt.dupe.exactMatch = true // Parse the filename to construct the run date (-rd) that will be passed// to Owl.val name = file.getName.split('.').headval parts = name.split(_)val date = parts.slice(2, 5).mkString(-)val hour = parts.takeRight(1).head // Must be in format 'yyyy-MM-dd' or 'yyyy-MM-dd HH:mm'.val rd = s${date} ${hour} // Tell Owl to process dataopt.runId = rd // Create a DataFrame from the file.val df = OwlUtils.load(opt.load.filePath, opt.load.delimiter, spark) // Instantiate an OwlContext with the dataframe and our custom configuration.val owl = OwlUtils.OwlContext(df, spark, opt) // Make sure Owl has catalogued the dataset.owl.register(opt) // Let Owl do the rest!owl.owlCheckDQ WebDQ Coverage for Position dataSchema evolutionProfilingCorrelation analysisSegmentationOutlier detectionDuplicate detectionPattern miningSecurity Reference DataPattern recognition for cross column, categorical, and conditional relationships.Given the interconnected, automated nature of the data generated by reporting, exchanges, and source systems - hidden patterns go unnoticed.Financial firms of all shapes and sizes ingest financial data for a variety of reasons. A few vendors include Bloomberg, Thomson Reuters, ICE Data Services or SIX Financial Information.In no uncertain terms, critical business decisions rely on the accuracy of this data.This data is not monolithic and most real-world data easily consists of over 100 columns. Maintaining the quality can be challenging, given the variety of sources feeding into just a single feed. Even the most simple quality checks can snowball into a daunting task. Everything from tickers, sedols, cusips, products, sub-products, issuers, and issuing countries can further complicate the problem. Identifying anomaly values earlier in
the data ingestion process can significantly reduce downstream complexity. Furthermore, finding improbable patterns before they're used for making decisions can save costly remediation efforts.An easy way to think about Pattern Analysis. Columns that belong 'together'.A common application of Collibra DQ is to identify securities that are violating historical patterns. Conditional dependencies can be discovered and used as a guide to highlight misreporting. Rather than defining look-up tables, reference data sets, and predefining exact conditions - security specific patterns can be derived using probabilistic inferences.By clicking columns that belong together, a robust framework for cross-column pattern analysis can be generated. The equivalent of dozens of multi-column, conditional rule checks can be applied with just a few clicks. In creating a confidence and probability weighted classification algorithm, this is both adaptive and granular.Using this technique, DQ reduces false positives, scales coverage, and quickly models a more complex series of checks than domain experts would want to develop.Smart Meter DataColliba DQ uncovered $10 million dollars in unbilled revenue for a leading U.S. energy company.DQ's Smart Meter Data Analytics provides accurate and predictable data quality to companies often inundated with massive amounts of data and aging enterprise systems.The U.S. smart meter data management market forecast is projected to reach $556.94 million by 2026. In 2018, U.S. electric utilities had about 86.8 million advanced (smart) metering installations. DQ provides an automated process to manage the mountain of data collected and glean critical business insights. By applying our ML algorithms during the normal data ingestion cycles, DQ uncovered $10 million dollars in unbilled revenue for a leading U.S. energy company.In the example below, DQ detected 200 records missing from the previous run.Consider the following opportunities that smart meter data analytics provide:Generate new customer insightsManage and prevent outagesImprove maintenance techniquesBuild predictive models for program planningDevelop new services and rate plans based on customer requirementsIdentification of unbilled revenue: Meter events and usage information helps illustrate a picture of the customer’s energy usage over time. This helps detect energy theft, meter tampering, and equipment issues that may be affecting service levels.Outage event analysis and prevention: Today, some utilities are still unable to verify an outage unless personnel physically visit the suspected problem area to confirm. With outage event analysis, however, the utility knows the exact piece of equipment causing the problem, along with the customers directly impacted by it.Meter quality assurance: Focusing on meter reading performance enables utilities to ensure reliability. When meter readings are expected but not delivered, the system provides an alert, and calculates overall data score from previous runs . Utilities are notified to potential data quality issues they never would have identified in the past.It is meter data analytics that will enable utilities to tackle the problems of the future.Validating Data MovementValidate Data Integrity between distinct storage systems.Record-for-Record ReconciliationWhen you’re copying or moving data between distinct storage systems, such as multiple HDFS clusters or between non-HDFS storage and cloud storage, it’s a good idea to perform some type of validation to guarantee data integrity. This validation is essential to be sure data wasn’t altered during transfer.Detect potential data corruption caused, for example, by older versions of drivers, parsing errors, connection limits, noisy network links, memory errors on server computers and routers along the path, or software bugs (such as in a library that customers use).Common Data Copying/Movement ScenariosLanding, Loading, Persisting third-party files Landing daily files.Loading daily files into staging location.Finally, persisting data in lake or warehouse.Cloud Migrations Between existing database storage to optimized cloud storage formats.Between local file systems and cloud relational database.Data Lake or Data Warehouse Migrating data from single storage system to distributed storage.Consolidating storage systems to a single lake or warehouse.Same Storage, Different Environments Copying same data between Dev, QA, and Prod environments. How do you easily validate that the same data exists in distinct locations? Shortcomings of Existing Validation ChecksLow-level integrity checks like row counts and column counts may not be sufficient.No easy way to reconcile between across non-HDFS files and database.Chunk verification requires storage size, format, and metadata to be exactly equal.Different data types in two distinct databases (Oracle and Teradata) will not reconcile.Two different copies of the same files in HDFS, but with different per-file block sizes configured.Two different instances of HDFS with different block or chunk sizes configured.Copying across non-HDFS Hadoop-compatible file systemshttps://wiki.apache.org/hadoop/HCFS(HCFS) such as Cloud Storage.Explicit end-to-end data integrity validation adds protection for cases that may go undetected by typical in-transit mechanisms.Enter, Collibra DQ Integrity Validation!To ensure and protect against target systems getting out of sync or not matching the originating source, turn on -vs to validate that the source matches the target. Read Morehttps://docs.owl-analytics.com/dq-visuals/validate-sourcedocs.owl-analytics.comComplete row, column, conformity, and value checks between any two distinct storage systems can be run against high-dimension or low-dimension datasets. Works between Files and/or Database storage, On-premise, or across Cloud environments.Get Started TodayWe don’t want you to get stuck writing a lot of reconciliation checks we’ve already written. Focus on other things that actually move your project forward.For more information, please contact info@owl-analytics.com or schedule a demo at www.owldq.com ****Best PracticesMulti Tenant NamesTenant names should be lower case only.Understanding Collibra DQ activities and what the key/date columns mean for eachStarting with profile and expanding to rules and then other advanced capabilities. https://dq-docs.collibra.com/dq-visuals/profileTraining with DQ-team Zoom/Onsite support.Running with sample data.Introducing anomalies on sample data and running an owlcheck to see the anomalies.Using the tool with practical scenariosHaving Well Defined Use Cases Determine a single table (dataset) that you would like to scan.Have an expectation of what you would expect DQ to find in this dataset.Understand which activities would capture the expected findings.Target internal datasets with known data issues.Historical Comparisons: If pre-cleaned data is available with data findings that have been cleaned via legacy methods such as internal rules, run these datasets and compare the results from DQ to Internal findings.Work with data owners to understand findings or review expected findings.ExplorerThe date selected with the calendar widget in the Scope (home) tab should align with the calendar widget assigned on the final (Save/Run) tab.If you elect to Unlock the cmd line and override the final parameters, do not re-lock or the changes will be overwritten. In general, only advanced users should override the guided settings.Pushdown and parallel JDBC cannot be used together. If you are using pushdown, do not select the parallel JDBC option.FilesFile paths should not contain spaces or special characters.Backrun (replay) and advanced features are best suited for JDBC connections. Some features are unavailable if file and storage naming conventions do not consistently contain a date signature.Connection PoolIf you see this message, update the agent configs in owl-env.sh or agent confg map for k8 deployments.Failed to obtain JDBC Connection; nested exception is org.apache.tomcat.jdbc.pool.PoolExhaustedException: [pool-29-thread-2] Timeout: Pool empty. Unable to fetch a connection in 0 seconds, none available[size:2; busy:1; idle:0; lastwait:200].Adjust these configs to modify the connection pool available.export SPRING_DATASOURCE_POOL_MAX_WAIT=500export SPRING_DATASOURCE_POOL_MAX_SIZE=10export SPRING_DATASOURCE_POOL_INITIAL_SIZE=5Freeform Agent ConfigsWhen configuring the DQ Agent and using the Free Form Parameters at the bottom of the dialogue, you need to comma separate multiple -conf key/value pairs. I am going to write this as a forum post but use this format: -conf some.key=x, some.other.key=y.K8 SecretsThe following Env Vars are now managed as a Secret instead of as a Configmap:LICENSE_KEY LIVY_SSL_KEY_PASS SERVER_SSL_KEY_PASS SPRING_AGENT_DATASOURCE_PASSWORD SPRING_AGENT_DATASOURCE_USERNAME SPRING_DATASOURCE_PASSWORD SPRING_DATASOURCE_USERNAMEDQ Job StagesDQ job failure is one of the most frequently asked. This outlines the DQ Job Lifecycle and where to find logs for each phase. Every DQ Job goes through a three stage Lifecycle:Stage 1Agent picks up job from the Metastore and translates it into a valid Spark Submit request. This includes credential acquisition and injection for Cloud and Kerberos. If a job never makes it out of STAGING, the first thing to do is to check the Agent logs (<INSTALL_HOME>/log/agent.log or on K8s kubectl logs -n .Stage 2Agent hands off the DQ check to Spark via Spark Submit, maintaining a handle on the Spark Submit request. At this point the Job is in Spark’s custody but not yet running (Spark Submit creates its own JVM to manage the submission of the Spark Job to the cluster/runtime). If the job fails with a message saying something like “Failed with reason NULL” on the Jobs page, check the Stage 2 logs (there will be a separate log for each Job). These can be found either on the Agent itself (<INSTALL_HOME>/log/.log) or
whenever possible on the Jobs page Action Dropdown on the job entry. Stage 3: Spark Submit instantiates the Job in the target Spark Runtime (Hadoop/K8s/Spark-Master). At this point, the DQ core code is active and DQ is back in control of the job. Typically, if a job makes it to this stage, it will no longer be in STAGING status and you should see an error message on the Jobs Page. Typically, the full Stage 3 log is required to trouble shoot a problem that happens in Core.Stage 3logs can be obtained from the Actions drop down for the job entry. If log extraction failed, job logs will need to be gathered from the Spark Runtime directly (Hadoop Resource Manager, K8s API via Kubectl or vendor provided UI, Spark Master UI or directly from the Spark Master Host).
	Background
	What Did We Notice?
	Traditional Approach
	What Did We Need?

	DQ is the difference
	What is CDQ
	8 Ways to Add Value Using CDQ
	What Savings Does CDQ Provide?
	How Can CDQ Help?
	What makes CDQ unique?
	Why?
	 Collibra DQ BenchmarksPerformance SettingsJob LimitsLimits can be set to limit resources that are requested. There are options for cores, memory, executors, and cells (maxexecutorcores, maxexecutormemory, maxnumexecutors and maxcellcountforparalleljdbc).If you request more cells than the limit, you should see a warning message before hitting run.Agent DefaultsSet defaults at the agent level. These should be right-sized to your environment and be used as defaults for jobs with when estimate is not available (primarily local files and remote files).Performance TestsCells Per Second Performance Theory (9.5M CPS)Load and ProfileDatasetNameGBs inMemoryRowsColsCellsNumExecsNumCoresExecMemoryNetworkTimeTotalTimeNYSE0.1G103K9816K111G00:00:1500:00:48AUM14G9M48432M514G00:01:2000:03:50ENERGY5G43M6258M833G00:00:0000:04:35INVEST_DATA20G3.8M158590M323G00:00:4000:03:32NYSEPostgres database call, no concurrent processing, simple case, small data.-bhtimeoff -numexecutors 1 -lib /opt/owl/drivers/postgres -executormemory 1g -h metastore01.us-east1-b.c.owl-hadoop-cdh.internal:5432/dev?currentSchema=public -drivermemory 1g -master k8s:// -ds public.nyse_128 -deploymode cluster -q select * from public.nyse -bhlb 10 -rd 2020-10-26 -driver org.postgresql.Driver -bhminoff -loglevel INFO -cxn postgres-gcp -bhmaxoffAUMPostgres database call uses parallel JDBC, split on aum_id serial id.-owluser kirk -lib /opt/owl/drivers/postgres -datashapeoff -numpartitions 6 -ds public.aum_dt2_50 -deploymode cluster -bhlb 10 -bhminoff -cxn postgres-gcp -bhmaxoff -bhtimeoff -numexecutors 6 -executormemory 4g -semanticoff -h metastore01.us-east1-b.c.owl-hadoop-cdh.internal:5432/dev?currentSchema=public -columnname aum_id -corroff -drivermemory 4g -master k8s:// -q select * from public.aum_dt2 -histoff -rd 2020-10-27 -driver org.postgresql.Driver -loglevel INFO -agentjobid 7664ENERGYHDFS file with 43 million rows, converting a string date to date type, deploy mode client.-f hdfs:///demo/owl_usage_all.csv \-rd 2019-02-02 \-ds energy_file \-loglevel DEBUG -readonly \-d , -df dd-MMM-yy \-master yarn \-deploymode client \-numexecutors 3 \-executormemory 10gLoad Profile OutliersNYSE - 1:10 total runtime. 20 seconds for outliers-bhtimeoff -owluser kirk -numexecutors 1 -lib /opt/owl/drivers/postgres -executormemory 1g -dl -h metastore01.us-east1-b.c.owl-hadoop-cdh.internal:5432/dev?currentSchema=public -drivermemory 1g -master k8s:// -ds public.nyse_128 -deploymode cluster -q select * from public.nyse -bhlb 10 -rd 2020-10-27 -driver org.postgresql.Driver -bhminoff -loglevel INFO -cxn postgres-gcp -bhmaxoff -agentjobid 7721 Performance TuningStorage FormatNumRowsNumColumnsBytes DiskNumExecutorsExecutor MemoryTotal RAMTransfer TimeProcess TimeLocal File1M501G13G3G0 mins2 minsHDFS File10M505G38G24G0 mins4 minsHive Table10M505G38G24G0 mins4 minsJDBC Table50M5025G810G80G3 mins8 minsJDBC Table10M10010G312G36G3 mins6 minsJDBC Table250M910G57G35G14 mins15 minsJDBC Table250M14570G1712G204G28 mins30 minsUsing a 10/1 ratio of RAM to Executors is often a good rule of thumb, another and more simple option is to turn on dynamic.allocation and allow the resources to be provided as needed on demand.Limit ColumnsIn most cased there are a large number of columns that go unused by the business or columns that don't require checking. One of the most efficient things you can do is limit the cols using the below cmds. As a best practice Collibra DQ strongly recommends using less than 80 columns per dataset.-q select colA, colB, colC, datCol, colD from table// vs-q select * from * from tableHow to limit columns when using a file-fq select colA, colB, colC from dataset// file query using keyword datasetJDBC vs Local DataCo-Located data (local data)It is always a good performance practice to colocate data and processing. That doesn't mean that you tech organization chooses to do this in it's architecture and design which is why DQ accounts for both. If the data is located on the cluster that is doing the processing use options like -hive for non JDBC and native file access. Skip tuning for JDBC as moving data to the cluster first will routinely reduce 50 percent of the performance bottleneck.JDBCSet fetchsize 1M rows -connectionprops fetchsize=1000 5M rows -connectionprops fetchsize=5000 10M rows -connectionprops fetchsize=10000Set DriverMemory add more memory to the driver node as it will be responsible for the initial landing of data.--driver-memory 7gAdd Parallel JDBCLimit Features, Turn Flags Off-corroff //only losing visuals, 5% speed gain-histoff //only losing visuals, 4% speed gain -hootonly //speeds up 1% based on less logging-readonly //remove owl webapp read writes, 1% gain-datashapeoff //removes Shape Detection 3% speed gainReal World ScenarioNine million rows with 46 columns on a daily basis for just 1 dataset. The data lives in Greenplum and we want to process it on a cluster platform where DQ runs. The first run results in a 12 minute runtime. While acceptable it's not ideal, here is what you should do:Add Parallel JDBC for faster network.Limit columns to the 18 that are of use in the downstream processing.Turn off unneeded features.Find out of the job is memory bound or CPU bound.By setting the below configs this same job ran in six minutes.# parallel functions-columnname run_date -numpartitions 4 \-lowerbound 2019-02-23 00:00:00 \-upperbound 2019-02-24 00:00:00# driver optimization-connectionprops fetchsize=6000# analyst functions-corroff \-histoff# hardware-executormemory 4g-numexecutors 3The Full OwlCheck./owlcheck \-u u -p pass \-c jdbc:postgresql://$host/postgres \ # jdbc url-ds aumdt -rd 2019-05-05 \-q select * from aum_dt \-driver org.postgresql.Driver \ # driver-lib /home/owl/drivers/postgres \ # driver jar-connectionprops fetchsize=6000 \ # driver performance setting-master yarn -deploymode client \-executormemory 2G -numexecutors 2 -drivermemory 3g \ # hardware sizing-h cdh-edge.us-east1-b.c.owl-hadoop-cdh.internal:2181 \ # owl metastore-corroff -histoff -statsoff \ # owl features -loglevel INFO \ # log level -columnname updt_ts -numpartitions 12 \ # parallel jdbc-lowerbound 1557623033193 -upperbound 1557623051585{ dataset: aumdt, runId: 2019-05-05, score: 100, behaviorScore: 0, rows: 9000000, passFail: 0, peak: 0, avgRows: 0, cols: 46, runTime: 00:05:23, }Performance ConsiderationsPerformance RecommendationsPerformance is a function of available hardware.When running Collibra DQ Scans on a Hadoop distribution:Check YARN resource manager.Check limits on queue size.Contact Platform Administration team on any limitations.When running DQ Scans on Spark standalone (single node):Check Spark endpoint (example: http://<IP>:<PORT>).Suggested maximum size on 16 core x 64GB machine: 100 million rows * 200 columns = 2 billion cells.If exceeding 2 billion cells, limit the width by selecting certain columns or limit depth with a WHERE clause or a FILTER condition.When running DQ Scans on EKS:Check your compute pool for available pods.Check your worker configuration and your Spark operator configuration.Check minimum and maximum of allowed workers.How-ToIncrement DQ Scans with gradually increasing limits. Starting with a low level allows you to confirm whether database has proper indexing, skip scanning, or partitioning. Incrementing also allows you to validate security and connectivity quickly.Test 1: Limit 1k rows.Test 2: Limit 1mm rows.Test 3: Limit 10mm rows.
	 Collibra DQ APIsRestAll REST APIs are available inside the application under admin section. The APIs can be used against the application in live working mode, which is preferred over documentation of APIs because it means the API works and was tested at compile time versus documentation time.Product APIThe product API is for end-users who want to interact with the official and supported API. You can also generate a client side SDK from the API with four steps below.#psuedo code example REST API dataset = 'public.nyse'runId = '2021-03-05' #SAVE datasetDefdataset = POST /v3/datasetDefs/ {json_datasetDef} #UPDATE datasetDefdataset = PUT /v3/datasetDefs/ {json_datasetDef} #RUN JOBjobId = POST /v3/jobs/run/{dataset},{runDate} #CHECK STATUSstatus = /v3/jobs{jobId}/status #GET DQ FINDINGSfindings = /v3/jobs/{jobId}/findingsJWT Token For Auth #import requestsimport jsonurl = http://localhost:9000/auth/signinpayload = json.dumps({ username: <user>, password: <pass>, iss: public})headers = { 'Content-Type': 'application/json'}response = requests.request(POST, url, headers=headers, data=payload)print(response.text)curl --location --request POST 'http://localhost:9000/auth/signin' \--header 'Content-Type: application/json' \--data-raw '{ username: <user>, password: <pass>, iss: public }'Python ExampleAlternatively, you can use the rest endpoints directly. This example shows how it can be done with Python.Create a dataset def: Using the UI (Explorer) or Using the dataset-def-api (https://<ip>/swagger-ui.html#/dataset-def-api)Confirm your Python environment has the appropriate modules and imports.Fill-in the variables and customize to your preference:url, user and pass dataset, runDate, and agentNameimport requestsimport json # Authenticateowl = https://<url>url = https://<url>/auth/signinpayload = json.dumps({ username: <user>, # Edit Here password: <pass>, # Edit Here iss: public # Edit Here })headers = { 'Content-Type': 'application/json'}response = requests.request(POST, url, headers=headers, data=payload, verify=False)owl_header = {'Authorization': 'Bearer ' + response.json()['token']} # Rundataset = '<your_dataset_name>' # Edit Here runDate = '2021-08-08' # Edit Here agentName = '<your_agent_name' # Edit Here response = requests.post(url = owl + '/v3/jobs/run?agentName='+agentName+'&dataset='+dataset+'&runDate='+runDate, headers=owl_header, verify=False) jobId = str(response.json()['jobId']) # Statusfor stat in range(100): time.sleep(1) response = requests.get(url = owl + '/v3/jobs/'+jobId, headers=owl_header, verify=False) job = response.json() if job['status'] == 'FINISHED': break # Resultsresponse = requests.get(url = owl + '/v3/jobs/'+jobId+'/findings', headers=owl_header, verify=False) print(response.json())This assumes you have created a data set definition using the UI or from the template. Command Line instead of JSON dataset defYou can run a similar job submission using the cmd line. Please note it is easiest to get the saved command line from the dataset-def-api /v3/datasetDefs//cmdline (with proper escaping) and passed to the /v3/jobs/runCmdLine.Breaking Down The SectionsSubmit the JobSend in a data set name, date and agent to submit the job. This kicks off the engine to go do the work.# Rundataset = 'API_V3'runDate = '2021-08-08'agentName = 'owldq-owl-agent-owldq-dev-0' response = requests.post(url = owl + '/v3/jobs/run?agentName='+agentName+'&dataset='+dataset+'&runDate='+runDate, headers=owl_header) jobId = str(response.json()['jobId'])Get the StatusUsing the jobId returned from the job submission, you can check the status. In the example above, there is an interval to wait for the job to complete. You can create your own logic and orchestrate more precisely.response = requests.get(url = owl + '/v3/jobs/'+jobId, headers=owl_header)Get the ResultsUsing the same jobId returned from the job submission, you can check the results. You will get a detailed json object with all the capabilities and detections in one payload. This is where you would decision, based on your organization and process.response = requests.get(url = owl + '/v3/jobs/'+jobId, headers=owl_header)Python Example Rawimport requestsimport json # Variablesowl = 'https://<ip_address>' #Edit user = '<user>' #Edit password = '<password>' #Edit tenant = 'public' #Edit dataset = '<your_dataset_name>' #Edit runDate = '2021-08-08' #Edit agentName = 'your_agent_name' #Edit # Authenticateurl = owl+'/auth/signin'payload = json.dumps({username: user, password: password, iss: tenant })headers = {'Content-Type': 'application/json'}response = requests.request(POST, url, headers=headers, data=payload, verify=False)owl_header = {'Authorization': 'Bearer ' + response.json()['token']} # Runresponse = requests.post(url = owl + '/v3/jobs/run?agentName='+agentName+'&dataset='+dataset+'&runDate='+runDate, headers=owl_header, verify=False)jobId = str(response.json()['jobId']) # Statusfor stat in range(100): time.sleep(1) response = requests.get(url = owl + '/v3/jobs/'+jobId, headers=owl_header, verify=False) status = response.json()['status'] if status == 'FINISHED': break # Resultsresponse = requests.get(url = owl + '/v3/jobs/'+jobId+'/findings', headers=owl_header, verify=False)Internal APICollibra DQ also exposes the internal API so that all potential operations are available. The caveat is that these calls may change over time or expose underlying functionality.Data Set DefinitionThe JSON for the full data set definition. It can be more terse to send in the cmdline string of just the variables you use for your DQ Job. -df yyyy/MM/dd -owluser <user> -numexecutors 1 -executormemory 1g \-f s3a://s3-datasets/dataset.csv -h <host>:5432/dev?currentSchema=public \-fq select * from dataset -drivermemory 1g -master k8s:// -ds dataset_csv_1 \-deploymode cluster -bhlb 10 -rd 2021-04-01 -fullfile -loglevel INFO -cxn s3test5 \-sparkprinc user2@CW.COM -sparkkeytab /tmp/user2.keytab { dataset: , runId: , runIdEnd: , runState: DRAFT, passFail: 1, passFailLimit: 75, jobId: 0, coreMaxActiveConnections: null, linkId: null, licenseKey: , logFile: , logLevel: , hootOnly: false, prettyPrint: true, useTemplate: false, parallel: false, plan: false, dataPreviewOff: false, datasetSafeOff: false, obslimit: 300, pgUser: , pgPassword: , host: null, port: null, user: anonymous : use -owluser, alertEmail: null, scheduleTime: null, schemaScore: 1, optionAppend: , keyDelimiter: ~~, agentId: null, load: { readonly: false, passwordManager: null, alias: , query: , key: , expression: , addDateColumn: false, zeroFillNull: false, replaceNulls: , stringMode: false, operator: null, dateColumn: null, transform: null, filter: , filterNot: , sample: 1, backRun: 0, backRunBin: DAY, unionLookBack: false, cache: true, dateFormat: yyyy-MM-dd, timeFormat: HH:mm:ss.SSS, timestamp: false, filePath: , fileQuery: , fullFile: false, fileHeader: null, inferSchema: true, fileType: null, delimiter: ,, fileCharSet: UTF-8, skipLines: 0, avroSchema: , xmlRowTag: , flatten: false, handleMaps: false, handleMixedJson: false, multiLine: false, lib: , driverName: null, connectionName: , connectionUrl: , userName: , password: , connectionProperties: {}, hiveNative: null, hiveNativeHWC: false, useSql: true, columnName: null, lowerBound: null, upperBound: null, numPartitions: 0, escapeWithBackTick: false, escapeWithSingleQuote: false, escapeWithDoubleQuote: false, escapeCharacter: , hasHeader: true }, outliers: [{ id: null, on: false, only: false, lookback: 5, key: null, include: null, exclude: null, dateColumn: null, timeColumn: null, timeBin: DAY, timeBinQuery: , categorical: true, by: null, limit: 300, minHistory: 3, historyLimit: 5, score: 1, aggFunc: , aggQuery: , query: , q1: 0.15, q3: 0.85, categoricalColumnConcatenation: false, limitCategorical: null, measurementUnit: , multiplierUpper: 1.35, multiplierLower: 1.35, record: true, filter: null, combine: true, categoricalConfidenceType: , categoricalTopN: 3, categoricalBottomN: 2, categoricalMaxConfidence: 0.02, categoricalMaxFrequencyPercentile: 0.25, categoricalMinFrequency: 1, categoricalMinVariance: 0, categoricalMaxCategoryN: 1, categoricalParallel: true, categoricalAlgorithm: , categoricalAlgorithmParameters: {} }], outlier: { id: null, on: false, only: false, lookback: 5, key: null, include: null, exclude: null, dateColumn: null, timeColumn: null, timeBin: DAY, timeBinQuery: , categorical: true, by: null, limit: 300, minHistory: 3, historyLimit: 5, score: 1, aggFunc: , aggQuery: , query: , q1: 0.15, q3: 0.85, categoricalColumnConcatenation: false, limitCategorical: null, measurementUnit: , multiplierUpper: 1.35, multiplierLower: 1.35, record: true, filter: null, combine: true, categoricalConfidenceType: , categoricalTopN: 3, categoricalBottomN: 2, categoricalMaxConfidence: 0.02, categoricalMaxFrequencyPercentile: 0.25, categoricalMinFrequency: 1, categoricalMinVariance: 0, categoricalMaxCategoryN: 1, categoricalParallel: true, categoricalAlgorithm: , categoricalAlgorithmParameters: {} }, pattern: { id: null, only: false, lookback: 5, key: null, dateColumn: null, include: null, exclude: null, score: 1, minSupport: 0.000033, confidence: 0.6, limit: 30, query: , filter: null, timeBin: DAY, on: false, match: true, lowFreq: false, bucketLimit: 450000, deDupe: true }, patterns: [{ id: null, only: false, lookback: 5, key: null, dateColumn: null, include: null, exclude: null, score: 1, minSupport: 0.000033,
confidence: 0.6, limit: 30, query: , filter: null, timeBin: DAY, on: false, match: true, lowFreq: false, bucketLimit: 450000, deDupe: true }], dupe: { on: false, only: false, include: null, exclude: null, depth: 0, lowerBound: 99, upperBound: 100, approximate: 1, limitPerDupe: 15, checkHeader: true, filter: null, ignoreCase: true, score: 1, limit: 300 }, profile: { on: true, only: false, include: null, exclude: null, shape: true, correlation: null, histogram: null, semantic: null, limit: 300, histogramLimit: 0, score: 1, shapeTotalScore: 0, shapeSensitivity: 0, shapeMaxPerCol: 0, shapeMaxColSize: 0, shapeGranular: null, behavioralDimension: , behavioralDimensionGroup: , behavioralValueColumn: , behaviorScoreOff: false, behaviorLookback: 10, behaviorMinSupport: 4, profilePushDown: null, behaviorRowCheck: true, behaviorTimeCheck: true, behaviorMinValueCheck: true, behaviorMaxValueCheck: true, behaviorNullCheck: true, behaviorEmptyCheck: true, behaviorUniqueCheck: true, adaptiveTier: null }, source: { on: false, only: false, validateValues: false, matches: false, sourcePushDownCount: false, include: null, exclude: null, includeSrc: null, excludeSrc: null, key: null, map: null, score: 1, limit: 30, dataset: , driverName: , user: , password: , passwordManager: , connectionName: , connectionUrl: , query: , lib: , checkType: true, checkCase: false, validateValuesFilter: , validateSchemaOrder: false, connectionProperties: {}, filePath: , fileQuery: , fullFile: false, header: null, skipLines: 0, inferSchema: true, fileType: null, delimiter: ,, fileCharSet: UTF-8, avroSchema: , xmlRowTag: , flatten: false, handleMaps: false, handleMixedJson: false, multiLine: false, hasHeader: true }, rule: { on: true, only: false, lib: null, name: , absoluteScoring: false, ruleBreakPreviewLimit: 6 }, colMatch: { colMatchParallelProcesses: 3, colMatchDurationMins: 20, colMatchBatchSize: 2, level: exact, fuzzyDistance: 1, connectionList: [] }, spark: { numExecutors: 3, driverMemory: , executorMemory: , executorCores: 1, conf: , queue: , master: local[*], principal: , keyTab: , deployMode: , jars: null, packages: null, files: null }, env: { jdbcPrincipal: , jdbcKeyTab: }, record: { on: false, in: , notIn: , include: null, percDeltaLimit: 0.1, score: 1 }, transforms: [], pipeline: [] }Generate Client SDKGo to https://editor.swagger.io/.Click File Import URL.Paste a URL that looks like this https://<host>/v2/api-docs?group=Product%20API.Click generate client (python, java, scala, C#).#Python SDK Example #GET CMDLINEcmdLine = get_job_cmdline(dataset) #SUBMIT JOBjob_id = run(dataset, run_date) #CHECK STATUSstatus = get_job_status(job_id) #GET DQ ISSUESstatus = get_job_findings(dataset, run_date)SwaggerYou can find Swagger in the Collibra DQ application.Docs built into the applicationCollibra DQ comes with full swagger support out of the box.http://<YOUR_IP_ADDRESS>/swagger-ui.htmlSwagger can be found in the application under the Admin section labeled APIs.You will find a direct link to the Swagger pageToggle between Product API and Internal API.For example swagger API please visit - http://<YOUR_IP>:9000/v2/api-docs?group=UI Internal.Find the endpointFind an API EndpointAny front-end action uses the API. You can find the corresponding endpoint using developer tools.In this example, we will look at the api call for /create rule.Locate the call in Developer ToolsLocate the API in SwaggerAll UI endpoints are the API and can be located in swagger. You can script against this externally as well.Export and Import APIPromoting and moving data sets across environments.Pre-requirementsThe database needs the stored procedure (function) defined in order to use the Export/Import API. V2 - Stable - available from 2022.02 releaseStep 1a - Export content from source schema https://<collibra-dq-url>/v2/db-exportExports tables from databaseParametersQuerydata sets*List of stringsList of data sets to export. You need to give at least one valid data set name into the list.schemaStringName of the schema/tenant where you want to perform the export.\Default value: publictablesStringList of tables to export on the given schema & data set(s).\If you leave it empty, the following tables will be exported altogether:rule_repo, owl_catalog, owl_rule, alert_cond, owl_check_repo, job_schedule, alert_outputResponses200: OKList of SQL - INSERT statements as JSON list. { // Response} 400: Bad RequestAny error happened with error message{ // Response} Step 1b - Import content # https://<collibra-dq-url>/v2/db-importImport content into the target tenantThe target schema/tenant name will be part of the input SQL INSERT statements.The import is rung on non-transactional mode, any error happens in the middle, the saved items will be left in the database as is. ParametersBody*List of SQL INSERT, which will be imported into the target Collibra DQ metastore.Format: JSON string listResponses200: OKWhen the import was successful. { // Response} 400: Bad RequestAny error happened with error message{ // Response} We suggest using db-export, but we will not remove get-exports. We do expect to consolidate the newer logic behind the method.Step 1c - Get-ExportsYou can pass in several dataset names and several tables at once. This endpoint will create a JSON payloadExports and Imports are currently limited to the 3 tables listed below. These are the three most common tables. These are the supported tables for re-promotion (running the export multiple times). The most common use case is to copy jobs and rules from environment A to environment B. Running the export/import sequence on the same environment likely result in a key constraint conflict, unless in-between edits are made to the insert payload.owl_rulejob_scheduleowl_check_repohttp://<url>/v2/get-exports?dataset=public.dataset_scan_2,public.dataset_scan_1&schema=public&tables=owl_rule,job_schedule,owl_check_repo Use Swagger to build this for youThis is located under controller-scala (internal API)Click Try it out to input the detailsStep 2 - Run-ImportYou will want to perform a find/replace on the import payload to check for differences in connections, agents, spark and environment configurations. Migrating to different environments typically requires the payload to be modified. Run import on the desired environment, passing the output of the previous statement to the body of the request.http://<url>/v2/run-import Use Swagger to try it outThis is under controller-catalog.This would be the body of the POST.Requirement - Stored ProcedureThe following function needs to be created in the Collibra DQ metastore, before this can run.CREATE OR REPLACE FUNCTION public.dump(p_schema text, p_table text, p_where text) RETURNS SETOF text LANGUAGE plpgsql AS $function$ DECLARE dumpquery_0 text; dumpquery_1 text; selquery text; selvalue text; valrec record; colrec record; BEGIN -- ------ -- -- GLOBAL -- -- build base INSERT -- build SELECT array[...] dumpquery_0 := 'INSERT INTO ' || quote_ident(p_schema) || '.' || quote_ident(p_table) || '('; selquery := 'SELECT array['; <<label0>> FOR colrec IN SELECT table_schema, table_name, column_name, data_type FROM information_schema.columns WHERE table_name = p_table and table_schema = p_schema ORDER BY ordinal_position LOOP dumpquery_0 := dumpquery_0 || quote_ident(colrec.column_name) || ','; selquery := selquery || 'CAST(' || quote_ident(colrec.column_name) || ' AS TEXT),'; END LOOP label0; dumpquery_0 := substring(dumpquery_0 ,1,length(dumpquery_0)-1) || ')'; dumpquery_0 := dumpquery_0 || ' VALUES ('; selquery := substring(selquery ,1,length(selquery)-1) || '] AS MYARRAY'; selquery := selquery || ' FROM ' ||quote_ident(p_schema)||'.'||quote_ident(p_table); selquery := selquery || ' WHERE '||p_where; -- GLOBAL -- -- ------ -- -- ----------- -- -- SELECT LOOP -- -- execute SELECT built and loop on each row <<label1>> FOR valrec IN EXECUTE selquery LOOP dumpquery_1 := ''; IF not found THEN EXIT ; END IF; -- ----------- -- -- LOOP ARRAY (EACH FIELDS) -- <<label2>> FOREACH selvalue in ARRAY valrec.MYARRAY LOOP IF selvalue IS NULL THEN selvalue := 'NULL'; ELSE selvalue := quote_literal(selvalue); END IF; dumpquery_1 := dumpquery_1 || selvalue || ','; END LOOP label2; dumpquery_1 := substring(dumpquery_1 ,1,length(dumpquery_1)-1) || ');'; -- LOOP ARRAY (EACH FIELD) -- -- ----------- -- -- debug: RETURN NEXT dumpquery_0 || dumpquery_1 || ' --' || selquery; -- debug: RETURN NEXT selquery; RETURN NEXT dumpquery_0 || dumpquery_1; END LOOP label1 ; -- SELECT LOOP -- -- ----------- -- RETURN ; END $function$; This assignment needs to be added.alter function dump(text, text, text) owner to <ownername>;Export and Import ExampleBest practice is to use get-exports and the owl_rule table post 2021.09 release. Please refer to the Export and Import API page for more details.StepsFind your dataset.Pass your table to the following api call - http://<url>/v2/get-rules-export?dataset=public.transit_6.Run import on the desired environment, passing the output of the previous statement to the body of the request - http://<url>/v2/run-import.The following function needs to be declared in the postgres metastore before this can run.CREATE OR REPLACE FUNCTION public.dump(p_schema text, p_table text, p_where text) RETURNS SETOF text LANGUAGE plpgsqlAS $function$ DECLARE dumpquery_0 text; dumpquery_1 text; selquery text; selvalue text; valrec record; colrec record; BEGIN -- ------ -- -- GLOBAL -- -- build base
INSERT -- build SELECT array[...] dumpquery_0 := 'INSERT INTO ' || quote_ident(p_schema) || '.' || quote_ident(p_table) || '('; selquery := 'SELECT array['; <<label0>> FOR colrec IN SELECT table_schema, table_name, column_name, data_type FROM information_schema.columns WHERE table_name = p_table and table_schema = p_schema ORDER BY ordinal_position LOOP dumpquery_0 := dumpquery_0 || quote_ident(colrec.column_name) || ','; selquery := selquery || 'CAST(' || quote_ident(colrec.column_name) || ' AS TEXT),'; END LOOP label0; dumpquery_0 := substring(dumpquery_0 ,1,length(dumpquery_0)-1) || ')'; dumpquery_0 := dumpquery_0 || ' VALUES ('; selquery := substring(selquery ,1,length(selquery)-1) || '] AS MYARRAY'; selquery := selquery || ' FROM ' ||quote_ident(p_schema)||'.'||quote_ident(p_table); selquery := selquery || ' WHERE '||p_where; -- GLOBAL -- -- ------ -- -- ----------- -- -- SELECT LOOP -- -- execute SELECT built and loop on each row <<label1>> FOR valrec IN EXECUTE selquery LOOP dumpquery_1 := ''; IF not found THEN EXIT ; END IF; -- ----------- -- -- LOOP ARRAY (EACH FIELDS) -- <<label2>> FOREACH selvalue in ARRAY valrec.MYARRAY LOOP IF selvalue IS NULL THEN selvalue := 'NULL'; ELSE selvalue := quote_literal(selvalue); END IF; dumpquery_1 := dumpquery_1 || selvalue || ','; END LOOP label2; dumpquery_1 := substring(dumpquery_1 ,1,length(dumpquery_1)-1) || ');'; -- LOOP ARRAY (EACH FIELD) -- -- ----------- -- -- debug: RETURN NEXT dumpquery_0 || dumpquery_1 || ' --' || selquery; -- debug: RETURN NEXT selquery; RETURN NEXT dumpquery_0 || dumpquery_1; END LOOP label1 ; -- SELECT LOOP -- -- ----------- -- RETURN ; END $function$;From SwaggerNavigate to the API page.Find the Rest APIs link.Drill-in to the controller-scala section.Find the get-rules-export call.Click Try it out and enter a data set name, Execute to run the call.Copy the response body.Navigate to the controller-catalog section.Find run-import and Try it out.Make any edits and paste in the response body from the previous step.Visually validate the rules were transferred to another dataset successfully.Assignment APITime Zone APIUTC + global DateTime standardBackground on common time issuesControlling dates and times has always been a troublesome topic for global systems. Server clock vs server code such as new Date() which may create a date in the local timezone of the server vs the Browser or clients timezone. Moving to the cloud only makes the problem worse when you need to consider the timezone the server might be in and inherit from it's system clock.Collibra Data Quality's Solution - Keep it SimpleIf everyone worked off of a globally understood format that is not subject to misinterpretation things would be more simple. Take 03/02/2019, for example. Is this March 2nd or February 3rd? That depends on which country you live in. Collibra DQ only accepts this format: YYYY-MM-DD. Extending this to time would mean YYYY-MM-DD 00:00:00.CmdLine Examples./owlcheck -ds trades -rd 2019-04-01 or -rd 2019-04-01 00:00:00Simple ExampleA user running an DQ Check in New York and a user running an DQ Check three hours later in California.CmdLine ArgUser LocationTimeZoneStored in Owl (UTC)-rd 2019-04-01New Yorkimplied EST2019-04-01 04:00:00-rd 2019-04-01Californiaimplied PST2019-04-01 07:00:00These jobs run three hours apart, even though they appear to run first thing in the morning to each user. Collibra DQ stores all dates in a common UTC format for global consistency.On the Jobs page, the Start Time and Update Time columns are always based on the server time zone of the DQ Web App, and appear in the YYYY-MM-DD 00:00:00 format.Web API or URL Examplehttp://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01 04:00:00 http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01 07:00:00For Convenience, if a user prefers seeing and interacting with dates in their local time zone:http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01 00:00:00&tz=EST http://localhost:9000/dq/hoot?dataset=atmCustomers&runId=2019-04-01 00:00:00&tz=PSTCookieUse cookies file to run Collibra DQ CURL commands.curl -i -X POST -d username=<username> -d password=<password> http://localhost:9000/login -c cookies.txt curl -i --header Accept:application/json -X GET -b cookies.txt http://localhost:9000/v2/getsecuritymapMulti-Tenant without subdomain in URL (tenant parameter required):curl -i -X POST -d username=<username> -d password=<password> -d tenant=<tenant> -d tenant=public http://localhost:9000/login -c cookies.txt curl -i --header Accept:application/json -X GET -b cookies.txt http://localhost:9000/v2/getsecuritymapJWTUse JSON web tokens to run Collibra DQ CURL commands.TOKEN=$(curl -s -X POST http://localhost:9000/auth/signin -H Content-Type:application/json -d {\username\:\<username>\, \password\:\<password>\} | jq -r '.token') curl -i -H 'Accept: application/json' -H Authorization: Bearer ${TOKEN} http://localhost:9000/v2/getsecuritymapMulti-Tenant without subdomain in URL (tenant parameter [iss] required):TOKEN=$(curl -s -X POST http://localhost:9000/auth/signin -H Content-Type:application/json -d {\username\:\<username>\, \password\:\<password>\, \iss\:\<tenant>\}| jq -r '.token') curl -i -H 'Accept: application/json' -H Authorization: Bearer ${TOKEN} http://localhost:9000/v2/getsecuritymapWithout Headers and jq display:curl -H 'Accept: application/json' -H Authorization: Bearer ${TOKEN} http://localhost:9000/v2/getsecuritymap | jq '.' | catLivyWhat is Livy?At its core, Apache Livy is an optional component that changes how the Collibra DQ Web app caches remote files. From Explorer, Livy allows for interaction with Spark clusters over REST APIs. This is especially useful with larger data or Spark clusters, because with Livy, you can drill into those bigger files.In a future release, we plan to make Livy a standard component as part of our data visualization, but as of 2022.04 it remains optional. An orange icon shows cached remote files.NotebookCollibra DQ + DatabricksIntroductionThis page provides guidance to help you upload Collibra DQ jars to a Databricks cluster and run a Collibra DQ job by invoking Collibra DQ APIs.ArchitectureCollibra DQ Environment SetupThis section explains the steps involved in setting up your Collibra DQ environment in Databricks. This is the first step towards invoking Collibra DQ APIs in Databricks.Step 1: Extract the Collibra DQ core jar from owl package zipped file.The first step is to get the CDQ jar file. Once you have the cdq jar package file, you can get the jars by running the following commands:tar -xvf package.tar.gzFor example, tar -xvf owl-2022.04-RC1-default-package-base.tar.gzRunning this command instructs tar to extract the files from the zipped file. From the list of the files, you need to upload the owl-core-xxxx-jar-with-dependancies.jar to our Databricks file system which will be explained in the next section.Step 2: Upload the Collibra DQ core jar file to Databricks file system using UIThe jars should be manually uploaded in Databricks file system. Below is the quick summary of the steps. For more information on uploading files in Databricks, refer to the official Databricks documentation.Login to your Databricks account.Click Data in the sidebar.Click DBFS at the top of the page.Upload the owl-core-xxxx-jar-with-dependancies.jar to your desired path.Step 3: Install Collibra DQ library in your Databricks clusterOnce this step is completed, you can create a workspace and start using Collibra DQ APIs. Step 4: Update the Spark Config in your Databricks clusterThis step is required if your cluster uses Spark 3.2.1 and onward.When you bring Collibra DQ jars into Databricks, you are required as of the Collibra DQ 2023.01 release to set the property spark.sql.sources.disabledJdbcConnProviderList='basic,oracle,mssql' at either the Spark Cluster-level or the SparkSession-level before using Collibra DQ's set of functions for Spark profiles 3.2.1 and onwards. Setting the property in the Spark Config of your Databricks clusterIf you have an active Databricks cluster, you can set the property in the Spark Config section of your Databricks cluster.On your Databricks cluster configuration page, click the Advanced Options toggle and select the Spark tab.In the Spark Config section, enter the following configuration property as one key-value pair per line:spark.sql.sources.disabledJdbcConnProviderListbasic,oracle,mssqlSetting the property in a SparkSessionIf you have your own Spark data source, you can set the property in the SparkSession. For example:SparkSession.getActiveSession.get.conf.set(spark.sql.sources.disabledJdbcConnProviderList, basic,oracle,mssql)Step 5 (Optional): Update datasource pool sizeThis step is necessary if you get PoolExhaustedException when you call Collibra DQ APIs. Update the connection pool size in the Spark environment using the following environment variables: SPRING_DATASOURCE_POOL_MAX_WAIT=500SPRING_DATASOURCE_POOL_MAX_SIZE=30SPRING_DATASOURCE_POOL_INITIAL_SIZE=5For more information on setting up Databricks environment variables, refer to the official Databricks documentation.Collibra DQ Working Example in DataBricksImport Collibra DQ libraryimport org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ import scala.collection.JavaConverters._ import java.util.Dateimport java.time.LocalDateimport java.text.SimpleDateFormatimport spark.implicits._ import java.util.{ArrayList, List, UUID}// CDQ Imports import com.owl.core.Owl import com.owl.common.options._import com.owl.common.domain2._import com.owl.core.util.OwlUtilsspark.catalog.clearCacheBringing customer data from another databaseBringing customer data from a fileval df =
(spark.read.format(csv).option(header, true).option(delimiter, ,.load(dbfs:/FileStore/nyse.csv))Bringing customer data from a databaseval connProps = Map(driver -> org.postgresql.Driver, user -> your-username, password -> your-password,url -> jdbc:postgresql://abc:1234/postgres,dbtable -> public.example_data) //--- Load Spark DataFrame ---//val df = spark.read.format(jdbc).options(connProps).load display(df)display(df) // view your dataVariables to set up Collibra DQ Metastore database locationval pgHost = xxxx.amazonaws.com val pgDatabase = postgres val pgSchema = publicval pgUser = ??????? val pgPass = ????val pgPort = 0000Create a Collibra DQ Test (Rules) and detect breaksIf the rules are already created and assigned to a dataset from the UI, calling owlcheck() automatically executes all the rules associated with the given dataset and there is no need to recreate the rule from notebook.val dataset = cdq_notebook_db_rulesvar date = 2018-01-11 // Optionsval opt = new OwlOptions()opt.dataset = datasetopt.runId = dateopt.host = pgHostopt.port = pgPortopt.pgUser = pgUseropt.pgPassword = pgPass opt.setDatasetSafeOff(false) // to enable historical overwrite of dataset // Create a simple rule and assign it to datasetval simpleRule = OwlUtils.createRule(opt.dataset) simpleRule.setRuleNm(nyse-stocks-symbol) simpleRule.setRuleValue(symbol == 'BHK') simpleRule.setRuleType(SQLG) simpleRule.setPerc(1.0) simpleRule.setPoints(1) simpleRule.setIsActive(1) simpleRule.setUserNm(admin) simpleRule.setPreviewLimit(8) // Create a rule from generic rules that are created from UI:val genericRule = OwlUtils.createRule(opt.dataset) genericRule.setRuleNm(exchangeRule) // this could be any name genericRule.setRuleType(CUSTOM) genericRule.setPoints(1) genericRule.setIsActive(1) genericRule.setUserNm(admin) genericRule.setRuleRepo(exchangeCheckRule); // Validate the generic rule name //from UI genericRule.setRuleValue(EXCH) // COLUMN associate with the rule // Pre Routine val cdq = com.owl.core.util.OwlUtils.OwlContext(df, opt)cdq.removeAllRules(opt.dataset).register(opt).addRule(simpleRule) // Scancdq.owlCheck()val results = cdq.hoot() // returns object Hoot, not a DataFrame//See Json Results(Option for downstream processing)println(--------------Results:----------------\n)println(results) //optional //Post Routine, See DataFrame Results (Option for downstream processing)val breaks = cdq.getRuleBreakRows(nyse-stocks-symbol)println(--------------Breaks:----------------\n)display(breaks) // Different Options for handling bad recordsval badRecords = breaks.drop(_dataset,_run_id, _rule_name, owl_id)display(badRecords) val goodRecords = df.except(badRecords)display(goodRecords)Write the breaks (bad records) DataFrame to a Parquet file// Remove the file if it existsdbutils.fs.rm(/tmp/databricks-df-example.parquet, true) breaks.write.parquet(/tmp/databricks-df-example.parquet)The following image shows the code snippet and the result in Databricks:Steps to reassign the rules of one dataset to another via the API.The breaks and the rules can also be viewed in Collibra DQ web.Create a Collibra DQ Test (Profile)val dataset = cdq_notebook_nyse_profile val runList = List(2018-01-01, 2018-01-02, 2018-01-03, 2018-01-04, 2018-01-05for(runID <- runList {// Optionsval options = new OwlOptions()options.dataset = datasetoptions.host = pgHostoptions.port = pgPortoptions.pgUser = pgUseroptions.pgPassword = pgPass //Scanval profileOpt = new ProfileOptprofileOpt.on = trueprofileOpt.setShape(true)profileOpt.setShapeSensitivity(5.0)profileOpt.setShapeMaxPerCol(10)profileOpt.setShapeMaxColSize(10)profileOpt.setShapeGranular(true)profileOpt.behaviorEmptyCheck = trueprofileOpt.behaviorMaxValueCheck = trueprofileOpt.behaviorMinValueCheck = trueprofileOpt.behaviorNullCheck = trueprofileOpt.behaviorRowCheck = trueprofileOpt.behaviorMeanValueCheck = trueprofileOpt.behaviorUniqueCheck = trueprofileOpt.behaviorMinSupport = 5 // default is 4profileOpt.behaviorLookback = 5options.profile = profileOpt var date = runIdvar df_1 = df.where($TRADE_DATE===s$date) //Scanval cdq = OwlUtils.OwlContext(df_1, options)cdq.register(opt)cdq.owlCheck()val profile = cdq.profileDF()profile.show()}Create a Collibra DQ Test (Dupes)val dataset = cdq_notebook_db_dupevar date = 2018-01-11 // Optionsval options = new OwlOptions()options.dataset = datasetoptions.runId = dateoptions.host = pgHostoptions.port = pgPortoptions.pgUser = pgUseroptions.pgPassword = pgPass opt.dupe.ignoreCase = trueopt.dupe.on = trueopt.dupe.lowerBound = 99opt.dupe.include = Array(SYMBOL, TRADE_DATE) //Scanval cdq = OwlUtils.OwlContext(df, opt)cdq.register(options)cdq.owlCheck() val dupesDf = cdq.getDupeRecordsdupesDf.show()Create a Collibra DQ Test (Outlier)import scala.collection.JavaConverters._import java.utilimport java.util.{ArrayList, List, UUID} val dataset = cdq_notebook_db_outliervar date = 2018-01-11 // Optionsval options = new OwlOptions()options.dataset = datasetoptions.runId = dateoptions.host = pgHostoptions.port = pgPortoptions.pgUser = pgUseroptions.pgPassword = pgPass opt.dupe.on = false val dlMulti: util.List[OutlierOpt] = new util.ArrayList[OutlierOpt]val outlierOpt = new OutlierOpt()outlierOpt.combine = trueoutlierOpt.dateColumn = trade_dateoutlierOpt.lookback = 4outlierOpt.key = Array(symbol)outlierOpt.include = Array(high)outlierOpt.historyLimit = 10dlMulti.add(outlierOpt) opt.setOutliers(dlMulti) val cdq = OwlUtils.OwlContext(df, opt) .register(opt) cdq.owlCheckval outliers = cdq.getOutliers()outliers.showoutliers.select(value)Create Collibra DQ Test (ValidateSource)import com.owl.common.options.SourceOptimport java.utilimport java.util.{ArrayList, List} var opt = new OwlOptions()val dataset = weather-validateSrcopt.setDataset(dataset)opt.runId = 2018-02-23clearPreviousScans(opt)val src = Seq((abc, true, 55.5, 2018-02-23 08:30:02), (def, true, 55.5, 2018-02-23 08:30:02), (xyz, true, 55.5, 2018-02-23 08:30:02)).toDF(name, sunny, feel-like-temp, d_date) val target = Seq((abc, 72, false, 55.5, 2018-02-23 08:30:02), // true to false (xyz, 72, true, 65.5, 2018-02-23 09:30:02) // 08 to 09).toDF(name, temp, sunny, feel-like-temp, d_date) val optSource = new SourceOptoptSource.on = trueoptSource.dataset = datasetoptSource.key = Array(name)opt.setSource(optSource) //scanval cdq = OwlUtils.OwlContext(src, target, opt) .register(opt)cdq.owlCheck val breakCountDf = cdq.getSourceBreaksCount()breakCountDf.show()Known API LimitationsCollibra DQ activities cannot currently be called independently. DQ Check() function should be called before calling any of the activities. For example, to get the profile DataFrame you should call the following code snippet:cdq.owlCheck()cdq.getProfileDF()DQ-Databricks SubmitIntroductionIn this page we will demonstrate two paths to run a spark submit job on Databricks's cluster. The first approach is to run a DQ spark submit job using Databricks UI and the second approach is by invoking Databricks rest API.These are only examples to demonstrate how to achieve DQ spark submit to Databricks's cluster. These paths are not supported in production and DQ team does not support any bug coverages or professional services or customer questions for these flows. LimitationsThere are a few limitation to spark-submit jobs in Databricks listed in this section: https://docs.databricks.com/jobs.html#create-a-job. Also, spark-submit is only on new clusters from both the UI via Jobs or calling the REST APIs. See Step 4 in: https://docs.databricks.com/jobs.html#create-a-job where it lists that spark-submit is handled by new clusters only.Steps to create and run a spark submit job from Databricks UI:Grant Collibra DQ Database access to your instance of Databricks.Upload DQ jars in Databricks File System (DBFS).Set up environment variables for your new cluster.Prepare the DQ JSON payload.Create and Run your job.View the status and result of your job from the DQ Jobs page.Database accessTo begin, ensure that sure your Databricks instance has access to the DQ Database.The entire subnet must be whitelisted to connect to the database. As specified in Databricks' documentation on subnets, Databricks must have access to at least two subnets for each database. To connect to the two Databricks subnets where the nodes will be instantiated, you must allow AWS to whitelist your IP address range.Upload DQ's jars in DBFSThe jars should be manually uploaded in Databricks file system. The steps can be found on Databricks website: https://docs.databricks.com/data/databricks-file-system.html#access-dbfs.Environment variables for the new cluster:Here is the documentation from Databricks about how to set up environment variables: https://docs.databricks.com/clusters/configure.html#environment-variablesThese CDQ environment variables should be set on the new cluster:SPRING_DATASOURCE_URL=xx\ SPRING_DATASOURCE_USERNAME=xx\ SPRING_DATASOURCE_DRIVER_CLASS_NAME=xx\ LICENSE_KEY=xx // This is DQ's license keyJSON payloadOnce the above steps are completed, you can submit a spark submit job with DQ's parameters. Payload parameters can be from DQ's web Run command. You can copy and paste the parameters to prepare a JSON payload. Here is one sample: --class, com.owl.core.cli.OwlCheck, dbfs:/FileStore/cdq/owl-core-2022.02-SPARK301-jar-with-dependencies.jar, -lib, dbfs:/FileStore/cdq/owl/drivers/postgres, -q, select * from xx.xxx, -bhlb, 10, -rd, 2022-03-16, -driver, owl.com.org.postgresql.Driver, -drivermemory, 4g, -cxn, metastore, -h, xxxx.xxxxxx.amazonaws.com:xxxx/postgres, -ds, public.agent_2, -deploymode, cluster, -owluser, admin]Run the jobOnce you have completed the above steps, you can create a spark submit job through Databricks UI.You can then add the
environment variables to the cluster and click Run on Databricks UI.Check the result in DQ web:Once the job is submitted, you can login to your DQ web instance and check the job in the Jobs page.Spark submit by invoking Databricks REST APIThere are public REST APIS available for the Jobs API, including the latest version.For this path we need to do the steps 1-4 of the the previous section and then call directly the REST API using Postman, or your preferred API testing tool. We assume that as per step 2, CDQ jars are uploaded to the DBFS path in the location dbfs:/FileStore/cdq. Also JDBC postgres driver should be uploaded to DBFS. For example: dbfs:/FileStore/cdq/owl/drivers/postgresSteps:Prepare the DQ JSON Payload.Authenticate the Databricks REST API.JSON payloadSample JSON payload:POST /api/2.1/jobs/runs/submit HTTP/1.1Host: xxxxxx.cloud.databricks.com\ `Content-Type: application/json`\ `Authorization: Bearer ~~xxxxxxxxxxxxx~~\ Cache-Control: no-cache\ Postman-Token: xxxxxxxx`{ tasks: [{ task_key: CDQ-SparkSubmitCallFinal, spark_submit_task: { parameters: [--class, com.owl.core.cli.OwlCheck, dbfs:/FileStore/cdq/owl-core-2022.02-SPARK301-jar-with-dependencies.jar, -lib, dbfs:/FileStore/cdq/owl/drivers/postgres, -q, select * from public.agent, -bhlb, 10, -rd, 2022-03-16, -driver, owl.com.org.postgresql.Driver, -drivermemory, 4g, -cxn, metastore, -h, xxxs.amazonaws.com:xxx/postgres, -ds, public.agent_2, -deploymode, cluster, -owluser, admin] }, new_cluster: { cluster_name: , spark_version: 7.3.x-scala2.12, aws_attributes: { zone_id: us-east-1e, first_on_demand: 1, availability: SPOT_WITH_FALLBACK, spot_bid_price_percent: 100, ebs_volume_count: 0 }, node_type_id: i3.xlarge, spark_env_vars: { SPRING_DATASOURCE_URL: jdbc:postgresql://xxx-xx-xxs.amazonaws.com:xx/postgres, SPRING_DATASOURCE_PASSWORD: xxx, SPRING_DATASOURCE_USERNAME: xxx, SPRING_DATASOURCE_DRIVER_CLASS_NAME: org.postgresql.Driver, LICENSE_KEY: xxxx }, enable_elastic_disk: false, num_workers: 8 }, timeout_seconds: 0 }]}Values to be updated in above payload are:Cluster variables:SPRING_DATASOURCE_URL:SPRING_DATASOURCE_PASSWORD:SPRING_DATASOURCE_USERNAME:LICENSE_KEY: //CDQ License key ``CDQ variables\ Users can customize the variables based on the activity they choose from CDQ Web. They can copy the variables from Run CMD option of their DQ job and paste it in their Json message. ``Authenticate the Databricks REST APIHere is the Databricks documentation about how to create a personal access token: https://docs.databricks.com/dev-tools/api/latest/authentication.htmlView the job's result in DQ webYou can view the result of your job run by navigating to the DQ Jobs page.ExamplesProgrammatic DQDon't like leaving your notebook? Want to build DQ into your in-house data quality pipeline? Collibra DQ can do both!SimpleLoad Table use SparkJDBC//--- Configure Table From Database ---// val connProps = Map (driver -> org.postgresql.Driver, user -> s${user}, password -> s${pass}, url -> sjdbc:postgresql://${host}:${port}/${database}, dbtable -> owl_test.nyse) //--- Load Spark DataFrame ---//val jdbcDF = spark.read.format(jdbc).options(connProps).loadjdbcDF.showConfigure Collibra DQ OptionsConnect to DQ's Metadata Database and control DQ scan options. Wrap sparkDF with DQ context.import com.owl.common.options._import com.owl.core.util.OwlUtils val opt = new OwlOptions//--- Owl Metastore ---//opt.host = s$owlHostopt.port = s5432/postgres?currentSchema=publicopt.pgUser = s$owlUseropt.pgPassword = s$owlPass//--- Run Options ---//opt.dataset = owl_test.nyseopt.runId = 2018-01-10opt.datasetSafeOff = true val owl = OwlUtils.OwlContext(jdbcDF, opt)Register with Catalog and Run Profile//--- Register with Owl Catalog ---//owl.register(opt) //--- Profile Dataset ---//val profile = owl.profileDFprofile.showNotice that DQ returns results as Dataframes. This is a fantastic abstraction that allows you to ignore all domain objects and custom types and interact with a scaleable generic result set using common protocols like where or filter or save or write all with parallel operations.+--------------+-----+-------+-----------+---+---+--------+-----------+------+----+------+-------+-------+------+----+---------+| column|nulls|empties|cardinality|min|max|is_mixed|mixed_ratio| Int|Long|String|Decimal|Boolean|Double|Date|Timestamp|+--------------+-----+-------+-----------+---+---+--------+-----------+------+----+------+-------+-------+------+----+---------+| tenant_id| 0| 0| 60| 0| 9| false| 0.0|100000| 0| 0| 0| 0| 0| 0| 0|| a11| 0| 0| 1|a11|a11| false| 0.0| 0| 0|100000| 0| 0| 0| 0| 0|| a10| 0| 0| 1|a10|a10| false| 0.0| 0| 0|100000| 0| 0| 0| 0| 0|| account_type| 0| 0| 3| 02| 06| false| 0.0|100000| 0| 0| 0| 0| 0| 0| 0|| a13| 0| 0| 1|a13|a13| false| 0.0| 0| 0|100000| 0| 0| 0| 0| 0||security_alias| 0| 0| 3| 0| 2| false| 0.0|100000| 0| 0| 0| 0| 0| 0| 0|| a12| 0| 0| 1|a12|a12| false| 0.0| 0| 0|100000| 0| 0| 0| 0| 0|+--------------+-----+-------+-----------+---+---+--------+-----------+------+----+------+-------+-------+------+----+---------+Profile UIWhile the spark DF.show() is a nice and convenient output format, you may prefer a rich UI visual that tracks the data tests over time. The UI provides trend analysis, data drift, data relationships and more.DuplicatesTake duplicate detection for example. A common use case where a business wants to make sure they do not have repeated or duplicate records in a table. Set the lowerBound to the percent fuzzy match you are willing to accept, commonly 87% or higher is an interesting match. You might also want to target a single day or week or month that you shouldn't have dupes within. Notice the .where function and then pass in a custom dataframe to the DQ context.opt.dupe.on = trueopt.dupe.lowerBound = 99opt.dupe.include = Array(SYMBOL, EXCH) val df1Day = jdbcDF.where(TRADE_DATE = '2018-01-10')val owl = OwlUtils.OwlContext(df1Day, opt) val dupes = owl.dupesDFdupes.show // rdd collectdupes.rdd.collect.foreach(println) // records linked together for remediationowl.getDupeRecords.showOutliersGaining and understanding of your outliers is a commonly desired DQ function. DQ has several configurations to help find the most meaningful outliers in your dataset and over time. Below compares the current day to a baseline of days in the historical dataframe.opt.outlier.on = trueopt.outlier.lookback = 6opt.outlier.dateColumn = TRADE_DATEopt.outlier.timeBin = OutlierOpt.TimeBin.DAYopt.outlier.key = Array(SYMBOL) val df1Day = jdbcDF2.where(TRADE_DATE = '2018-01-10')val owl = OwlUtils.OwlContextWithHistory(dfCurrent = df1Day, dfHist = jdbcDF2, opt = opt)val outliers = owl.outliersDFoutliers.showAdvancedProgrammatic DQDon't like leaving your notebook? Want to build data quality into your in-house data quality pipeline? Collibra DQ can do both!Real World ExamplesRulesLet's assume we were provided a file named atm_cust_file and want to load it into a database table as well as scan it for all possible errors. We want to provide a couple levels of protection. 1) A business rule checking if a customer joined before before the company was founded. 2) Check if the file 100% matches to the DataFrame or db table we've created. 3) Check for all possible outliers or anomalies in the dataset. Each one of these 3 issues had a different impact to the business and causes a different flow to trigger in our pipeline.Add RuleLet's create a simple rule and assign points to the overall scoring system for later delegation. val rule = new domain2.Rule rule.setRuleNm(customer_before_company) rule.setRuleValue(customer_since_date < '1956-11-01') rule.setPerc(1.0) rule.setPoints(1) rule.setIsActive(1) rule.setUserNm(Kirk) rule.setDataset(ATM_CUSTOMER3) Util.addRule(rule=rule)Now let's chain together the remaining two items that were part of our original requirement. Note that DQ has six additional ML DQ features that we did not turn on in this case.val owl = Util.OwlContext(df, atmCustFile, props) // first register with catalog if not registeredowl.register(props) // Check if dataframe matches the source file 'atm_cust_file'val source = owl.validateSrcDFif (source.count() > 1) { // create service now ticket and exit with fail based on not matching to original file} owl.addAdHocRule(rule) val ruleBreaks = owl.rulesDFif (ruleBreaks.count() > 1) { if (ruleBreaks.where($score > 5).count > 1) { // create service now ticket and exit with fail based on rules }} val outliers = owl.outliersDFif (outliers.where($confidence < 10).count > 3) { // Owl email Alert to business group for attention // where 3 outliers have a confidence below 10}Ingesting Intraday FilesHere we illustrate an example of how to work with files when using DQ programmatically. This can be implemented in both a Notebook setting and in your own codebase. /// // USE CASE - Ingesting Intraday Files // /// // Part of your pipeline includes the ingestion of files that have the date // and hour encoded in the file name. How do you process those files using Owl? // // Format: <name>_<year>_<month>_<day>.csv // // Build up a data structure containg the files you want to process (here we // just use a simple list, but you may want to be pulling from a pubsub // queue, AWS bucket, etc...). Here we just use a simple file list of 6 // hours of trade position data. val position_files = List(new File(getClass.getResource(/position_file_2019_11_03_08.csv).getPath), new
File(getClass.getResource(/position_file_2019_11_03_09.csv).getPath), new File(getClass.getResource(/position_file_2019_11_03_10.csv).getPath), new File(getClass.getResource(/position_file_2019_11_03_11.csv).getPath), new File(getClass.getResource(/position_file_2019_11_03_12.csv).getPath), new File(getClass.getResource(/position_file_2019_11_03_13.csv).getPath), new File(getClass.getResource(/position_file_2019_11_03_14.csv).getPath)) // Create your spark session. val spark = SparkSession.builder .master(local) .appName(test) .getOrCreate() // Configure Owl. val opt = new OwlOptions opt.dataset = positions opt.load.delimiter = , opt.spark.master = local[1] opt.dupe.on = true opt.dupe.include = Array(ticker, cid) opt.outlier.on = true opt.outlier.key = Array(cid) opt.outlier.timeBin = TimeBin.HOUR // Customize this to only process a subset of the data. opt.load.fileQuery = select * from dataset position_files.foreach { file: File => // Tell Owl where to find the file. opt.load.filePath = file.getPath // Parse the filename to construct the run date (-rd) that will be passed // to Owl. val name = file.getName.split('.').head val parts = name.split(_) val date = parts.slice(2, 5).mkString(-) val hour = parts.takeRight(1).head // Must be in format 'yyyy-MM-dd' or 'yyyy-MM-dd HH:mm'. val rd = s${date} ${hour} // Tell Owl to process data opt.runId = rd // Create a DataFrame from the file. val df = OwlUtils.load(opt.load.filePath, opt.load.delimiter, spark) // Instantiate an OwlContext with the dataframe and our custom configuration. val owl = OwlUtils.OwlContext(df, spark, opt) // Make sure Owl has catalogued the dataset. owl.register(opt) // Let Owl do the rest! owl.owlCheck() }All Pipeline Activities in One LineFor brevity and convenience, DQ allows a DF to be loaded in the constructor and in one line run all nine dimensions of data quality owl.owlcheck. To adjust the DQ dimensions you simply set the properties in the props object.val owl = Util.OwlContext(df, atmCustFile, props)owl.owlCheckExample of some common property settingsval props = new Props()props.filePath = s${filePath}/atm_customer_${rd.replace(-,_)}.csvprops.runId = rdprops.dateCol = OWL_RUN_IDprops.dataset = ATM_CUSTOMER3props.del = ,props.datasetSafety = falseprops.calculateBoundaries = trueprops.fileLookBack = trueprops.timeBin = DAY // outlier, missing recordsprops.dl = trueprops.dlKey = customer_idprops.dlLb = 4 // pattern miningprops.freqPatternMiningByKey = trueprops.fpgKey = customer_idprops.fpgLookback = 4props.fpgDateCol = OWL_RUN_IDprops.fpgCols = card_number,first_name,last_name,checking_savingsprops.fpgLowFreq = true // validate Srcprops.validateSrc = trueprops.valSrcKey = customer_id // fuzzy matchprops.isDupe = trueprops.dupeCutOff = 88props.depth = 3props.dupeExcludeCols = customer_id,card_number,customer_since_date,OWL_RUN_IDUsing Notebooks to build DQ PipelinesFor examples on how to do this, see our Notebook repository below.GitHub - kirkhas/owl-notebooks: Owl Spark DQ PipelinesCollibra Data Quality & Observability RulesGlobal rulesDistributed with the application by default and you can use them from UI/CLI/Notebooks.Rule typesInvalid_Email_CheckInvalid_Phone_Num_CheckInvalid_Zip_Code_CheckInvalid_SSN_CheckInvalid_IP_Address_CheckInvalid_Gender_CheckInvalid_EIN_CheckInvalid_State_CheckInvalid_Credit_Card_CheckValid_Email_CheckValid_Phone_Num_CheckValid_Zip_Code_CheckValid_SSN_CheckValid_IP_Address_CheckValid_Gender_CheckValid_EIN_CheckValid_State_CheckValid_Credit_Card_CheckPercent_Move_5 Percent_Move_10Percent_Move_20 Percent_Move_50Not_In_Previous_runNot_In_Current_runHaving_Count_Greater_Than_OneSQL based rulesSimple ruleRule Type - SQLGSimple ruleFreeform SQLRuleType - SQLFFreeform SQLSimple ruleSimple rules would be applied to filter a condition on a single column in a single table.Example #1In this example you can see how to create a simple SQL rule, with name simple_sql_rule.CodeDescriptionrule.setRuleNm(simple_sql_rule)Adding the name of the given rulerule.setRuleValue(startDate < '2011-11-01')Setting the simple SQL expression.No JOIN allowed between tables!rule.setRuleType(SQLG)Setting the rule typeCodeexample_simple_sql_rule.scalaimport com.owl.core.Owl import com.owl.core.util.OwlUtils import com.owl.common.bll.{RuleBll, RuleTemplateBll} import com.owl.common.domain2.Rule import com.owl.common.options.{LoadOpt, OwlOptions} import org.junit.{Assert, Test} import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions._ val loadOptions = new LoadOpt { pghost = localhost:5432/postgres pguser = username pgpassword = password } //----- Init Spark ----- // def sparkInit(): SparkSession = { val sparkSession = SparkSession.builder .master(local) .appName(test) .getOrCreate() sparkSession } @Test def simpleRule(): Unit = { // Arrange val spark = sparkInit() import spark.implicits._ val headers = firstName,lastName,startDate val source = Seq((Thomas, Martinez, 2010-11-01), (Harry, Williams, 2012-05-01), (Ethan, Davis, 2009-08-01)) val arr = headers.split(,) val df = source.toDF(arr: _*) val opt = new OwlOptions { runId = 2019-09-20 dataset = simple_sql_rule_ds onReadOnly = false load = loadOptions } val rule = new Rule { setDataset(opt.dataset) setRuleNm(simple_sql_rule) setRuleValue(startDate < '2011-11-01') setRuleType(SQLG) setPerc(1.0) setPoints(1) setIsActive(1) setUserNm(admin) } val owl = OwlUtils.OwlContext(df, opt) .register(opt) OwlUtils.addRule(rule) // Act owl.owlCheck() // Assert import scala.collection.JavaConversions val hootRule = JavaConversions.asScalaBuffer(owl.hoot.rules).find(x => rule.getRuleNm.equals(x.getRuleNm)).orNull Assert.assertNotNull(hootRule) Assert.assertEquals(66, hootRule.getScore) } // Execute notebook simpleRuleNotebook() Resultvia CodeYou can do multiple assertion on the result of the OwlCheck process.Using owl.hoot parameter will provide access to the execution results, in this case for the rule.via UIExample #2In this example you can see how to create a simple SQL with rule with templates, with name simple_sql_rule_with_template.StepsCreate the rule template, where the template column name should be marked with $colNm string.\val ruleTemplate = RuleTemplateBll.createRuleTemplate(not_null_or_empty, Column cannot contain null or empty values, $colNm is null or $colNm = \'\' or $colNm = \'null\') Create the Rule instance, where value of RuleValue will be used to replace $colNm in the template expression.\val rule = RuleBll.createRule(opt.dataset) rule.setRuleNm(is_city_not_null_or_empty) rule.setRuleValue(city) rule.setRuleType(CUSTOM) // legacy type required to look into rule repo rule.setRuleRepo(not_null_or_empty) // custom rule name to pull rule value from rule repo rule.setPerc(1.0) rule.setPoints(1) rule.setIsActive(1) rule.setUserNm(admin) Codeimport com.owl.core.Owl import com.owl.core.util.OwlUtils import com.owl.common.bll.{RuleBll, RuleTemplateBll} import com.owl.common.domain2.Rule import com.owl.common.options.{LoadOpt, OwlOptions} import org.junit.{Assert, Test} import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions._ val loadOptions = new LoadOpt { pghost = localhost:5432/postgres pguser = username pgpassword = password } //----- Init Spark ----- // def sparkInit(): SparkSession = { val sparkSession = SparkSession.builder .master(local) .appName(test) .getOrCreate() sparkSession } @Test def simpleRuleWithTemplate(): Unit = { // Arrange val spark = sparkInit() import spark.implicits._ val headers = firstName,lastName,city val source = Seq((Thomas, Martinez,), (Harry, Williams, null), (Ethan, Davis, Los Angeles)) val arr = headers.split(,) val df = source.toDF(arr: _*) val opt = new OwlOptions { runId = 2019-09-20 dataset = simple_sql_rule_with_template_ds onReadOnly = false load = loadOptions } val ruleTemplate = RuleTemplateBll.createRuleTemplate(not_null_or_empty,Column cannot contain null or empty values, $colNm is null or $colNm = \'\' or $colNm = \'null\') val rule = RuleBll.createRule(opt.dataset) rule.setRuleNm(is_city_not_null_or_empty) rule.setRuleValue(city) rule.setRuleType(CUSTOM) // legacy type required to look into rule repo rule.setRuleRepo(not_null_or_empty) // custom rule name to pull rule value from rule repo rule.setPerc(1.0) rule.setPoints(1) rule.setIsActive(1) rule.setUserNm(admin) val owl = OwlUtils.OwlContext(df, opt) .register(opt) OwlUtils.addRuleTemplate(ruleTemplate) OwlUtils.addRule(rule) // Act owl.owlCheck() // Assert import scala.collection.JavaConversions val hootRule = JavaConversions.asScalaBuffer(owl.hoot.rules).find(x => rule.getRuleNm.equals(x.getRuleNm)).orNull Assert.assertNotNull(hootRule) Assert.assertEquals(66, hootRule.getScore) } // Execute notebook simpleRuleWithTemplate() Resultvia UIFreeform SQLIt would be used when applying a complex condition across multiple tables/columns and generally when more flexibility/customization is desired.Individual statementSyntaxSELECT * FROM @<dataset_name> <table_alias>WHERE <filter_expression>GROUP BY <group_by_expression>HAVING <having_expression> The base of the statement is given with @<dataset_name> style. In general the <dataset_name> is the same, where the rule is attached to, but basically you can use any valid dataset name in the expression.ExamplesSimple rule expressionopt.dataset = example_ds val rule = RuleBll.createRule(opt.dataset)rule.setRuleNm(is_city_not_null_or_empty)rule.setRuleValue(select * from @example_ds t where t.amount > '5000')rule.setRuleType(SQLF)rule.setPerc(1.0)rule.setPoints(1)rule.setIsActive(1)rule.setUserNm(admin)Complex rule expressionopt.dataset = unique_rule_ds val rule = RuleBll.createRule(opt.dataset)rule.setRuleNm(unique_rule)rule.setRuleValue(select * from (select count(*) as cnt, customer_id from @unique_rule_ds group by customer_id) having cnt >
1)rule.setRuleType(SQLF)rule.setPerc(1.0)rule.setPoints(1)rule.setIsActive(1)rule.setUserNm(admin)RegExp expressionopt.dataset = regexp_rule_ds val rule = RuleBll.createRule(opt.dataset)rule.setRuleNm(LIKE_rule)rule.setRuleValue(select * from @regexp_rule_ds.SYMBOL rlike '^ABB+')rule.setRuleType(SQLG)rule.setPerc(0.02)rule.setPoints(1)rule.setIsActive(1)rule.setUserNm(admin)Join statementsAvailable join types between multiple data setsWHERE tableA.id = tableB.id styleINNER JOINLEFT <OUTER> JOINRIGHT <OUTER> JOINJoining other data setsGetting historical state of the same data set Syntax: @t<n>, where n parameter means, how many days should we go back in the past at the base data set (marked with @<data set_name>) Example:@t1, will point to the data which was used at yesterday's run@t4, will point to the data which was used 4 days agoGetting different data set Syntax: @<other_data set_name>\WHERE styleLook-back datasetSELECT * FROM @<dataset_name> <table_alias>, @t1 [<history_table_alias>]WHERE <join_expression> AND <filter_expression>Exampleopt.dataset = example_ds val rule = RuleBll.createRule(opt.dataset)rule.setRuleValue(select * from @example_ds t, @t1 where t.customer_id = t1.customer_id and t.card_number <> t1.card_number)rule.setRuleType(SQLF)Different data setSELECT * FROM @<dataset_name> <table_alias>, @<other_dataset_name> [<other_alias>]WHERE <join_expression> AND <filter_expression>Exampleopt.dataset = example_dsopt2.dataset = other_ds val rule = RuleBll.createRule(opt.dataset)rule.setRuleValue(select * from @example_ds t, @other_ds ds2 where t.customer_id = ds2.customer_id and t.card_number <> ds2.card_number)rule.setRuleType(SQLF)LEFT JOINExampleopt.dataset = example_ds val rule = RuleBll.createRule(opt.dataset)rule.setRuleNm(not_back2back_days)rule.setRuleValue(select * from @example_ds A LEFT OUTER JOIN @t1 B ON A.customer_id = B.customer_id where A.customer_id is not null and B.customer_id is null)rule.setRuleType(SQLF)rule.setPerc(1.0)rule.setPoints(1)rule.setIsActive(1)rule.setUserNm(admin)Data type based rulesSimple check for individual columns.Rule typesEmpty checkRule type: EMPTYCHECKDescription: Checking whether the target column has empty values or not.Null checkRule type: NULLCHECKDescription: Checking whether the target column has NULL values or not.Date checkRule type: DATECHECKDescription: Checking whether the target column has only DATE values or not.Integer checkRule type: INTCHECKDescription: Checking whether the target column has only INTEGER values or notDouble checkRule type: DOUBLECHECKDescription: Checking whether the target column has only DOUBLE values or not.String checkRule type: STRINGCHECKDescription: Checking whether the target column has only STRING values or not.Mixed datatype checkRule type: DATATYPECHECKDescription: ---Syntax<rule_type> - Fixed key to the rule type<column_name> - Column to apply the rule<rule_name> - Custom name of the ruleopt.dataset = example_ds val rule = RuleBll.createRule(opt.dataset)rule.setRuleNm(<rule_name>)rule.setRuleValue(<column_name>)rule.setRuleType(<rule_type>)rule.setPerc(1.0)rule.setPoints(1)rule.setIsActive(1)rule.setUserNm(admin)OutliersThis real life use-case is when you have a large file or data frame with many days of data but you want the run profile to be the current day so that it trends properly overtime. Another nuance to this use-case is that the customer_id is a unique field to the user and it should not show up in the analytics i.e. an outlier. But the customer_id should be available when the user wants to query the rest api end points. The customer_id is then used to link back the users original dataset. A bloomberg_Id (BB_ID) is a common example.CSV Filefname,app_date,age,customer_idKirk,2018-02-24,18,31Kirk,2018-02-23,11,4Kirk,2018-02-22,10,3Kirk,2018-02-21,12,2Kirk,2018-02-20,10,1Notebook Code (Spark Scala)val filePath = getClass.getResource(/notebooktest.csv).getPath val spark = SparkSession.builder .master(local) .appName(test) .getOrCreate() val opt = new OwlOptions()opt.dataset = dataset_outlieropt.runId = 2018-02-24opt.outlier.on = trueopt.outlier.key = Array(fname)opt.outlier.dateColumn = app_dateopt.outlier.timeBin = OutlierOpt.TimeBin.DAYopt.outlier.lookback = 5opt.outlier.excludes = Array(customer_id) val dfHist = OwlUtils.load(filePath = filePath, delim = ,, sparkSession = spark)val dfCurrent = dfHist.where(sapp_date = '${opt.runId}') val owl = OwlUtils.OwlContextWithHistory(dfCurrent=dfCurrent, dfHist=dfHist, opt=opt)owl.register(opt)owl.owlCheck()Collibra DQ Web UIScore drops from 100 to 99 based on the single outlier in the file. Row count is 1 because there is only 1 row in the current data frame. The historical data frame was provided for context and you can see those rows in the outlier drill-in. The customer_id is available in the data preview and can be used as an API hook to link back to the original data set.After you run an DQcheck using owl.owlcheck you might want to check individual scores to see what type of issues were in the data. Collibra DQ sends back the records with issues in the format of a DataFrame using the notebook cmds or JSON from the REST api.val hoot = owl.hoot println(sSHAPE ${hoot.shapeScore})println(sDUPE ${hoot.dupeScore})println(sOUTLIER ${hoot.outlierScore})println(sPATTERN ${hoot.patternScore})println(sRECORD ${hoot.recordScore})println(sSCHEMA ${hoot.schemaScore})println(sBEHAVIOR${hoot.behaviorScore})println(sSOURCE ${hoot.sourceScore})println(sRULES ${hoot.ruleScore}) if (hoot.shapeScore > 0) { owl.getShapeRecords.show}if (hoot.dupeScore > 0) { owl.getDupeRecords.show}+-------+---------+--------------------+--------+-----------+-------+------+|row_cnt|obs_score| row_key|obs_type|customer_id| fname|owl_id|+-------+---------+--------------------+--------+-----------+-------+------+| 21| 46|afa89984ce472a409...| DUPE| 32| Kirk| 1|| 22| 46|afa89984ce472a409...| DUPE| 31|Kirk's.| 2|| 23| 60|41ea2d828b1a5fbf2...| DUPE| 30| Dan| 3|| 24| 60|41ea2d828b1a5fbf2...| DUPE| 27| Dan| 6|+---------------+--------------------+--------+----------+--------------+--------+-------+-------+---+--------------------+-----------+-------+------+--------+| dataset| run_id|col_name|col_format|col_format_cnt|owl_rank|row_cnt|row_key|age| app_date|customer_id| fname|owl_id|time_bin|+---------------+--------------------+--------+----------+--------------+--------+-------+-------+---+--------------------+-----------+-------+------+--------+|dataset_outlier|2018-02-24 00:00:...| fname| xxxx'x.| 1| 1| 2|xxxx'x.| 18|2018-02-24 00:00:...| 31|Kirk's.| 2| null|+---------------+--------------------+--------+----------+--------------+--------+-------+-------+---+--------------------+-----------+-------+------+--------+ http://$host/v2/getoutlier?dataset=dataset_outlier&runId=2018-02-24GetOutlierParametersPathdata setstringname of data setdata setstringyyyy-MM-dd format can include time and timezoneResponses200 { confidence: 77 dataset: dataset_outlier keyArr: null lb: 0 outColumn: age outKey: Kirk outMedian: 10.5 outValue: 18.0 runId: 2018-02-24T05:00:00.000+0000 ub: 0 } http://$host/v2/getdatashapes?dataset=dataset_outlier&runld=2018-02-24GetShapeParametersPathdata setstringname of data setrunIdstringyyyy-MM-dd format can include time and timezoneResponses200 Column MatchThis example shows how one can get column level match statistics across datasources in an Owl Notebook. Supports exact and fuzzy matching.Set ColMatch Parameters %spark import com.owl.common.domain._ import com.owl.common.Props import com.owl.core.util.OwlUtils import scala.collection.JavaConverters._ import com.owl.common.Utils val c1 = new Connection() c1.dataset = silo.account c1.user = user c1.password = pass c1.query = select id, networth, acc_name, acc_branch from silo.account limit 200000 c1.url = jdbc:mysql://<db url>:3306 val c2 = new Connection() c2.dataset = silo.user_account c2.user = user c2.password = pass c2.query = SELECT acc_name, acc_branch, networth FROM silo.account limit 200000 c2.url = jdbc:mysql://<db url>:3306 val c3 = new Connection() c3.dataset = silo.user_account c3.user = user c3.password = pass c3.query = SELECT acc_name as acc_name2, acc_branch, networth FROM silo.account limit 100000 c3.url = jdbc:mysql://<db url>:3306 props.dataset = colMatchTest1 props.runId = 2017-02-04 props.connectionList = List(c1,c2,c3).asJava props.colMatchBatchSize = 2 props.colMatchDurationMins = 3 val owl = OwlUtils.OwlContext(spark.emptyDataFrame, props)Exact Match%sparkprops.colMatchLevel = exactowl.register(props)owl.colMatchDF().showSample Result+------------+-----------------+----------+----------+---------------+| dataset_1| dataset_2| col_1| col_2|matchPercentage|+------------+-----------------+----------+----------+---------------+|silo.account|silo.user_account| id| acc_name| 0||silo.account|silo.user_account| id|acc_branch| 0||silo.account|silo.user_account| id| networth| 0||silo.account|silo.user_account| id| owl_id| 0||silo.account|silo.user_account| networth| acc_name| 0||silo.account|silo.user_account| networth|acc_branch| 16||silo.account|silo.user_account| networth| networth| 100||silo.account|silo.user_account| networth| owl_id| 0||silo.account|silo.user_account| acc_name| acc_name| 87||silo.account|silo.user_account| acc_name|acc_branch| 0||silo.account|silo.user_account| acc_name| networth| 0||silo.account|silo.user_account| acc_name| owl_id| 0||silo.account|silo.user_account|acc_branch| acc_name| 0||silo.account|silo.user_account|acc_branch|acc_branch| 87||silo.account|silo.user_account|acc_branch| networth| 12||silo.account|silo.user_account|acc_branch| owl_id| 0||silo.account|silo.user_account| owl_id| acc_name| 0||silo.account
silo.user_account| owl_id|acc_branch| 0||silo.account|silo.user_account| owl_id| networth| 0||silo.account|silo.user_account| owl_id| owl_id| 0|+------------+-----------------+----------+----------+---------------+only showing top 20 rowsFuzzy Match%sparkprops.colMatchLevel = fuzzyprops.colMatchFuzzyDistance = 4owl.register(props)owl.colMatchDF().showSample Result+------------+-----------------+----------+----------+---------------+| dataset_1| dataset_2| col_1| col_2|matchPercentage|+------------+-----------------+----------+----------+---------------+|silo.account|silo.user_account| id| acc_name| 5||silo.account|silo.user_account| id|acc_branch| 27||silo.account|silo.user_account| id| networth| 22||silo.account|silo.user_account| id| owl_id| 0||silo.account|silo.user_account| networth| acc_name| 100||silo.account|silo.user_account| networth|acc_branch| 233||silo.account|silo.user_account| networth| networth| 200||silo.account|silo.user_account| networth| owl_id| 0||silo.account|silo.user_account| acc_name| acc_name| 162||silo.account|silo.user_account| acc_name|acc_branch| 262||silo.account|silo.user_account| acc_name| networth| 75||silo.account|silo.user_account| acc_name| owl_id| 0||silo.account|silo.user_account|acc_branch| acc_name| 262||silo.account|silo.user_account|acc_branch|acc_branch| 612||silo.account|silo.user_account|acc_branch| networth| 175||silo.account|silo.user_account|acc_branch| owl_id| 0||silo.account|silo.user_account| owl_id| acc_name| 0||silo.account|silo.user_account| owl_id|acc_branch| 0||silo.account|silo.user_account| owl_id| networth| 0||silo.account|silo.user_account| owl_id| owl_id| 0|+------------+-----------------+----------+----------+---------------+only showing top 20 rowsAWS DataBricksGetting startedFirst use vanilla spark code to setup connection properties and access a database table via spark jdbc. Entire code example available at the end for copy paste.Schema output, Row Count and Runtimeroot |-- EXCH: string (nullable = true) |-- SYMBOL: string (nullable = true) |-- TRADE_DATE: date (nullable = true) |-- OPEN: decimal(9,3) (nullable = true) |-- HIGH: decimal(9,3) (nullable = true) |-- LOW: decimal(9,3) (nullable = true) |-- CLOSE: decimal(9,3) (nullable = true) |-- VOLUME: integer (nullable = true) |-- PART_DATE_STR: date (nullable = true) Row Count: 102,817Runtime: 00:00:03 Next Configure Owl Options and Point to Owl MetastoreThis requires that you have imported the Collibra DQ libraries into your notebook or databricks env.Next Run a Profile+-------------+-----+-------+-----------+--------+-----------+------+----+------+-------+-------+------+------+---------+| column|nulls|empties|cardinality|is_mixed|mixed_ratio| Int|Long|String|Decimal|Boolean|Double| Date|Timestamp|+-------------+-----+-------+-----------+--------+-----------+------+----+------+-------+-------+------+------+---------+| HIGH| 0| 0| 19159| false| 0.0| 0| 0| 0| 102817| 0| 0| 0| 0|| SYMBOL| 0| 0| 3137| false| 0.0| 0| 0|102817| 0| 0| 0| 0| 0|| LOW| 0| 0| 18845| false| 0.0| 0| 0| 0| 102817| 0| 0| 0| 0|| VOLUME| 0| 0| 25856| false| 0.0|102817| 0| 0| 0| 0| 0| 0| 0|| TRADE_DATE| 0| 0| 33| false| 0.0| 0| 0| 0| 0| 0| 0|102817| 0|| EXCH| 0| 0| 2| false| 0.0| 0| 0|102817| 0| 0| 0| 0| 0|| CLOSE| 0| 0| 15781| false| 0.0| 0| 0| 0| 102817| 0| 0| 0| 0||PART_DATE_STR| 0| 0| 33| false| 0.0| 0| 0| 0| 0| 0| 0|102817| 0|| OPEN| 0| 0| 16013| false| 0.0| 0| 0| 0| 102817| 0| 0| 0| 0|+-------------+-----+-------+-----------+--------+-----------+------+----+------+-------+-------+------+------+---------+Next Check for DuplicatesNotice there is a duplicate discovered. NYSE AAN record exists twice in the 10/1/2018. This should not happen as end of day stock data should only have 1 record per stock symbol. Great DQ finding.Next Scan for OutliersNotice that KOD.w the camera company Kodak commonly trades at less than 2 pennies and jumps to $2.35. Absolutely an outlier. This was a news event named Kodak coin, google it.+-----+------+---------+----------+----------+| key|column| value|prediction|confidence|+-----+------+---------+----------+----------+|TPG.E|VOLUME| 23400.0| 0.0| 0||MTB-C|VOLUME| 0.0| 100.0| 0||KOD.W| OPEN| 2.35| 0.015| 1|Entire Code Snippet//--- GCP Postgres Connection ---// val url = jdbc:postgresql://${host}:5432/postgres?currentSchema=owl_testvar connectionProps = new java.util.Properties()connectionProps.setProperty(driver, org.postgresql.Driver)connectionProps.setProperty(user, ${user})connectionProps.setProperty(password, ${pass})connectionProps.setProperty(connectionUrl, url) //--- Load DataFrame From GCP Postgres ---//val jdbcDF2 = spark.read.jdbc(url, owl_test.nyse, connectionProps)jdbcDF2.printSchemajdbcDF2.cachejdbcDF2.count //--- Owl Library Imports ---//import com.owl.common.options._import com.owl.core.Owlimport com.owl.core.util.OwlUtils val opt = new OwlOptions()//--- Owl Metastore ---//opt.host = s${host}opt.port = s5432/postgres?currentSchema=publicopt.pgUser = s$useropt.pgPassword = s$pass //--- Run Options ---//opt.dataset = nyse_notebook_pipelineopt.runId = 2018-01-10opt.datasetSafeOff = true opt.dupe.on = trueopt.dupe.lowerBound = 99opt.dupe.include = Array(SYMBOL, EXCH) opt.outlier.on = trueopt.outlier.lookback = 6opt.outlier.dateColumn = TRADE_DATEopt.outlier.timeBin = OutlierOpt.TimeBin.DAYopt.outlier.key = Array(SYMBOL)opt.outlier.measurementUnit = VOLUME=100000000,HIGH=0.1,LOW=0.1,OPEN=0.1,CLOSE=0.1 //--- Initialize Owl ---//val currentDay = jdbcDF2.where(sTRADE_DATE = '${opt.runId}')val owl = OwlUtils.OwlContextWithHistory(dfCurrent = currentDay, dfHist = jdbcDF2, opt = opt) //--- Pipeline Cmds ---//owl.register(opt)val profile = owl.profileDFval outliers = owl.outliersDFval dupes = owl.dupesDFRequired configurationDataBricks Runtime: 5.4 (includes Apache Spark 2.4.3, Scala 2.11)Python Version: 3Required librariesDQ jar fileExample: owl_core_trunk_jar_with_dependencies.jar __JDBC driver: org.springframework:spring-jdbc:4.3.16.RELEASE\Database specific JDBC connector driversExample#1: mysql:mysql-connector-java:8.0.17Example#2: org.postgresql:postgresql:jar:42.2.8Azure DataBricksRun a Collibra DQ check on any file in Azure BlobRead the File by setting up the azure key.spark.conf.set(fs.azure.account.key.abcCompany.blob.core.windows.net,GBB6Upzj4AxQld7cFv7wBYNoJzIp/WEv/5NslqszY3nAAlsalBNQ==) val df = spark.read.parquet(wasbs://company-abc@abceCompany.blob.core.windows.net/FILE_NAME/20190201_FILE_NAME.parquet)Process the file using Collibra DQ // register in Owl Catalog, Optionalval owl = new Owl(df).register // run a full DQ Checkowl.owlCheck()Additional imports and input optionsimport com.owl.core._import com.owl.common._ val props = new Props()props.dataset = datasetNameprops.runId = 2019-03-02props..... // look at the many input options Give your data a little quality time.Options (base)API documentation for Java Class DQOptions.The Class properties are laid out in the following format headers to allow Gitbook indexing.ClassName field_namefield type | default __DescriptionDQOptions data setString | _StringUtils.Empty _ __Unique string ID for the DQCheck Data set. Cannot contain ., -, #, @ \Example CodeInitializingScalaimport com.owl.common.options.OwlOptions val opts = new OwlOptions()Javaimport com.owl.common.options.OwlOptions OwlOptions opts = new OwlOptions();{% endtab %} {% endtabs %}Options APIField mappingsField nameCLI propDescriptiondatasetdsdataset name, example: userTable or users or user_filerundIdrdrun date, must be in format yyyy-MM-dd or for incremental use Hours or Minutes yyyy-MM-dd HH:mmrundIdEndrdEndend date for query ranges t_date >= $ and t_date < $, must be in format yyyy-MM-dd or for incremental use Hours or Minutes yyyy-MM-dd HH:mmpassFailpassfaillimitLimit for passing or failing runsjobId onReadOnlyreadonlyDo not persist results to the DQ metastore - useful during testing.Load OptionsField nameCLI propDescriptionfullFilefullfileuse entire file for lookbacks instead of just filequeryfileQuery header headerSrc hasHeader isParallel isJson isMixedJson isMapsJson flatten isMultiLine sparkprinc sparkkeytab jdbcprinc jdbckeytab srcpwdmgr pwdmgr pguserpguser pgpasswordpgpassword pghosthost pgportport executorcores isParquet isAvro avroSchema isXml xmlRowTag isOrc dateFmt timeFmt datasetSafety filePath delimiter fileLookBack dbLookBack connectionURL userName password sqlQuery connectionProps zkHost~~~~DeprecatedzkPort~~~~DeprecatedzkPath~~~~DeprecatedOutlier OptionsField nameCLI propDescriptionondlDeep learning.lookbackdllbA deep learning lookback. For example, a value 5 for a lookback of 5 days.Lookback periods directly correlate to -dllb.keydlkeyA comma-delimited deep learning key. comma delim key ex: symbol,datedateField bin includesdlincA deep learning col limit. For example, open,close,high,volume.excludesdlexcA deep learning col exclusion. For example, open,close,high,volume.categorical by limit historyLimit minhistorydlminhistAn automatically generated flag based on the outlier lookback setting -dllb that defines the minimum number of days before DQ flags data as potential outliers. -dlminhistensures that the number of days in the algorithm is relative to the total scope of the lookback period. It is not recommended that you override this flag from the command line.Lookback periods do not directly correlate to -dlminhist.score FPG OptionsField nameCLI propDescriptiononfpgonpattern mininglookbackfpglblookback interval for pattern mining. Ex: -fpglb 5keyfpgkeynatural key for pattern mining activitydateFieldfpgdcdate
column for pattern mining. Ex: -fpgdc date_collowFreq Deprecatedincludesfpgincpattern mining is expensive use this input to limit the observed colsexcludesfpgexcpattern mining is expensive use this input to limit the observed colstimeBinfpgtbintime bin for pattern mining. Ex: -fpgtbin DAYscorefpgscorescore for pattern mining recordsminSupportfpgsupport confidencefpgconfidence Dupe OptionsField nameCLI propDescriptionondupeduplicate record detectionincludesdupeincduplicate record detection, column inclusion listexcludesdupeexcduplicate record detection, column exclusion listdepth lowerBounddupelbduplicate lower bounds on percent match default [85]upperBound blocksize useCache checkHeader exactMatch ignoreCasedupenocaseduplicate record detection, column exclusion listscoredupescore limitdupelimitLimit for dupe rows storedProfile OptionsField nameCLI propDescriptionon includes excludes dataShapeOn statsOn correlationOn histogramOn cardinalityOn dataShapeColsInc dataShapeColsExc Source OptionsField nameCLI propDescriptionon includes excludes key fileQuery map score datasetSrc driverSrc userNameSrc passwordSrc connectionURLSrc sqlQuerySrc connectionPropsSrc Rule OptionsField nameCLI propDescriptionon rulesOnly semantic ColMatch OptionsField nameCLI propDescriptioncolMatchParallelProcesses colMatchDurationMins colMatchBatchSize connectionList Spark OptionsField nameCLI propDescriptionnumExecutors executorMemory driverMemory executorCores master jars libs driver Misc OptionsField nameCLI propDescriptionobslimit nullValue ClassesLoadpackage com.owl.common.options; import org.apache.commons.lang3.StringUtils; import java.util.Properties; /** * Owl Options related to data loading */public class LoadOpt { // Options order: unsorted, // dataset scope columns, dataset scope rows, look back, // common options for both data sources, file as data source, db as data source public static final String SINGLE_QUOTE = '; public static final String DOUBLE_QUOTE = \; public static final String BACK_TICK = `; /** * If true, don't save any metadata * TODO confirm if this is correct */ public Boolean readonly = false; /** * The Password manager. */ public String passwordManager = null; /** * Catalog alias (Catalog name) */ public String alias = StringUtils.EMPTY; // --- Dataset Scope Column specifications ------- // // Properties that select columns for Dataset activities or modifies (data type or new columns) // prior and/or during loading into Spark DF /** * Dataset scope query. (IMPORTANT) * The query should contain all the columns necessary to run the activities. * TODO: figure out if this gets used when using files */ public String query = StringUtils.EMPTY; /** * Concatenated column names (sep = ,) for columns that are keys * TODO: confirm */ public String key = StringUtils.EMPTY; /** * SELECT expression to transform expressions with assignment by = and delimited by |. * e.g. colname=cast(colname as string)|colname2=colname2(cast as date) */ public String expression = StringUtils.EMPTY; /** * Add OWL_RUN_ID UNIX timestamp (s) column to Spark DF usng the OwlOptions.runId. * Does not obey timeStampDivisor (timestamp in seconds because Spark) */ public Boolean addDateColumn = false; /** * Fill null values in Spark DF with 0 (numeric columns only) */ public Boolean zeroFillNull = false; /** * A string that indicates a null value; any value matching this string will be set as nulls in the Spark DF * Default: -> NULL * Example: 'null' -> NULL * -- * Note: to emptyStirngFillNull (replace String column null -> , use expression */ public String replaceNulls = StringUtils.EMPTY; /** * All data types forced to strings for type safe processing. * Not implemented in activity (yet) */ public Boolean stringMode = false; // --- Dataset Scope Row specifications ------- // // Properties that filter rows for Dataset activities // prior and/or during loading into Spark DF /** * Convert row into string and only use rows containing this value. * Strict matching only. */ public String filter = StringUtils.EMPTY; /** * Convert row into string and only use rows containing this value. * Strict matching only. */ public String filterNot = StringUtils.EMPTY; // --- Look back ------- // // For Look back feature /** * Build up history of OwlChecks. Does not include current OwlCheck. * TODO: Document the relationship with unionLookBack */ public Integer backRun = null; /** * Whether to load data for looking back in history. * How much historical data to load is based on OutlierOpt.lookback and PatternOpt.lookback. */ public Boolean unionLookBack = false; // --- Shared Data Loading Options ------- // // Properties that affect data loading & pre-processing for both files and db as source /** * Whether to use cached data for activities */ public Boolean cache = true; /** * The year, month, and day format of date columns in the dataset for loading the data only. * Default = yyyy-MM-dd */ public String dateFormat = yyyy-MM-dd; /** * The hour, minute, second, and milisecond format of date columns in the dataset for loading the data only/ * Default = HH:mm:ss.SSS * Not used. Questionably why separate timeFormat variable exists when dateFromat can represent hms as well. */ public String timeFormat = HH:mm:ss.SSS; /** * Whether to convert date columns (specified by activity opts) in dataset * into timestamp in ms (to make it seconds, set Props.timeStampDivisor = s) * TODO: Needs LoadOpt.timeStampDivisor and fix Utils.scala date2Timestamp */ public Boolean timestamp = false; /* TODO add timeStampDivisor here and map between owl props? public String timeStampDivisor = ms */ // --- Using file as data source ------- // // Properties that control where & how static file is read /** * Full path to the file. * If hdfs, then hdfs://.... * If s3, then s3://..., s3a://..., or s3n://.... * If parquet, then ...parquet or ...PARQUET */ public String filePath = StringUtils.EMPTY; /** * SQL query used on file. * owl_id is added if not included in select clause. * If empty, then defaults to full file query. * (Does not update LoadOpts.fullFile to true). */ public String fileQuery = StringUtils.EMPTY; /** * Whether to use full file (i.e. use all columns) on data load */ public Boolean fullFile = false; /** * File column names, comma separated */ public String fileHeader = null; /* TODO checkHeader needs to be moved here from DupeOpt public Boolean checkHeader = true;*/ /** * Whether to have Spark infer the schema of data source * If props.profile2 == true, this is overwritten to false! * If xml file, this is ignored and schema is always inferred by Spark on xml data load. * If avro file, this value is respected (but may get overwritten by props.profile2) * (see activity2.Load.file) */ public Boolean inferSchema = true; /** * Sample without replacement from file. Valid value is a fraction [0, 1.0]. * Only affects when filetype is xml or unspecified (and therefore assumed to be delimited table) */ public Double sample = 1.0; /** * Filetype (avro, json, orc, parquet, xml). Unspecified file */ public FileType fileType = null; /** * Delimiter for file. If number of characters after replacing \ with is 2 or more character * (e.g. compound delimiters like \t\t), then defaults to \t and attempts to read file as tsv * See Activity2.load.file for details */ public String delimiter = ,; /** * File character encoding */ public String fileCharSet = UTF-8; /** * The Avro schema for relevant avro file. Ignored if empty string */ public String avroSchema = StringUtils.EMPTY; /** * The Xml row tag for xml file. Ignored if empty string. */ public String xmlRowTag = StringUtils.EMPTY; /** * Whether to flatten arrays in nested schema * TODO explain better. Does this only affect JSON file? */ public Boolean flatten = false; /** * Whether data contains maps in json that requires extra handling * TODO explain better. Does this only affect JSON file? */ public Boolean handleMaps = false; /** * Whether to handle mixed json. * TODO explain better. Does this only affect JSON file? */ public Boolean handleMixedJson = false; /** * Spark.read option multiline, for JSON file only */ public Boolean multiLine = false; // --- Using database as data source ------ // /** * Path to DB Driver. (e.g. /opt/owl/driver/postgres) */ public String lib = StringUtils.EMPTY; /** * DB Driver name (Java namespace, e.g. org.postgresql.Driver). * Leave as null (default) and LoadOpts.connectionURL will resolve the driver name. */ public String driverName = null; /** * Connections name in metastore DB (public.connections.aliasname). * Does not refer to the name of the database. Refers to aliasname that the user set when * uploading connection config to Owl. */ public String connectionName = StringUtils.EMPTY; /** * The Connection url, prefixed by jdbc. * e.g. jdbc:postgresql://localhost:5432 */ public String connectionUrl = StringUtils.EMPTY; /** * DB username */ public String userName = StringUtils.EMPTY; /** * DB password */ public String password = StringUtils.EMPTY; /** * JDBC Connection properties (e.g. fetchsize) */ public Properties connectionProperties = null; /** * Whether data source is Hive Native (not using JDBC) * TODO: Why is the default null as opposed to false? */ public Boolean hiveNative = null; /** * Whether data source is Hive Hadoop Web Cluster (not using JDBC) */ public Boolean hiveNativeHWC = false; // --- Parallel JDBC ------- // /** * When running parallel JDBC, use LoadOpts.query and OwlOptions.dataset as base table */ public Boolean useSql = true; /** * When running parallel JDBC, specify column name
 * ?? Activity2.Load and web has hard-coded magic string OWLAUTOJDBC */ public String columnName = null; /** * When running parallel JDBC, the upper bound for partition column. * (e.g. 1000000) */ public String lowerBound = null; /** * When running parallel JDBC, the upper bound for partition column. * (e.g. 5000000) */ public String upperBound = null; /** * When running parallel JDBC, the number of partitions used. * If 0, then numPartitions used is based on the number of available Spark Executor (1/2 ~ 2/3) * If > 20, then overwritten to 20 (no more than 20 concurrent connections to a database on a single dataset) */ public Integer numPartitions = 0; // --- SQL Query properties ---------- // // TODO: does this effect DB as source or file as source as well? /** * Whether the escape character would be back tick (`). * Ignored if escapeCharacter is non-empty (if using OwlCheck from Options). * Marked as true if props.escapeCharacter is a tick * (to preserve bijection between props and opts, and vice versa). */ public Boolean escapeWithBackTick = false; /** * Whether the escape character would be single quote ('). * Ignored if escapeCharacter is non-empty (if using OwlCheck from Options). * Marked as true if props.escapeCharacter is a tick * (to preserve bijection between props and opts, and vice versa). */ public Boolean escapeWithSingleQuote = false; /** * Whether the escape character would be double quote (). * Ignored if escapeCharacter is non-empty(if using OwlCheck from Options). * Marked as true if props.escapeCharacter is a tick * (to preserve bijection between props and opts, and vice versa). */ public Boolean escapeWithDoubleQuote = false; /** * Specify custom escape character. This takes precedence over all other escapeWithXYZ options. * i.e. if non-empty, then other escapeWithXYZ options are ignored. * If empty (default), no escaping attempt is made (and SQL query may fail if it contains reserved word) * * @deprecated Access level of this field will be changed to private. Please use {@link #setEscapeCharacter(String)} instead. */ @Deprecated public String escapeCharacter = StringUtils.EMPTY; /** * The enum File type. */ public enum FileType { /** * Avro file type. */ avro, /** * Json file type. */ json, /** * Orc file type. */ orc, /** * Parquet file type. */ parquet, /** * Xml file type. */ xml }}Profilepublic class ProfileOpt { public Boolean on = true; //Whether to run profile public Boolean only = false; //Whether to run only profile public String[] include; //Which columns to include public String[] exclude; //Which columns to exclude public Boolean shape = true; //Disable shape detection public Boolean correlation = null;//On/Off Pearsons Correlation, null=auto public Boolean histogram = null; //On/Off Histograming, null=auto public Boolean semantic = null; //On/Off Semantic discovery, null=auto public Integer limit = 300; public Integer histogramLimit = 0; public Double score = 1.0; //downscore points per Shape issue public Integer shapeTotalScore = 0; public Double shapeSensitivity = 0.00; public Integer shapeMaxPerCol = 0; public Integer shapeMaxColSize = 0; public String behavioralDimension = StringUtils.EMPTY; public String behavioralDimensionGroup = StringUtils.EMPTY; public String behavioralValueColumn = StringUtils.EMPTY; public Boolean behaviorScoreOff = false; // disable behavior scoring Dupepackage com.owl.common.options; /** * Options for Dupe Activity */public class DupeOpt { /** * Whether to run Dupe Activity */ public Boolean on = false; // --dupe /** * @deprecated Unused for Activity2 */ public Boolean only = false; // --dupeonly /** * Column names to include Dupe Activity */ public String[] include; // -dupeinc /** * Column names to exclude Dupe Activity */ public String[] exclude; // dupeexc /** * Indicator for complexity. See Activity2.Dupe.Scala.execute() * depth == 0 : exact match (sets props.dupeExactMatch = TRUE downstream) */ public Integer depth = 2; // -depth /** * The minimum dupe scores between two duplicates. (currently calculated as edit distance, out of upperBound) * Two values with dupe score less than this is lowerBound are not duplicates (i.e. truly different values) */ public Integer lowerBound = 80; // -dupelb, -dupecutoff /** * The maximum possible dupe score for duplicate records (for a given dupe detection method). * Currently assumed to be 100. */ public Integer upperBound = 100; // -dupeub, -dupepermatchupperlimit /** * Approximate dupe score used to create block index (when DF is large) */ public Integer approximate = 1; // -dupeapprox /** * Number of observations per unique duplicate */ public Integer limitPerDupe = 15; /** * Whether to process column headers when data load uses manual column names (LoadOpts.fileHeader) * TODO this belongs in LoadOpts, not DupeOpts */ public Boolean checkHeader = true; /** * TODO remove * * @deprecated not used; */ public String filter; /** * If true, dupe activity is case insensitive. If false, dupe activity is case sensitive. * Convenience feature for upper and lower set to 100 */ public Boolean ignoreCase = false; //-dupenocase /** * Number of points each duplicate contributes to the total schema score (in Hoot) */ public Double score = 1.0; //-dupescore points per duplicate found default 1 /** * Number of unique duplicates to compute during dupe activity */ public Integer limit = 300; //-dupelimit default 300Sourcepublic class SourceOpt { public Boolean on = false; //-vs public Boolean only = false; //-sourceonly public Boolean validateValues = false; //-validatevalues public Boolean matches = false; //-matches public String[] include; //-valinc public String[] exclude; //-valexc public String[] key; //valkey public Map<String, String> map; // public Double score = 1.0; // points per validate source found, default 1-5 public Integer limit = 30; //-valsrclimit public String delimiter = ,; //-srcdel public String fileCharSet = UTF-8; //-srcencoding public String filePath = StringUtils.EMPTY; //--srcfile public String header = null; //-srcheader public String dataset = StringUtils.EMPTY; public String driverName = StringUtils.EMPTY; public String user = StringUtils.EMPTY; public String password = StringUtils.EMPTY; public String passwordManager = StringUtils.EMPTY; public String connectionName = StringUtils.EMPTY; public String connectionUrl = StringUtils.EMPTY; public String query = StringUtils.EMPTY; public String fileQuery = StringUtils.EMPTY; public String lib = StringUtils.EMPTY; public Properties connectionProperties;FAQsHow to specify OWL database connection propertiesOwlOptionsimport com.owl.common.options.OwlOptions val opt = new OwlOptions()opt.dataset = <dataset_name>opt.runId = <date> // YYYY-MM-DDopt.load.pguser = <db_username>opt.load.pgpassword = <db_password>opt.load.pghost = <ip>:<port>/<database_name>Propsimport com.owl.common.Props val props = new Props()props.dataset = <dataset_name>props.runId = <date> // YYYY-MM-DDprops.pguser = <db_username>props.pgpassword = <db_password>props.host = <ip>:<port>/<database_name>Command LineScale + Data ScienceWhere Scale meets Data Science. Scale linearly with your data by adding executors and/or memory.-f file:///Users/home/salary_data.csv \-d , \-rd 2018-01-08 \-ds salary_data-numexecutors 2 \-executormemory 2gYarn MasterIf CollibraDQ is run on an edge node on a popular hadoop distribution such as HDP, CDH, EMR it will automatically register the jobs with Yarn Resource Manager.Spark MasterDQ also runs using spark master by using the -master input and passing in spark:url.Spark StandaloneDQ runs in standalone most but naturally will not distribute the processing beyond the hardware it was activated on.OptionsDescriptiondeploymodespark deploymode optiondrivermemorydriver memory example 3G for local spaceexecutorcoresspark executor coresexecutormemoryspark executor memory option example 3Gmasteroverrides local[*], i.e. spark://myhost:7077, yarn-client, yarn-clustersparkprinckerberos principal name ex: owl@OWL.COMUse Spark-Submit directly bypassing DQCheckspark-submit \--driver-class-path /opt/owl/drivers/postgres42/postgresql-42.2.4.jar \--driver-library-path /opt/owl/drivers/postgres42/postgresql-42.2.4.jar \--driver-memory 3g --num-executors 2 --executor-memory 1g \--master spark://Kirks-MBP.home:7077 \--class com.owl.core.cli.OwlCheck /opt/owl/bin/owl-core-trunk-jar-with-dependencies.jar \-u user -p pass -c jdbc:postgresql://xyz.chzid9w0hpyi.us-east-1.rds.amazonaws.com/postgres \-ds accounts -rd 2019-05-05 -dssafeoff -q select * from accounts-driver org.postgresql.Driver -lib /opt/owl/drivers/postgres42/ Parallel JDBC Spark-Submitspark-submit \--driver-class-path /opt/owl/drivers/postgres42/postgresql-42.2.4.jar \--driver-library-path /opt/owl/drivers/postgres42/postgresql-42.2.4.jar \--conf spark.driver.extraJavaOptions=-Dlog4j.configuration=file:///opt/owl/config/log4j-TRACE.properties \--conf spark.executor.extraJavaOptions=-Dlog4j.configuration=file:///opt/owl/config/log4j-TRACE.properties \--files /opt/owl/config/log4j-TRACE.properties \--driver-memory 2g --num-executors 2 --executor-memory 1g --master spark://Kirks-MBP.home:7077 \--class com.owl.core.cli.OwlCheck /opt/owl/bin/owl-core-trunk-jar-with-dependencies.jar \-u us -p pass -c jdbc:postgresql://xyz.chzid9w0hpyi.us-east-1.rds.amazonaws.com/postgres \-ds aumdt -rd 2019-05-05 -dssafeoff -q select * from aum_dt \-driver org.postgresql.Driver -lib /opt/owl/drivers/postgres42/ \-connectionprops fetchsize=6000 -master spark://Kirks-MBP.home:7077
\-corroff -histoff -statsoff \-columnname updt_ts -numpartitions 4 -lowerbound 1557597987353 -upperbound 1557597999947DQ Job JDBCConnect to any database via JDBC.-q select * from lake.stock_eod where date = '2017-01-20' \-u username -p password \-c jdbc:mysql://instance.chzid9w0hpyi.us-east-1.rds.amazonaws.com:3306 \-rd 2017-01-20 \-dc date \-ds stocks \-driver com.mysql.jdbc.Driver \-lib /home/ec2-user/owl/drivers/mysql/Password ManagerYou can configure Collibra DQ to call a script file to retrieve a password from a password manager vault or other storage container. The customer is responsible for generating a script to pull just the password and DQ uses that value dynamically when the connection is needed for the UI or when kicking off an DQCheck.In the connection dialog, select Password Manager from the Auth Type dropdown, and supply a user name. The script is the path to the .sh script on the machine where the web application is running, and the user account that runs DQ-web should be allowed to execute the script. You can either use the optional parameters or pass any parameters your script needs directly inline on the Script value.Fetch SizeIt is important to consider the drivers fetch size when loading greater than 1 Million rows across the network. DQ allows you to set this driver property in the WebApp but this is only for web interaction therefore fetchsize will not help here. DQ also allows fetchsize in the DQCheck by passing in a connection property.CMD line-connectionprops fetchsize=3000Notebookprops.connectionProps.put(fetchsize, 3000)Parallel JDBCFor greater performance or moving large datasets across a network DQ supports parallel JDBC, which can be enabled by passing numpartitions to DQCheck. This can be a 2-5X improvement in many cases.-lib /opt/owl/drivers/mysql8/-cxn mysql-q select * from lake.nyse where trade_date = '${rd}' -rd 2018-01-01-ds nyse-columnname volume-numpartitions 4-lowerbound 0-upperbound 5000000000-usesqlDQ also supports auto parallelization, which will configure the numPartitions parameter for you based on the size of your data. This is enabled in the UI when you create a dataset using the DQCheck wizard.DQ Job BigQueryExample CMD Line-lib /opt/owl/drivers/bigquery/bigquery/core/ \-h <IP_ADDRESS>:5432/postgres \-master spark://<SPARK_MASTER>:7077 \-ds samples.loan_customer \-deploymode client \-q select * from samples.loan_customer \-rd 2021-08-02 \-driver com.simba.googlebigquery.jdbc42.Driver \-cxn BigQuerySteps for the BigQuery ConnectionWe would use this Simba driver: com.simba.googlebigquery.jdbc42.Driver.We would make an owl-gcp.json (your org auth key in JSON format).We would create a JDBC connection (for example only do not use this JDBC URL): jdbc:bigquery://https://www.googleapis.com/bigquery/v2:443;ProjectId=;OAuthType=0;OAuthServiceAcctEmail=<1234567890>-compute@developer.gserviceaccount.com;OAuthPvtKeyPath=/opt/ext/owl-gcp.json;Timeout=86400Requires a path to a JSON file that contains the service account for authorization. That same file is provided to the Spark session to make a direct to storage connection for maximum parallelism once Core fires up.”The above and explained there are actually a number of others steps which must be performed to achieve success:Password for the BigQuery Connector form in Collibra DQ must be a base64 encoded string created from the json file (see step 3. above) and input as password. For example: base64 your_json.json -w 0 or cat your_json.json | base64 -w 0Check that this JARs exists and is on the path of the Collibra DQ Web UI server (eg. <INSTALL_PATH>/owl/drivers/bigquery/core). Look at your driver directory location which contains this BigQuery JAR: spark-bigquery_2.12-0.18.1.jarMake sure there are all the needed JARs present in <INSTALL_PATH>/owl/drivers/bigquery/: ****animal-sniffer-annotations-1.19.jargoogle-api-services-bigquery-v2-rev20201030-1.30.10.jargrpc-google-cloud-bigquerystorage-v1beta1-0.106.4.jarlistenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jarannotations-4.1.1.4.jargoogle-auth-library-credentials-0.22.0.jargrpc-google-cloud-bigquerystorage-v1beta2-0.106.4.jaropencensus-api-0.24.0.jarapi-common-1.10.1.jargoogle-auth-library-oauth2-http-0.22.0.jargrpc-grpclb-1.33.1.jaropencensus-contrib-http-util-0.24.0.jarauto-value-annotations-1.7.4.jarGoogleBigQueryJDBC42.jargrpc-netty-shaded-1.33.1.jarperfmark-api-0.19.0.jaravro-1.10.0.jargoogle-cloud-bigquery-1.125.0.jargrpc-protobuf-1.33.1.jarprotobuf-java-3.13.0.jarchecker-compat-qual-2.5.5.jargoogle-cloud-bigquerystorage-1.6.4.jargrpc-protobuf-lite-1.33.1.jarprotobuf-java-util-3.13.0.jarcommons-codec-1.11.jargoogle-cloud-core-1.93.10.jargrpc-stub-1.33.1.jarproto-google-cloud-bigquerystorage-v1-1.6.4.jarcommons-compress-1.20.jargoogle-cloud-core-http-1.93.10.jargson-2.8.6.jarproto-google-cloud-bigquerystorage-v1alpha2-0.106.4.jarcommons-lang3-3.5.jargoogle-http-client-1.38.0.jarguava-23.0.jarproto-google-cloud-bigquerystorage-v1beta1-0.106.4.jarcommons-logging-1.2.jargoogle-http-client-apache-v2-1.38.0.jarhttpclient-4.5.13.jarproto-google-cloud-bigquerystorage-v1beta2-0.106.4.jarconscrypt-openjdk-uber-2.5.1.jargoogle-http-client-appengine-1.38.0.jarhttpcore-4.4.13.jarproto-google-common-protos-2.0.1.jarcoregoogle-http-client-jackson2-1.38.0.jarj2objc-annotations-1.3.jarproto-google-iam-v1-1.0.3.jarerror_prone_annotations-2.4.0.jargoogle-oauth-client-1.31.1.jarjackson-annotations-2.11.0.jargrpc-alts-1.33.1.jarjackson-core-2.11.3.jarslf4j-api-1.7.30.jarfailureaccess-1.0.1.jargrpc-api-1.33.1.jarjackson-databind-2.11.0.jargax-1.60.0.jargrpc-auth-1.33.1.jarjavax.annotation-api-1.3.2.jarthreetenbp-1.5.0.jargax-grpc-1.60.0.jargrpc-context-1.33.1.jarjoda-time-2.10.1.jargax-httpjson-0.77.0.jargrpc-core-1.33.1.jarjson-20200518.jargoogle-api-client-1.31.1.jargrpc-google-cloud-bigquerystorage-v1-1.6.4.jarjsr305-3.0.2.jarYou may get a CLASSPATH conflict regarding the JAR files.Make sure the BigQuery connector Scala version matches your Spark Scala. version.DQ Job DatabricksLake vs SwampThe difference between a business-critical lake and a swamp is quality. The accuracy and cleanliness of data is directly proportional to the quality of insights end-users will derive. Data lakes that gain broad adoption have strong governance programs. The challenge is, adding a data quality program typically takes 6-12 months but the project never really ends due to the volume, variety and velocity of incoming data. Collibra DQ uses autoML so solve this problem. DQ constantly monitors the lake with native integration and unlimited scale. Use DQ to generate the equivalent of 10K rules, while continuously adapting to the natural variance in your data. When erroneous data enters your lake DQ alerts the data steward and provide a rich visual displaying the break records and explainable AI describing the issue. DQ's approach is to learn from data and become incrementally smarter each day to ensure a statistically defensible data quality program.Native Integration with Delta Lake (Databricks)Out of the box DQ comes with a connection template for Databricks. To connect, simply paste in your username, password and connection URL.Explore Databricks Assets and Add DQ ChecksQuickly explore DB assets that are cataloged in Delta Lake the same way you would any database (file tree explorer). Use DQ wizard to add data quality to any Databricks table or file. Create a modern data quality program using machine learning in minutes.9 dimensions of Data QualityUse the wizard to apply DQ's autoML and predictive data quality features across all of your assets in Delta Lake. Click Scan button to put every table in Delta Lake under DQ management in 1 click. DQ creates a data quality program on all Delta Lake assets in a matter of hours. With traditional technologies this task used to require domain experts, rule writers and identification of critical elements.Out of the Box DQ measuresDQ DimensionDescOutliersnumeric and categorical outlier detectionShapesformatting and incorrect charactersPatternsrelationship probabilitiesCorrelationsstrengths of relationships between columnsDuplicatesfuzzy and exact matchingSchema Evolutionschema driftRulesability to add your own business rulesSource Matchingdifference from source to target detectionDQ Job HiveRun a data quality check on a Hive table. Use the -hive flag for a native connection via the HCat, this does not require a JDBC connection and is optimized for distributed speed and scale.Hive Native, no JDBC ConnectionOpen source platforms like HDP, EMR and CDH use well known standards and because of this DQ takes advantage of things like HCat and it removes the need for JDBC connection details as well as offers optimum data read speeds. DQ recommends and supports this with the -hive flag../owlcheck -ds hive_table -rd 2019-03-13 \-q select * from hive_table -hiveExample output. A hoot is a valid JSON response{ dataset: hive_table, runId: 2019-02-03, score: 100, behaviorScore: 0, rows: 477261, prettyPrint: true}Hive JDBCYou need to use the hive JDBC driver, commonly org.apache.hive.HiveDriver.You need to locate your driver JDBC Jar with the version that came with your EMR, HDP or CDH This jar is commonly found on an edge node under /opt/hdp/libs/hive/hive-jdbc.jar etc..../owlcheck -rd 2019-06-07 -ds hive_table \-u <user> -p <pass> -q select * from table \-c jdbc:hive2://<HOST>:10000/default \-driver org.apache.hive.HiveDriver \-lib /opt/owl/drivers/hive/ \-master yarn -deploymode clientHDP Driver - org.apache.hive.HiveDriverCDH Driver - com.cloudera.hive.jdbc41.DatasourceFor CDH all the drivers are packaged under, HiveJDBC41_cdhversion.zip.TroubleshootingA common JDBC connection is hive.resultset.use.unique.column.names=false.This can be added directly to the JDBC connection url string or to the driver properties section.Test your hive connection via beeline to make sure it is correct before going further.beeline -u
'jdbc:hive2://<HOST>:10000/default;principal=hive/cdh-instance1.us-east1-b.c.company-hadoop-cdh.internal@CW.COM;useSSL=true' -d org.apache.hive.jdbc.HiveDriverKerberos Examplejdbc:hive2://<HOST>:10000/default;principal=hive/cdh-instance1.us-east1-b.c.company-hadoop-cdh.internal@CW.COM;useSSL=trueConnecting DQ WebApp to Hive JDBCNotice the driver properties for kerberos and principals.In very rare cases where you can't get the jar files to connect properly one workaround is to add this to the DQ-web startup script.$JAVA_HOME/bin/java -Dloader.path=lib,/home/danielrice/owl/drivers/hive/ \-DowlAppender=owlRollingFile \-DowlLogFile=owl-web -Dlog4j.configurationFile=file://$INSTALL_PATH/config/log4j2.xml \$HBASE_KERBEROS -jar $owlweb $ZKHOST_KER \--logging.level.org.springframework=INFO $TIMEOUT \--server.session.timeout=$TIMEOUT \--server.port=9001 > $LOG_PATH/owl-web-app.out 2>&1 & echo $! >$INSTALL_PATH/pids/owl-web.pidClass Not Found apache or client or log4j etc...Any class not found error means that you do not have the standalone-jar or you do not have all the jars needed for the driver.Hive JDBC JarsIt is common for Hive to need a lot of .jar files to complete the driver setup.Java jar cmdsSometimes it is helpful to look inside the jar and make sure it has all the needed files.jar -tvf hive-jdbc.jarDQ Job FilesFor example, a large file transaction_2021-01-01.csv might contain the following transaction data with two transaction per day spanning all of January.transaction_idaccount_iddateamount112021-01-01100222021-01-01120312021-01-0290422021-01-02115...6112021-01-311006222021-01-31999and this file might be located on the directory ~/customer/transaction-2021-01-01/.~/customer ├── transaction-2021-01-01 │ └── transaction_2021-01-01.csv ├── transaction-2021-02-01 │ └── transaction_2021-02-01.csv ... # folders for 2021-03-01 to 2021-11-01 ommitted ├── transaction-2021-12-01 │ └── transaction_2021-12-01.csvOther folders with similar pattern may exist in your directory, such as ~/customer/transaction-2021-02-1. Note that February data is located in a separate directory with a similar pattern for all the months of 2021. This dataset could similarly have 2 account IDs and 1 transaction per account per day (= 28 x 2 = 56 rows of data). For this example, let's assume this is the case for all the files.To run an DQCheck on this single file containing multiple dates, you have the following choices.DQChecks with file1. Run an DQCheck on all the rows in a single file../owlcheck -ds DQCheck_transactions_jan21 -rd 2021-01-01 -f ~/customer/transaction-2021-01-01/transaction_2021-01-01.csv -fq select * from dataset ... # other relevant optionsHere we assume that run date (-rd) is 2021-01-01 because it is currently January 1, 2021. The above command would lead to an DQCheck on 62 rows of data spanning all of January 2021 from a single file located at ~/customer/transaction-2021-01-01/transaction_20210101.csv. If you were to schedule a job to run this job monthly and next job ran on February 1st, 2021, then same DQ checks will be performed on the same set of 62 rows with same score as your DQCheck run from January 1, 2021. For example, the follow-up scheduled job running on February 1st, 2021 would be:./owlcheck -ds DQCheck_transactions_jan21 -rd 2021-02-01 -f ~/customer/transaction-2021-01-01/transaction_2021-01-01.csv -fq select * from dataset ... # other relevant options This type of DQCheck on a single file is suitable if you are verifying a static file ~/customer/transaction-2021-01-01/transaction_20210101.csv that does not change over time and expect the score to be the same every run. Hence, it is suggested to name the dataset that reflect this, such as DQCheck_transaction_jan21 to reflect the idea that this dataset is checking the Data Quality of transaction table containing January 2021 data. Similar DQCheck for February 2021 data would then be a separate and independent dataset named DQCheck_transaction_feb21 This type of DQCheck can also be used if ~/customer/transaction-2021-01-01/transaction_20210101.csv is changing (the rows are changing values or new rows are being added) and want to detect data quality changes. Transaction file doesn't fit with this scenario, but the idea is that the above command specifies Data Quality DQChecks on the entirety of the file. The run date is a date that you choose to assign for that DQCheck. It is conventional to have one-to-one mapping between run date and the date corresponding to the date that DQ checks are being performed. Run date does not have to match with the data underlying the file.2. Run an DQCheck on subset of rows from a single fileThe single file contains daily data for January of 2021. To run Data Quality checks on January 1st, January 2nd, ... , and January 31st, you need to run 31 DQChecks, each with subset of rows from the file. Note the where clause in -fq matching with the run date -rd./owlcheck -ds DQCheck_transactions_jan21 -rd 2021-01-01 -f ~/customer/transaction-2021-01-01/transaction_2021-01-01.csv -fq select * from dataset where date = '2021-01-01' ... # other relevant options ./owlcheck -ds DQCheck_transactions_jan21 -rd 2021-01-02 -f ~/customer/transaction-2021-01-01/transaction_2021-01-01.csv -fq select * from dataset where date = '2021-01-02' ... # other relevant options ... # Owlchecks for -rd 2021-01-03 to 2021-01-30 ommitted ./owlcheck -ds DQCheck_transactions_jan21 -rd 2021-01-31 -f ~/customer/transaction-2021-01-01/transaction_2021-01-01.csv -fq select * from dataset where date = '2021-01-31' ... # other relevant optionsBy using the same dataset name -ds, all 31 DQCheck will appear under one dataset DQCheck_transaction_jan21 in the Hoot page.A convenient way to parameterize this run date is to use ${rd} in the query../owlcheck -ds DQCheck_transactions_jan21 -rd 2021-01-01 -f ~/customer/transaction-2021-01-01/transaction_2021-01-01.csv -fq select * from dataset where date = '${rd}' ... # other relevant optionsA daily scheduled job starting on January 1st, 2021 to January 31, 2021 will automatically replace the ${rd} with 2021-01-01, 2021-01-02, ... , and 2021-01-31 for the respective run date.3. Run an DQCheck on subset of rows from a single file with day lookbackFor certain core components like Outlier, a set of rows corresponding to historical training data can be used to establish a baseline. For example, the row with transaction_id 62 has amount of 999. This looks like an outlier that we want to catch. This value of 999 seems to be an outlier because past transaction amounts for account_id2 are in the 100s range. We can use historical data from January 15th to January 30th and use that info to see if January 31st data contains any outliers. In this scenario, our single file ~/customer/transaction-2021-01-01/transaction_2021-01-01.csv contains such historical data because that file contains all the data for all of January. How do we use the same file for both current data (January 31st) and historical (January 15th to January 30th) data? You do not have to split the files into two. You can simply do exactly what you would do for DQCheck on 2021-01-31 with a -fullfile flag. The -fullfile flag tells the DQCheck that the file in -f contains the historical data. Construct a query and subset those rows for me../owlcheck -ds DQCheck_transactions_jan21 -rd 2021-01-31 -f ~/customer/transaction-2021-01-01/transaction_2021-01-01.csv -fq select * from dataset where date = '2021-01-31' -fullfile # outlier options -dc date -dl -tbin DAY # look back time bin is day -dllb 15 # look back up to 15 days ... # other relevant optionsDQChecks with multiple files4. Run an DQCheck on a single file with lookback using series of fileRecall our folder structure:~/customer ├── transaction-2021-01-01 │ └── transaction_2021-01-01.csv ├── transaction-2021-02-01 │ └── transaction_2021-02-01.csv ... # ommitted for space ├── transaction-2021-12-01 │ └── transaction_2021-12-01.csvIf we want to run an DQCheck for December of 2021 and use July of 2021 to November of 2021 as our historical training dataset, how can we load multiple files? Just like how -fullfile provides a convenient way to create historical training dataset on a single file, -fllb (file lookback) provides a convenient way to load series of files with patterns while still pointing to the target file (December file) in -f./owlcheck -ds DQCheck_transactions_dec21 -rd 2021-12-01 -f ~/customer/transaction-2021-12-01/transaction_2021-12-01.csv -fq select * from dataset -fllb # outlier options -dc date -dl -tbin MONTH -dllb 5 # look back up to 5 months ... # other relevant optionsOne caveat to this -fllb method __ is that the DQCheck history must be primed first so that the DQ knows the file path of the past series of files. In fact, -fllb does not use the file path provided in -f and loads different files from different folders. It relies on the DQCheck history under the same -ds name. -fllb means lookback up to N number of past consecutive DQChecks. For each of those past DQCheck, look up the file path -f used in the past and follow those paths. The number N is determined by the maximum number of lookbacks from Outlier (-dllb) and Patterns (-fpglb). In the DQCheck above, because -dllb 5 is provided along with -fllb, it means Look up 5 past DQChecks and load those files as historical dataset. In summary, in order to run an DQCheck on 2021-12-01 and have that DQCheck for that date look up the files in ~/customer/transaction-2021-07-01/transaction_2021-07-01.csv , ~/customer/transaction-2021-08-01/transaction_2021-08-01.csv , ~/customer/transaction-2021-09-01/transaction_2021-09-01.csv , ~/customer/transaction-2021-10-01/transaction_2021-10-01.csv , and ~/customer/transaction-2021-11-01/transaction_2021-11-01.csv , you need to have ran DQChecks for 2021-07-01, 2021-08-01, ... , and 2021-11-01 under the same dataset name. Therefore, it would be
more logical, best-practice is to name the dataset -ds DQCheck_transaction_2021 and run series of monthly owlchecks up to 2021-12-01 (but the name of the dataset is up to you)/# Prime past Owlchecks so that 2021-12-01 knows the file path of past months./owlcheck -ds DQCheck_transactions_2021 -rd 2021-07-01 -f ~/customer/transaction-2021-07-01/transaction_2021-07-01.csv -fq select * from dataset ./owlcheck -ds DQCheck_transactions_2021 -rd 2021-08-01 -f ~/customer/transaction-2021-08-01/transaction_2021-08-01.csv -fq select * from dataset ./owlcheck -ds DQCheck_transactions_2021 -rd 2021-09-01 -f ~/customer/transaction-2021-08-01/transaction_2021-09-01.csv -fq select * from dataset ./owlcheck -ds DQCheck_transactions_2021 -rd 2021-10-01 -f ~/customer/transaction-2021-08-01/transaction_2021-10-01.csv -fq select * from dataset ./owlcheck -ds DQCheck_transactions_2021 -rd 2021-11-01 -f ~/customer/transaction-2021-11-01/transaction_2021-11-01.csv -fq select * from dataset # Priming 5 past Owlchecks complete. Now run the 2021-12-01./owlcheck -ds DQCheck_transactions_2021 -rd 2021-12-01 -f ~/customer/transaction-2021-12-01/transaction_202-11-201.csv -fq select * from dataset -fllb # outlier options -dc date -dl -tbin MONTH -dllb 5 # look back up to 5 months ... # other relevant optionsIn this scenario, since the folder paths have a pattern, we can use -br for priming in one command instead of writing five DQCheck commands. The flag -br runs DQChecks consecutively from the past and increments by monthly if -tbin MONTH (by default -tbin DAYso the default behavior is to increment daily). The different folder paths on each past consecutive run dates are replaced with ${rd}. The below command is identical to the above:# Prime past Owlchecks so that 2021-12-01 knows the file path of past months./owlcheck -ds DQCheck_transactions_2021 -rd 2021-12-01 -f ~/customer/transaction-${rd}/transaction_${rd}.csv -fq select * from dataset -br 5 # run 5 runs to in the past -tbin MONTH # <-- required since we want a MONTHLY backrun. Default DAY # Priming complete. Now run the 2021-12-01./owlcheck -ds DQCheck_transactions_2021 -rd 2021-12-01 -f ~/customer/transaction-2021-12-01/transaction_2021-12-01.csv -fq select * from dataset -fllb # outlier options -dc date -dl -tbin MONTH -dllb 5 # look back up to 5 months ... # other relevant optionsThis pattern is designed so that a single DQCheck command can be scheduled and ${rd} be used to replace the folder & file path. Your ~/customer folder could contain transactions for all the years, spanning all the way back to 1992 and into the future like so:~/customer ├── transaction-1992-01-01 │ └── transaction_1992-01-01.csv ├── transaction-1992-01-01 │ └── transaction_1992-01-01.csv ... # ommitted for space ├── transaction-2021-01-01 │ └── transaction_2021-01-01.csv ├── transaction-2021-02-01 │ └── transaction_2021-02-01.csv ... # ommitted for space ├── transaction-2021-12-01 │ └── transaction_2021-12-01.csv ... # hasn't happened yet!In this scenario, a monthly scheduled job would get rid of the need to prime the DQCheck history, since your past scheduled jobs would have already ran the past DQChecks.DQ Job HDFSRun data quality on a file in HDFS. Collibra DQ automatically infers the schema and create an internal training model.-f hdfs:///demo/ssn_test2.csv \-d , \-rd 2018-01-08 \-ds ssn_hdfs_file \-master yarn \-deploymode cluster \-numexecutors 2 \-executormemory 2gDQ Job JSONFilesRun against a file using -json. Additionally, options are available for -flatten and -multiline. This is helpful for nested and various formats.-ds json_file_example \-f s3a://bucket_name/file.json \-h instance.us-east4-c.c.owl-node.internal:5432/postgres \-master spark://instance.us-east4-c.c.owl-node.internal:7077 \-json \-flatten \-multiline Automatic flattening will infer schema and explode all structs, arrays, and map types. Using Spark SQL-ds public.json_sample \ -lib /opt/owl/drivers/postgres/ \-h instance.us-east4-c.c.owl-node.internal:5432/postgres \-master spark://instance.us-east4-c.c.owl-node.internal:7077 -q select * from public.jason -rd 2021-01-17 -driver org.postgresql.Driver -cxn postgres-gcp -fq select \get_json_object(col_3, '$.data._customer_name') AS `data_customer_name` , \get_json_object(col_3, '$.data._active_customer') AS `data_active_customer` , \from dataset Pass in the path to Owls' -fq parameter. This is great for mixed data types within a database. For example, if you store JSON data as a string or a blob among other data.// Flattenval colArr = new JsonReader().flattenSchema(df.schema)colArr.foreach(x => println(x))This Owl utility traverses the entire schema and print the proper get JSON object spark sql strings. You can use this instead of typing each query statement into the command line -fq parameter as seen above.Using DQ Librariesimport com.owl.common.options._import com.owl.core.util.OwlUtilsimport com.owl.core.activity2.JsonReader val connProps = Map (driver -> org.postgresql.Driver, user -> user, password -> password, url -> jdbc:postgresql://10.173.0.14:5432/postgres, dbtable -> public.data) // Spark var rdd = spark.read.format(jdbc).options(connProps).load.select($col_name).map(x=>x.toString()).rddvar df = spark.read.json(rdd) // Flattenval colArr = new JsonReader().flattenSchema(df.schema)val flatJson = df.select(colArr: _*)flatJson.cache.count // Optsval dataset = json_exampleval runId = s2021-01-14val opt = new OwlOptions()opt.dataset = datasetopt.runId = runIdopt.datasetSafeOff = true // OwlcheckOwlUtils.resetDataSource(instance.us-east4-c.c.owl-node.internal,5432/postgres,user,pass, spark)val owl = OwlUtils.OwlContext(flatJson, opt)owl.register(opt)owl.owlCheckJsonReader()This uses DQ's JsonReader to do the heavy lifting.DQ Job MySqlVideo Tutorial (MySQL)Add automatic data quality to any database in 60 seconds. This example shows a single table being selected for DQ, however Collibra DQ also provides the ability to scan all schemas and tables at once.JDBC Connect from Kirk Haslbeck on Vimeo.Connect to any database using JDBC. Mysql example below.-q select * from lake.stock_eod where date = '2017-01-20' \-u username -p password \-c jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rds.amazonaws.com:3306 \-rd 2017-01-20 \-dc date \-ds stocks \-driver com.mysql.jdbc.Driver \-lib /home/ec2-user/owl/drivers/mysql/DQ Job MongoDBBrowse MongoDB like any other relational databaseUsing Collibra DQ's file tree explorer browse Mongo collections like tables. Then use the wizard to create standard DQ scans.CMD LineCopy paste-able cmdline example for simple spark submit job.-lib /opt/owl/drivers/mongodb/ -h localhost:5432/postgres -master local[*] -ds tpch.lineitem_7 -br 10 -deploymode client -q select * from tpch.lineitem where l_shipdate between '${rd} 00:00:00.000+0000' and '${rdEnd} 00:00:00.000+0000' -bhlb 10 -rd 1998-12-01 -driver mongodb.jdbc.MongoDriver -loglevel INFO -cxn MongoDB -rdEnd 1998-12-02Drivers and ConfigIn order to make this possible Collibra DQ requires two drivers, MongoDB driver and UnityJDBC Driver. Out of the box DQ comes preconfigured with these drivers. You simply open the MongoDB connection template and paste in your JDBC URL.driverClass: mongodb.jdbc.MongoDriver path: /opt/owl/drivers/mongodb/ +-- mongoJdbc.jar +-- unityJDBC.jarSimply paste in JDBC InfoDiscover Correlations, Relationships, DQ issues and Much More...The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB statements.https://docs.mongodb.com/manual/reference/sql-comparison/Limiting Collections in the JDBC URLjdbc:mongodb://<dbuser>:<password>@datalake0-dza1q.a.query.mongodb.net/<mydatabase>?ssl=true&authSource=admin&rebuildschema=true&tables=ordersThere are three collections in this mongodb atlas lake. By adding &tables=orders in the URL params you can see only order collections show up in the explorer.Three Collections in MongoDB AtlasThe total number of collections in mongodb atlas lake.DQ Job S3S3 permissions need to be setup appropriately.S3 connections should be defined using the root bucket. Nested S3 connections are not supported. Example Minimum Permissions{ Version: 2012-10-17, Statement: [{ Sid: VisualEditor0, Effect: Allow, Action: [s3:ListBucketMultipartUploads, s3:ListBucket, s3:ListMultipartUploadParts, s3:GetObject, s3:GetBucketLocation], Resource: [arn:aws:athena:*:<AWSAccountID>:workgroup/primary, arn:aws:s3:::<S3 bucket name>/*, arn:aws:s3:::<S3 bucket name>, arn:aws:glue:*:<AWSAccountID>:catalog, arn:aws:glue:*:<AWSAccountID>:database/<database name>, arn:aws:glue:*:<AWSAccountID>:table/<database name>/*] }]}(Needs appropriate driver) http://central.maven.org/maven2/org/apache/hadoop/hadoop-aws/ Hadoop AWS Driver hadoop-aws-2.7.3.2.6.5.0-292.jar-f s3a://s3-location/testfile.csv \-d , \-rd 2018-01-08 \-ds salary_data_s3 \-deploymode client \-lib /home/ec2-user/owl/drivers/aws/Databricks Utils Or Spark Confval AccessKey = xxxval SecretKey = xxxyyyzzz//val EncodedSecretKey = SecretKey.replace(/, %2F)val AwsBucketName = s3-locationval MountName = kirk dbutils.fs.unmount(s/mnt/$MountName) dbutils.fs.mount(ss3a://${AccessKey}:${SecretKey}@${AwsBucketName}, s/mnt/$MountName)//display(dbutils.fs.ls(s/mnt/$MountName)) //sse-s3 exampledbutils.fs.mount(ss3a://$AccessKey:$SecretKey@$AwsBucketName, s/mnt/$MountName, sse-s3)Databricks Notebooks using S3 bucketsval AccessKey = ABCDEDval SecretKey = aaasdfwerwerasdfBval EncodedSecretKey = SecretKey.replace(/, %2F)val AwsBucketName = s3-locationval MountName = abc // bug if you don't unmount firstdbutils.fs.unmount(s/mnt/$MountName) // mount the s3 bucketdbutils.fs.mount(ss3a://${AccessKey}:${EncodedSecretKey}@${AwsBucketName}, s/mnt/$MountName)display(dbutils.fs.ls(s/mnt/$MountName)) //
read the dataframeval df = spark.read.text(s/mnt/$MountName/atm_customer/atm_customer_2019_01_28.csv)DQ Job SnowflakeExample CMD Line-h <IP_ADDRESS>:5432/postgres \-drivermemory 4g \-master spark://<SPARK_MASTER>:7077 \-ds PUBLIC.TRANSLATION \-deploymode client \-q select * from PUBLIC.TRANSLATION \-rd 2021-07-24 \-driver net.snowflake.client.jdbc.SnowflakeDriver \-cxn snowflake Example JDBC Connection URLjdbc:snowflake://<IP_ADDRESS>.snowflakecomputing.com?db=DEMODB&warehouse=COMPUTE_WH&schema=PUBLICDrive Namenet.snowflake.client.jdbc.SnowflakeDriverAdvancedA Collibra DQ Check is a bash script that is essentially the launch point for any DQ Job to scan a data set. A data set can be a flat file, such as textfile, json file, parquet file, etc, or a table from any number of databases, such as Oracle, Postgres, Mysql, Greenplum, DB2, SQLServer, Teradata, etc.Example Run a data quality check on any file by setting the file path../owlcheck -ds stock_trades -rd 2019-02-23 -f /path/to/file.csv -d ,Example output below. A hoot is a valid JSON response{ dataset: stock_trades, runId: 2019-02-03, score: 100, behaviorScore: 0, rows: 477261, passFail: 1, peak: 1, dayOfWeek: Sun, avgRows: 0, cols: 5, activeRules: 0, activeAlerts: 0, runTime: 00:00:23, dqItems: {}, datashapes: [], validateSrc: [], alerts: [], prettyPrint: true}Monthly DataSometimes you may want to run monthly profiles with aggregated data. In this case, the scheduling tool can supply the $ as a variable such as $runDate and the end date as $endDate. 1 line examples for bash or shell below.echo Hello World Owl runDate=$(date +%Y-%m-%d)endDate=$(date -d $runDate +1 month +%Y-%m-%d) echo $runDateecho $endDate ./owlcheck \-q select * from table where date >= '$runDate' and date < '$endDate' \-ds example \-rd $runDate \-tbin MONTHMonthly BackRun (Using Collibra Data Quality's built-in Monthly)Collibra Data Quality has 2 convenient features here: The use of built-in $ and $ removes the need for any shell scripting.Using -br, DQ will replay 20 months of data using this template automatically../owlcheck \-q select * from table where date >= '${rd}' and date < '${rdEnd}' \-ds example-rd 2019-01-01-rdEnd 2019-02-01-tbin MONTH-br 20Daily DataOne of the most common examples is data loading or running once a day. A job control framework can pass in this value or you can pull it from shell.echo Hello World Owl runDate=$(date +%Y-%m-%d)echo $runDate ./owlcheck \-q select * from table where date = '$runDate' \-ds example \-rd $runDate \-tbin DAYDaily Data (Using Collibra Data Quality's built-in Daily)./owlcheck \-q select * from table where date = '${rd}' \-ds example \-rd 2019-03-14Daily Data with Timestamp instead of Date./owlcheck \-q select * from table where TS >= '${rd} 00:00:00' and TS <= '${rd} 23:59:59' \-ds example \-rd 2019-03-14OR Timestamp using $./owlcheck \-q select * from table where TS >= '${rd} 00:00:00' and TS < '${rdEnd} 00:00:00' \-ds example \-rd 2019-03-14 \-rdEnd 2019-03-15 \-tbin DAYHourly Data./owlcheck \-q select * from table where TS >= '${rd}' and TS < '${rdEnd}' \-ds example \-rd 2019-03-14 09:00:00 \-rdEnd 2019-03-14 10:00:00 \-tbin HOURDQ Check Template with Service HookThe best practice is to make a generic job that would be repeatable for every DQ Check. Below is an example that first hits Collibra Data Quality using a REST call and then runs the response.curl -X GET http://$host/v2/getowlchecktemplate?dataset=lake.loan_customer \-H accept: application/jsonThe above REST call returns the below DQ Check. It is left up to the Job Control to replace the $ with the date from the Job Control system. You can use Collibra DQ's built-in scheduler to save these steps../owlcheck \-lib /home/danielrice/owl/drivers/mysql/ \-cxn mysql \-q select * from lake.loan_customer where load_dt = '${rd}' \-key post_cd_num -ds lake.loan_customer \-rd ${rd} \-dc load_dt -dl -dlkey usr_name,post_cd_num -dllb 5 \-tbin DAY -by DAY -dupe -dupeinc ip_address_home,usr_name -dupecutoff 85 \-fpgon -fpgkey usr_name,post_cd_num -fpgdc load_dt -fpglb 5 -fpgtbin DAY \-loglevel INFO \-h $host:5432/owltrunk \-owluser {user}REST API End PointThe easiest option is to use the runtemplate end point API call to make requests to from cmdLine or JobControl System. This endpoint gets the DQ Check saved in Collibra instead of the client needing to know the DQ Check details. https://$host/v2/runtemplate?dataset=lake.spotifyRunTemplateParametersPathdatasetstringname of dataset. -ds OR opt.datasetrdstringyyyy-MM-dd format can add time or timezone. if note passed in it will use the current dayrdEndstringyyyy-MM-dd format can add time or timezone. if not passed it will not be usedResponses 200{ msg: Success, Owl Check is Running as process 13996, pid: 13996, runid: 2017-01-01, starttime: Thu Oct 17 13:27:01 EDT 2019, cmd: cmd: -ds lake.spotify -rd 2019-10-17 -q \select * from lake.spotify\ -cxn mysql -lib /opt/owl/drivers/mysql/ -drivermemory 2G -histoff -owluser {user}, dataset: lake.spotify}Curl example for the above Rest CallTOKEN=$(curl -s -X POST http://$host/auth/signin -H Content-Type:application/json -d {\username\:\$username\, \password\:\$password\} | jq -r '.token') curl -i -H 'Accept: application/json' \ -H Authorization: Bearer ${TOKEN} \ http://$host/v2/runtemplate?dataset=lake.spotifyBash ScriptA generic and repeatable DQCheck script for job schedulers, that hooks into Collibra to get the template.#1 authenticatecurl -sb -X POST -d username={user} -d password={password} http://$OWL_HOST/login -c cookies.txt #2 get templateowlcheck_args=$(curl -b cookies.txt -H accept: application/json -X GET http://$OWL_HOST/v2/getowlcheckcmdlinebydataset\?dataset=insurance | sed 's/.*\[\(.*\)\]/\1/' | sed -e s/^\// -e s/\$// | sed 's/\\\\(.*\)\\\/\x27\1\x27/') #3 replace ${rd} with job_run_datejob_run_date=2019-03-14 10:00:00owlcheck_args=${owlcheck_args//'${rd}'/$job_run_date} #4 run owlcheckeval owlcheck $owlcheck_argsFor more Information on Collibra Data Quality's Scheduler, visit the DQ Job Cron page.DQ Job Back RunHow to Replay a Data TestMany times you will want to see how a dataset plays out over time. This could be five days or five months. Using this slider the tool will automatically create training sets and profiles as well as run any rules or outliers you've put in place.Quickly Replay 30 days of data, -br 30Add -br to any DQCheck and replay in time order. Jan 1st, Jan 2nd, Jan 3rd...To do this we need to use the ${rd} variable that DQ provides as a run_date replacement for job control and templates. Also note that if you run from the cmdline you need to escape $s. So use \${rd}. If you are running from a Notebook or Java or Scala or the Rest API you do not need to escape the ${rd} variable../owlcheck \-ds OWLDB2.NYSE_STOCKS3 -rd 2018-01-14 \-lib /opt/owl/drivers/db2/ \-cxn db2 \-q select * from OWLDB2.NYSE_STOCKS where TRADE_DATE = '\${rd}' \-br 4Replay 4 Months of data, -br 4 -tbin MONTHIn situations where your data rolls up into Months, you may want to re-run several months of data but not a day at a time. In this case we will use -br with -tbin../owlcheck \-ds OWLDB2.NYSE_STOCKS3 \-rd 2018-01-01 \-q select * from OWLDB2.NYSE_STOCKS where TRADE_DATE = '\${rd}' \-br 4 \-tbin MONTH \-lib /opt/owl/drivers/db2/ \-cxn db2Monthly using a range for the entire Month./owlcheck \-ds OWLDB2.NYSE_STOCKS3 \-rd 2018-01-01 \-rdEnd 2018-02-01 \-q select * from OWLDB2.NYSE_STOCKS where TRADE_DATE >= '${rd}' and TRADE_DATE < '${rdEnd}' \-br 4 \-tbin MONTH-lib /opt/owl/drivers/db2/ \-cxn db2DQ Job CronTemplate for Job ControlCron / Autosys / Control M / OozieIt is common for organization to need to run jobs on a schedule. Below are a few shell tricks to get a date from bash and use an DQCheck with template variables.Kinit and get run_date from shell or job control variable, pass it into Collibra DQ using $run_date.%shrun_date=$(date +%Y-%m-%d)run_date=$(date '+%Y-%m-%d %H:%M')echo $run_date #kinitecho password | kinit userabc@CW.COM ~/owl/bin/owlcheck -q select * from lake.stock_eod where date = '$run_date' \-u user -p pass \-c jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rds.amazonaws.com:3306 \-rd $run_date \-dc date \-dl \-dllb 7 \-dlminhist 2 \-tbin DAY \-dlkey sym,exch \-ds lake.stock_nasdaq \-driver com.mysql.jdbc.Driver \-lib /home/ec2-user/owl/drivers/mysql/ \-master yarn -deploymode client -numexecutors 1 -executormemory 1g \-loglevel DEBUGTemplateYou can also use -template to use DQ as a service hook and remove the need to pass in almost anything. In this case, DQ looks up the template automatically from either a previous run or if you've saved a template, and use these variables. Any variable at the cmdline will override and win/replace. This is a great way to remove connection and other information from being hard coded into the job control framework and allows edit ability from DQ Webapp.%sh~/owl/bin/owlcheck -usetemplate -ds lake.stock_nasdaq -rd $run_dateOwl Scheduler - Built InA quick option is to use DQ's built in scheduler. DQ automatically substitutes the runtime variables like $ into the job. This also gives you control to edit the DQCheck.The schedule is based on the DQCheck Template. This way the runtime variables are replaced in each run. Notice the $ below.All Scheduled Jobs in One PlaceUnder the jobs dashboard you can see an overview schedule with all running jobs and their status.DQ Job KafkaKafka Requires ZookeeperApache Kafka typically requires zookeeper. This file and cmd can be run from inside /kafka/bin.# Start the ZooKeeper service# Note: Soon, ZooKeeper will no longer be required by Apache Kafka.$ bin/zookeeper-server-start.sh config/zookeeper.propertiesStart a Kafka ServerPrecursor step to Collibra DQ (you likely already have this step completed if you use Kafka).bin/kafka-server-start.sh config/server.propertiesStart a Kafka TopicPrecursor step to DQ (you likely already have this step completed if you use Kafka).bin/kafka-topics.sh --create
--bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic test # prefered cmd is belowbin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic testPut a msg on test Topicbin/kafka-console-producer.sh --broker-list localhost:9092 --topic testKafka Consumer or DQ ConsumerKafka works as a topic so you can have many consumers. Here is a basic cmdline consumer but we can add DQ as a second consumer.bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning/opt/owl/bin/owlcheck.sh -kafkatopic test -ds machine1 -streamformat csv -kafkaport 9092 -kafkabroker localhost -streaminterval 60 -stream -kafka -header first_name -master localStreams vs SensorsTechnically speaking anything moving in real-time is a stream of data but DQ classifies streams and IoT sensors as slightly different for the following reasons:SensorsSensors are commonly a standard time-series. Signal, Time, Value.SignalTimeValuedevice1-CPU2019-02-11 13:40:554device1-CPU2019-02-11 14:33:202StreamsStreams commonly look like messages, jsons, avro or batch data but constantly flowing. Another way to think of it is a multiple time-series.[trade: { price: 23.75, qty: 20, symbol: HDP }, trade: { }]fnameagenetworthemailJoe45$130,000joe@yahoo.comMark33$125,000mark@yahoo.comThe difference between a Sensor and a Stream in the above example is that in the case of the sensor the user is primarily concerned with the actual value of the Value. Meaning a spike in temperature or a drop in CPUs. But in a stream of customer data there isn't a time X and value Y there are many values Y and you a user is interested in the overall quality of both the entire stream and the individual values. Relationship analysis and other correlative functions apply here. If you were to chart a stream what would you chart? The row count volume or just one of the columns or the count of something? But if you were to chart a sensor you know exactly what you would chart... the Value over Time.Fortunately DQ has already thought and worked through the many nuances required to understand, monitor and predict accurately for all of these use-case. All that is required is to subscribe the stream.DQ Job LinkIDLink ID is an out-of-the-box feature that lets you link the findings of a DQ Job back to the source record, or key, for remediation outside the application. The link ID should be unique and is most commonly the primary key. Composite primary key is also supported. Collibra Data Quality supports one or many primary key columns in your data sets for record linkage to your original table, file, or data frame. If your primary key column contains many columns, use a comma to delineate.Providing the link IDThere are two ways to provide the link ID:From the command line using -linkid.In a notebook via opt.linkId. Combining link ID and Run DiscoveryTo combine the features of link ID and Run Discovery, first enable link ID and then use Run Discovery. This lets you apply sensitivity labels to data classes and trigger breaks for all the records that do not match your link ID. Link ID and the DQ MetastoreNo personal data is stored in the Metastore when using link ID. The Metastore only stores:The rule that is applied to your DQ Job.The data set used for your DQ Job.The column of reference.The link ID.For further reading on sensitive information, refer to Data Discovery in the Rule Discovery section. Viewing break recordsTo view rule break records, navigate to the Breaks tab on the Rule Builder page. Rules with break records have associated link IDs that link back to the original data set. All remediation for data quality issues is performed outside the Collibra Data Quality app. StepsIn Explorer, select a table and create a DQ Job. >> The DQ Job page opens.In the Scope section, select the Add Link Back to Source checkbox. >> A new column, Link ID, appears.Select the columns that represent the primary key(s) of your data set. >> By selecting multiple checkboxes, you can create a composite key. Run your DQ Job. Click Build Model.Click Save/Run.Verify the information on the Register page.Click Estimate Job and then click Run. >> Your DQ Job is sent to the Jobs page.Open your DQ Job. Open the Jobs page.Select your DQ Job from the list. >> Your DQ Job opens.Apply a rule. In the metadata box, click Rules. >> The Rule Builder opens.Select a rule type. Note: All Simple and Freeform rules are eligible for Link ID.Re-run your DQ Job. On the Findings page, click the DQ Job tab.Verify the run command. Click Run DQ Job. >> Your DQ Job is submitted to the Jobs queue.Open your DQ Job. Open the Jobs page.Select your DQ Job from the list. >> Your DQ Job opens.View your rule breaks. In the metadata box, click Rules. >> The Rule Builder opens.Click the Breaks tab. >> A table displays a row for each record in violation of the rule you set. The Link ID column lets you identify broken records within your data set and mark them for remediation outside the DQ application.Export the break records. Supported file formats include Excel and CSV.Notebookval opt = new OwlOptions()opt.runId = 2018-02-24opt.dataset = ordersopt.linkId = Array(transaction_id, trans_time)Command Line./owlcheck -ds orders \-rd 2018-02-24 \-linkid transaction_id,trans_time For rules to use linkID, the columns need to be present in the select statement (either select * or select specific column names). All Simple rules are eligible for linkID and Freeform rules need to contain the columns in the projection part of the SQL statement.Activity UsageActivitySupportedDescriptionSHAPEYESOne example of each shape issue will have a link back to the corrupt record for remediation.OUTLIERYESEach outlier will have a link back to the detected record for remediation. If you apply a limit you will only get the limited amount. Not on categorical.DUPEYESEach duplicate or fuzzy match will have a link back to the record for remediation.SOURCEPARTIALEach source record that has a cell value that doesn't match to the target will have a link for remediation. SOURCE will not have links for row counts and schema as these are not record level findings.RULEYESBreak records for Freeform and Simple rule types will be stored (any records that did not meet the condition of the RULE will be provided with the linkID columns). These are stored as delimited strings in the rule_breaks table along with the dataset, run_id and rule name. Please note when using Freeform SQL the linkID columns should be part of the select statement. LinkID columns should be unique identifiers.BEHAVIORNOThis class of data change is when a a section of your data is drifting from its normal tendency there is no 1 record to link.SCHEMANOThis class of data change is at a schema/data set level there are no records to link.RECORDPARTIALIn some cases when a record is added or removed it may be available for linking.PATTERNNOPatterns are not always a direct link. This item is still under performance review.Notebook API Example+------------+----------+-------+-------+-----+-----------------+---------------+| dataset| runId|fieldNm| format|count| percent| transaction_id|+------------+----------+-------+-------+-----+-----------------+---------------+| order |2018-02-24| fname|xxxx'x.| 1|7.142857142857142|t-1232 |+------------+----------+-------+-------+-----+-----------------+---------------+owl.getShapesDF Rest API ExampleWhen supplying a linkID, Collibra naturally excludes this field from most activities, meaning a unique ID or primary key column can not be duplicative or it would not be the primary key. Because of this, it is not evaluated for duplicates. The same is true for Outliers and Shapes, as a large sequence number or other variations might trigger a false positive when this column is denoted to be simply for the purpose of linking uniquely back to the source. If you also want to evaluate this column and link it, create a derived column with a different name and Collibra Data Quality will naturally handle both cases.owl.getShapesowl.getDupesowl.getOutliersowl.getRuleBreaksowl.getSourceBreaksgetRules()----Rules----+-----------------+----------+--------------------+------------------+------+| dataset| runId| ruleNm| ruleValue|linkId|+-----------------+----------+--------------------+------------------+------+|dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like 'Kirk' | c-41||dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like 'Kirk' | c-42||dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like 'Kirk' | c-43||dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like 'Kirk' | c-44||dataset_outlier_3|2018-02-24| fname_like_Kirk|fname like 'Kirk' | c-45||dataset_outlier_3|2018-02-24|if_email_is_valid...| email| c-31||dataset_outlier_3|2018-02-24|if_email_is_valid...| email| c-33||dataset_outlier_3|2018-02-24|if_zip_is_valid_Z...| zip| c-40|+-----------------+----------+--------------------+------------------+------+getDupes()First split on ~~ then if you have a multiple part key split on ~|.----Dupes----+-----------------+----------+-----+--------------------+----------+| dataset| runId|score| key| linkId|+-----------------+----------+-----+--------------------+----------+|dataset_outlier_3|2018-02-24| 100|9ec828d5194fa397b...|c-45~~c-36||dataset_outlier_3|2018-02-24| 100|1f96274d1d10c9f77...|c-45~~c-35||dataset_outlier_3|2018-02-24| 100|051532044be286f99...|c-45~~c-44||dataset_outlier_3|2018-02-24| 100|af2e96921ae53674a...|c-45~~c-43||dataset_outlier_3|2018-02-24| 100|ad6f04bf98b38117a...|c-45~~c-42||dataset_outlier_3|2018-02-24| 100|1ff7d50a7a9d07d02...|c-45~~c-41||dataset_outlier_3|2018-02-24| 100|6ed858ed1f4178bb0...|c-45~~c-40||dataset_outlier_3|2018-02-24| 100|d2903703b348fb4cb...|c-45~~c-39||dataset_outlier_3|2018-02-24| 100|24bf54412de1e720d...|c-45~~c-38||dataset_outlier_3|2018-02-24|
100|7a7ce0beb41b39564...|c-45~~c-37|+-----------------+----------+-----+--------------------+----------+getRuleBreaks()The getRuleBreaks endpoint retrieves all broken records within your data set. There is no size limit to this API. ----Rule-Breaks----+-----------------+----------+--------------------+------+| dataset| runId| ruleNm|linkId|+-----------------+----------+--------------------+------+|dataset_outlier_3|2018-02-24| fname_like_Kirk| c-41||dataset_outlier_3|2018-02-24| fname_like_Kirk| c-42||dataset_outlier_3|2018-02-24| fname_like_Kirk| c-43||dataset_outlier_3|2018-02-24| fname_like_Kirk| c-44||dataset_outlier_3|2018-02-24| fname_like_Kirk| c-45||dataset_outlier_3|2018-02-24|if_email_is_valid...| c-31||dataset_outlier_3|2018-02-24|if_email_is_valid...| c-33||dataset_outlier_3|2018-02-24|if_zip_is_valid_Z...| c-40|+-----------------+----------+--------------------+------+DQ Job Validate SourceReconciliationCommonly data driven organizations have a need to ensure that two tables or a table and file match. This match might be a daily reconciliation or any snapshot in time. Collibra DQ calls this Source to Target or Left to Right matching. It covers row differences, schema differences and all cell values.Impala/Hive -> DB2Below is an example of comparing a table in DB2 to the same table in Impala../owlcheck \-lib /home/install/owl/drivers/db2 \-cxn db2 \-q select * from OWLDB2.NYSE_STOCKS where TRADE_DATE = '${rd}' \-ds NYSE_STOCKS_VS \-rd 2018-01-10 \-vs \-valsrckey SYMBOL \-validatevalues \-h $host/owltrunk \-srcq select * from nyse where TRADE_DATE = '${rd}' \-srccxn impala-jdbcuser \-libsrc /home/isntall/owl/drivers/hivedrivers \-jdbcprinc jdbcuser@CW.COM -jdbckeytab /tmp/jdbcuser.keytab \-owluser admin \-executorcores 4 -numexecutors 6 -executormemory 4g -drivermemory 4g -master yarn -deploymode cluster \-sparkkeytab /home/install/owl/bin/user2.keytab \-sparkprinc user2@CW.COMDB2 -> Hive (Native)Most databases only expose data through a JDBC connection but Hive offers a second path which does not require a JDBC connection. Hive has the ability to push down its processing to the local worker nodes and read directly from disk in the case when the processing is happening locally on a cluster. If your processing is not happening local to the cluster then you must use HiveJDBC. Take note of the -hive flag../owlcheck \-hive \-q select * from nyse \-ds hiveNativeNyse \-rd 2019-10-01 \-vs \-valsrckey exch,symbol,trade_date \-validatevalues \-srcq select * from OWLDB2.NYSE_STOCKS \-srccxn db2 -libsrc /home/install/owl/drivers/db2 \-numexecutors 2 -executormemory 5g -drivermemory 4g -master yarn -deploymode cluster \-sparkkeytab /home/install/owl/bin/user2.keytab -sparkprinc user2@CW.COM MySQL -> OracleThis example compares the entire table instead of just a single day. Notice the 3 part valsrckey EXCH,SYMBOL,TRADE_DATE. Adding the date field ensures our key is unique and won't create a cartesian product. If the goal was to compare day over day with Oracle make sure to add TO_DATE('YYYY-MM-DD', '2019-10-01') to the where clause../owlcheck \-lib /home/install/owl/drivers/mysql/ \-cxn mysql \-q select * from lake.nyse \-ds lake.nyse \-rd 2019-10-01 \-vs \-valsrckey EXCH,SYMBOL,TRADE_DATE \-validatevalues \-sparkkeytab /home/install/owl/bin/user2.keytab \-sparkprinc user2@CW.COM \-srcq select * from SYSTEM.NYSE \-srccxn oracle \-libsrc /home/danielrice/owl/drivers/oracle/-numexecutors 2 -executormemory 5g -drivermemory 4g -master yarn -deploymode cluster \File -> MySQL TableTaking a file and loading it into a staging table or final table is a common part of every ETL process. However it is extremely common that the file values do not match or coherence into the table properly and these silent errors are usually not caught until a business user sees the data far long down stream../owlcheck \-ds lake.nyse \-rd 2019-10-01 \-cxn mysql \-q select * from lake.nyse \-vs \-valsrckey EXCH,SYMBOL,TRADE_DATE \-validatevalues \-srcfile hdfs:///user/source/nyse.csv \ -srcd , \-lib /home/install/owl/drivers/mysql/ \-sparkkeytab /home/install/owl/bin/user2.keytab \-sparkprinc user2@CW.COM \-numexecutors 2 -executormemory 5g -drivermemory 4g -master yarn -deploymode cluster \File -> FileDQ compares a File to a File. This is common in landing zones and staging areas where a file might be moved or changed and you need to know if anything changed or is incorrect../owlcheck \-ds lake.nyse \-rd 2019-10-01 \-f hdfs:///user/target/nyse.csv \-d , \-vs \-valsrckey EXCH,SYMBOL,TRADE_DATE \-validatevalues \-srcfile hdfs:///user/source/nyse.csv \ -srcd , \-sparkkeytab /home/install/owl/bin/user2.keytab \-sparkprinc user2@CW.COM \-numexecutors 2 -executormemory 5g -drivermemory 4g -master yarn -deploymode cluster \DQ Job 43M rowsCollibra DQ commonly benchmarks on large daily datasets. In this case, a 43 million row table with 12 columns completes in under 6 mins (5:30). The best balance for this dataset was 3 executors each with 10G of ram../owlcheck \-u user -p password \-c jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rds.amazonaws.com:3306 \-q select * from silo.account_large where acc_upd_ts > '2018-02-01 05:0:00' \-rd 2019-02-02 \-ds account_large \-dc acc_upd_ts \-corroff \-histoff \-driver com.mysql.cj.jdbc.Driver \-lib /home/ec2-user/owl/drivers/mysql/ \-master yarn \-deploymode client \-numexecutors 3 \-executormemory 10g \-histoff -corroff -loglevel DEBUG -readonlyNot all DQ features were turned on during this run. On large datasets it is worth it to consider limiting the columns, DQ-features, or lookbacks if they are not of interest.Add Date ColumnExample./owlcheck \-ds datataset_date_column \-rd 2019-07-01 \-f /Users/Downloads/csv2/2019010.csv \-adddcAdd date column will use the run date supplied and add a date column named DQ_RUN_ID.-adddcThis is used when you are using datasets that do not contain a date column or a malformed date string.Known LimitationsThis feature is only available for files, not for database tables.AutoProfileAutoProfile allows you to select a set of databases and tables to quickly be cataloged. Each selected table will be profiled and added to the Collibra DQ Catalog via the selected agent. Various parameters like Alerts, Job Schedules, limits, and more can also be set.When you expand a datasource in the Explorer page, you're given a list of possible databases and their associated tables. AutoProfile is triggered when you select the ones you want and hit scan. This will take you to a separate page that allows you to configure the various AutoProfile parameters.A SparkSubmit will be launched for each table, so make sure the agent configuration is reasonable and the box has enough resources to handle each job.Global ParametersHistogram and Correlation: Enable or DisablePushDown: Set metrics that will be run against the entire table, ignoring limit values.Default Limit: The default row limit to set for each table to be scanned.Batch Size: The number of concurrent SparkSubmit jobs the agent will be allowed to run.Scan and Schedule : Enable scheduling.Alert: Enable email alerts.Agent: The agent under which jobs will run.Per Table ParametersColumns: The columns to select from (if none are specified, we assume all columns to be selected).Date Filter: The date column to be used as the runDate parameter when the job runs.Default Limit: Per table limits.Cloudera CLASSPATHWhat is a CLASSPATH?A CLASSPATH is essentially a list of jars that get injected into a JVM on the start of a job execution. Like many applications, Spark can have jars injected when a job is run. Cloudera has defined a list of predefined jars (rightfully called classpath.txt):/etc/spark2/conf/classpath.txtThat will get injected whenever Spark is called. Here is an example list of jars as defined within a cluster we have stood up @ Collibra DQ:[danielrice@cdh-edge ~]$ cat
/etc/spark2/conf/classpath.txt/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/activation-1.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/aopalliance-1.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/apacheds-i18n-2.0.0-M15.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/apacheds-kerberos-codec-2.0.0-M15.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/api-asn1-api-1.0.0-M20.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/api-util-1.0.0-M20.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/asm-3.2.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/avro-1.7.6-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/aws-java-sdk-bundle-1.11.134.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/azure-data-lake-store-sdk-2.2.9.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-beanutils-1.9.2.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-beanutils-core-1.8.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-codec-1.4.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-codec-1.9.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-configuration-1.6.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-daemon-1.0.13.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-digester-1.8.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-el-1.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-logging-1.2.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-math-2.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-math3-3.1.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/commons-net-3.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/core-3.1.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/curator-client-2.7.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/curator-framework-2.7.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/curator-recipes-2.7.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/disruptor-3.3.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/findbugs-annotations-1.3.9-1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/guava-11.0.2.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/guava-12.0.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/guice-3.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-annotations-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-ant-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-archive-logs-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-archives-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-auth-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-aws-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-azure-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-azure-datalake-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-common-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-datajoin-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-distcp-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-extras-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-gridmix-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-hdfs-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-hdfs-nfs-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-client-app-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-client-common-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-client-core-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-client-hs-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-client-hs-plugins-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-client-jobclient-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-client-nativetask-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-client-shuffle-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-mapreduce-examples-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-nfs-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-openstack-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-rumen-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-sls-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-streaming-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-api-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-applications-distributedshell-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-applications-unmanaged-am-launcher-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-client-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-common-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-registry-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-server-applicationhistoryservice-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-server-common-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-server-nodemanager-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-server-resourcemanager-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hadoop-yarn-server-web-proxy-2.6.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hamcrest-core-1.3.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-annotations-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-client-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-common-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-examples-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-external-blockcache-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-hadoop-compat-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-hadoop2-compat-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-it-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-prefix-tree-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-procedure-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-protocol-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-resource-bundle-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-rest-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-rsgroup-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-server-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-shell-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hbase-thrift-1.2.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/high-scale-lib-1.1.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hsqldb-1.8.0.10.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/htrace-core-3.2.0-incubating.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/htrace-core4-4.0.1-incubating.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/httpclient-4.2.5.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/httpcore-4.2.5.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/hue-plugins-3.9.0-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-annotations-2.2.3.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-core-2.2.3.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-core-asl-1.8.10.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-databind-2.2.3-cloudera.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-jaxrs-1.8.10.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-mapper-asl-1.8.10-cloudera.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jackson-xc-1.8.10.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jamon-runtime-2.4.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jasper-compiler-5.5.23.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jasper-runtime-5.5.23.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/java-xmlbuilder-0.4.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/javax.inject-1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jaxb-api-2.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jaxb-api-2.2.2.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jaxb-impl-2.2.3-1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jcodings-1.0.8.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jets3t-0.9.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jettison-1.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jettison-1.3.3.jar/opt/cloudera/parcels/CDH-5.16.1-1.cd
h5.16.1.p0.3/jars/jline-2.11.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/joni-2.1.2.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jruby-cloudera-1.0.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsch-0.1.42.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsp-2.1-6.1.14.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsp-api-2.1-6.1.14.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsp-api-2.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/jsr305-3.0.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/leveldbjni-all-1.8.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/log4j-1.2.16.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/log4j-1.2.17.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/metrics-core-2.2.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/metrics-core-3.0.2.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/microsoft-windowsazure-storage-sdk-0.6.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/mockito-all-1.8.5.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/netty-3.10.5.Final.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/netty-all-4.0.50.Final.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/okhttp-2.4.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/okio-1.4.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/paranamer-2.3.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/protobuf-java-2.5.0.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/slf4j-api-1.7.5.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/slf4j-log4j12-1.7.5.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/snappy-java-1.0.4.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/spark-1.6.0-cdh5.16.1-yarn-shuffle.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/spymemcached-2.11.6.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/stax-api-1.0-2.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/xercesImpl-2.9.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/xml-apis-1.3.04.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/xmlenc-0.52.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/jars/zookeeper-3.4.5-cdh5.16.1.jar/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/lib/hadoop/LICENSE.txt/opt/cloudera/parcels/CDH-5.16.1-1.cdh5.16.1.p0.3/lib/hadoop/NOTICE.txt/usr/java/jdk1.8.0_131/lib/tools.jarAt each execution of any Spark job (including the use of spark-submit) this list of jars above will automatically get loaded.What is a JAR?A jar file is essential a compressed list of classes and methods. It is important to note that when jar files are built they will typically have an associated version number.Someone can look at the contents of a jar file by executing:jar -tvf phoenix-4.13.1-HBase-1.3-client.jarOr you can wrap the above in a for loop that will look at the contents of every jar that might contain a method you are looking for.for i in `ls -1 *.jar`;do jar -tvf $i | grep -i htrace/trace;echo $i;done;Common issues that can occur with CLASSPATH'sCaused by: java.lang.NoClassDefFoundError: org/apache/htrace/Trace at org.apache.hadoop.hbase.zookeeper.RecoverableZooKeeper.exists(RecoverableZooKeeper.java:218) at org.apache.hadoop.hbase.zookeeper.ZKUtil.checkExists(ZKUtil.java:481) at org.apache.hadoop.hbase.zookeeper.ZKClusterId.readClusterIdZNode(ZKClusterId.java:65) at org.apache.hadoop.hbase.client.ZooKeeperRegistry.getClusterId(ZooKeeperRegistry.java:86) at org.apache.hadoop.hbase.client.ConnectionManager$HConnectionImplementation.retrieveClusterId(ConnectionManager.java:850) at org.apache.hadoop.hbase.client.ConnectionManager$HConnectionImplementation.<init>(ConnectionManager.java:635) When a situation like this occurs it means that a method cannot be found in the classpath for the job that is trying to execute. This can indicate a couple things:The job cannot find a jar file that contains the method flagged (in the example above the org/apache/htrace/Trace method).Sometimes different versions of the same jar file gets loaded and the first jar loaded will always win. Older jars that get loaded first may not have a method defined in new jars.At DQ, we have solved CLASSPATH / CLASSLOAD issues by automatically injecting jars defined in our owl/libs directory, and allowing users the ability to simply toggle loading them or not.Column MatchingHow much is your redundant data costing you?Reclaim Gigabytes of Redundant DataAs data engineers, first we copy files into a landing zone, next we load the files into a staging area. After that we transform (ETL) the data into the final table. Soon that same data is copied to a lake for other groups to run analytics on. Eventually a group of analysts will need the data in another format and a data engineer will copy the data in a newly joined or transposed fashion. Sounds familiar?The result is the same data or similar columns of the same data being copied many times. The answer: Buy more hardware... could be OR run a Collibra DQ health report and gain an understanding of how much data could be removed, reclaiming disk space and instantly seeing a return on investment after clicking the button.Tabular breakdown of percentage of fingerprint matchesSometimes its not as simple as comparing two tables from the same database. DQ allows a technical user to setup multiple DB connections before executing an owl health check.import com.owl.common.Propsimport com.owl.core.Owl val c1 = new Connection()c1.dataset = silo.accountc1.user = userc1.password = passc1.query = select id, networth, acc_name, acc_branch from silo.account limit 200000c1.url = jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rds.amazonaws.com:3306 val c2 = new Connection()c2.dataset = silo.user_accountc2.user = userc2.password = passc2.query = SELECT acc_name, acc_branch, networth FROM silo.account limit 200000c2.url = jdbc:mysql://owldatalake.chzid9w0hpyi.us-east-1.rds.amazonaws.com:3306 val props = new Props()props.dataset = colMatchTest1props.runId = 2017-02-04props.connectionList = List(c1,c2).asJavaprops.colMatchBatchSize = 2props.colMatchDurationMins = 3 val matchDF = new Owl(props).colMatchDFmatchDF.show matchDF.createOrReplaceTempView(matches)High level view of data overlapDate Time Variable OptionsDate Time Variables can enhance your query and file date templating and variable options. This allows easier scheduling and programmatic templating for common date variables.KeyFunction${rd}Replaces with -rd values in CMD. For example, 2023-01-20.${rdEnd}Replaces with -rdEnd values in CMD.${yyyy}Replaces with 4-digit year portion of -rd values in CMD. For example, 2023.${yy}Replaces with 2-digit year portion of -rd values in CMD. For example, 23.${M}Replaces with 1-digit month portion of -rd values in CMD.${MM}Replaces with 2-digit month portion of -rd values in CMD.${MMM}Replaces with 3 letter month name portion of -rd values in CMD For example, Jan, Jul, Dec.${MMMM}Replaces with long month name portion of -rd values in CMD For example, January, July, December.${d}Replaces with 1 digit day portion of -rd values in CMD.${dd}Replaces with 2 digit day portion of -rd values in CMD.${HH}Replaces with 2 digit hour portion of -rd values in CMD.${KK}Replaces with 1 digit hour portion of -rd values in CMD.${mm}Replaces with 2 digit minute portion of -rd values in CMD.${ss}Replaces with 2 digit second portion of -rd values in CMD.Deploy ModeYarn and ClusterDeploy Mode Client--deploy-mode clientDeploy Mode Cluster--deploy-mode clusterJob Stuck in ACCEPTED Stateyarn.Client: Application report for application_1557720962505_0085 (state: ACCEPTED) yarn.Client: Application report for application_1557720962505_0085 (state: ACCEPTED).If running in cluster mode make sure you are passing in the below.--deploy-mode cluster--master yarn # or spark master-h 123.45.6.77:2181 # host to owl metastoreExplorer (advanced)Explore Database Connections and File SystemsUse the explorer tab to quickly see which tables are cataloged with Collibra DQ (the square catalog icon) and which have DQ's quality protection (the DQ icon).Below you will see 48/48 database tables have been cataloged with DQ but only 21/48 have an DQCheck. This means that this particular database schema is 44 percent protected from future DQ issues.DQ coverage over timeAs you add more datasets to Collibra DQ, you will see your bar chart increase over time and the donut chart fill in with more coverage.Job EstimatorBefore firing off a large ML job it can be helpful to understand the amount of cores and ram that the job requires to run efficiently. Right sizing jobs is often the best way to get the best performance out of each run. Click the [Auto Estimate] button for quick stats for both sizing and estimated runtime information.Dynamic allocationMany clusters offer the ability to scale up and down job containers. If Dynamic Allocation is turned on you may not need or desire DQ's recommended num-executors or executor-memory. However, in our testing right sizing the job before executing is both faster and a healthy habit. Faster, because there is less orchestration and context switching while the job is doing work; we've minimized time spent running out of space and having to reallocate and shuffle to a new container. Healthier, because it give the user real-time feedback on the cost of each feature and the ability to control the cost benefit analysis.SQL EditorAutomatically tracks to the connection, database and table in the explorer and provides a quick way to ask the database simple questions like, counts, groupings and specific clauses.File Look BackAs of 2021.11, this option is exposed in the Explorer under the Collibra DQ Job section. Users can persist (save) this option by clicking the Union Lookback checkbox.Union Lookback (-fllb)Union Lookback, or File Lookback (-fllb) as it is also known, is used with deep
learning or pattern matching. In the example below, it is used with deep learning.File Lookback is used to check DQ Check history for previous files.-fllbThis is often used with files and in conjunction with -adddc in cases where a date column is not in an ideal format or you do not have a date column on the given dataset.Despite the name, this can be used with file or database storage formats.File look back (-fllb) should only be used when a SQL layer is not available. This is considered for advanced use cases, but may not be suitable for all file types and folder structures. Best practice is to expose a date signature somewhere in the file or directory naming convention. Example-ds demo_lookback \-rd 2017-07-29 \-lib /opt/owl/drivers/mysql \-cxn mysql \-q select * from lake.dateseries where DATE_COL = '2017-07-29' \ -dc DATE_COL \-dl \ -dlkey sym \-dllb 4 \-fllbThis look back will load your past 4 runs as your historical training set Fullfile Lookback (-fullfile)Like Union Lookback, Fullfile Lookback (-fullfile) is used with deep learning and pattern matching.Fullfile Lookback uses the entire file for lookbacks instead of just filequery.__Filter & Filter NotFilter & Filter Not is similar to a grep for limiting a dataframe to rows containing a substring.This feature should only be used when -q (query) and -fq (filequery) are not applicable. This feature is primarily used with raw files for limited filtering and not advanced conditional logic.Example./owlcheck \-ds dataset_name \-rd 2018-07-23 10 \-d , \-f /Users/Documents/file.csv \-filter 2018-07-23-filter 2018-07-23If file.csv contained multiple strings, but you only wanted rows containing 2018-07-23.The inverse-filternot 2018-07-23To exclude rows containing 2018-07-23.Header CheckHeader Check lets you toggle column name detection on and off so column names containing special characters are not detected as schema changes. This is configurable with the Check Header checkbox or from the command line.Configuring with the Check Header checkboxThe Check Header checkbox is checked by default. When it is checked, schema findings do not display when detected.To disable the header check, uncheck the Check Header checkbox. This allows the schema findings to display when detected.Configuring from the command lineHeader checks are enabled by default and do not appear in the command line when enabled. To disable header checks from the command line, click the lock icon to unlock the command line and use the -headercheckoff variable, as shown in the screenshot below. When you are done editing the command line, click the lock icon again to lock the command line; then, click Run.Multiple Pattern RelationshipsRun more than one relationship through pattern matching.Example./owlcheck \-ds fpg_multiple \-rd 2018-10-04 \ -cxn postgres \-lib /opt/owl/drivers/postgres/ \-q select * from public.fpg_accounts where d_date = '2018-10-04' \ -fpgon \-fpgdc d_date \-fpglb 4 \-fpgmulti id,ssn_num=first_name,email|id,ssn_num=first_name,gender|id,ssn_num=last_name Instead of -fpgkey and -fpgcolkey1=cols1|keys2=cols2Enter multiple key=cols combinations separated by a pipe.-fpgmulti id,ssn_num=first_name,email|id,ssn_num=first_name,genderNulls in DatasetsExample./owlcheck \-ds datataset_date_column \-rd 2019-07-01 \-f /Users/Downloads/csv2/2019010.csv \-zfn \-nulls N.A. Zero if null will replace null values with zero.-zfn To replace characters that represent a null to actual null values.-nulls N.A.Spark-shell Sample./bin/spark-shell --jars /opt/owl/bin/owl-core-trunk-jar-with-dependencies.jar,/opt/owl/drivers/postgres/postgresql-42.2.5.jar --deploy-mode client --master local[*]Import lib’s, if you get a dependency error, please import a second time.import com.owl.core.util.{OwlUtils, Util}import com.owl.common.domain2.OwlCheckQimport com.owl.common.options._Set up connection parameters to the database we want to scan if you don’t already have a dataframe.val`` ``url`` ``= jdbc:postgresql://xxx.xxx.xxx.xxx:xxxx/db?currentSchema=schemaval`` ``connProps``=``Map(driver -> org.postgresql.Driver,user -> user,password -> pwd,url ->`` ``url,dbtable -> db.table)Create a new OwlOptions object so we can assign properties.val opt = new OwlOptions()Set up variables for ease of re-use.val dataset = nyse_notebook_test_finalval runId = 2017-12-18var date = runIdvar query = sselect * from <table> where <date_col> = '$date' val pgDatabase = devval pgSchema = publicSet OwlOptions values to the metastore.opt.dataset`` ``= datasetopt.runId`` ``= runIdopt.host`` ``= xxx.xxx.xxx.xxxopt.pgUser`` ``= xxxxxopt.pgPassword`` ``= xxxxxopt.port`` ``= s5432/$pgDatabase?currentSchema=$pgSchemaCreate a connection, build the dataframe, register and run.With inline processing you will already have a dataframe so you can skip down to setting the OwlContext.val conn =`` ``connProps`` ``+ (dbtable -> s($query)`` ``$dataset)val df =`` ``spark.read.format(jdbc).options(conn).loadval owl = OwlUtils.OwlContext(df, opt)owl.register(opt)owl.owlCheckTransformTransform DateDuring Collibra DQ setup, you can transform columns such as Dates and Numbers to preferred formats. It is a common need to replace N.A. with nulls or empty white space.Example./owlcheck \-ds dataset_transform \-rd 2018-01-31 \-f /Users/Documents/file.csv \-transform purch_amt=cast(purch_amt as double)|return_amt=cast(return_amt as double) Submit an expression to transform a string to a particular type.In this example, transform the purch_amt column to a double.-transform purch_amt=cast(purch_amt as double)Example of converting a string to a date.-transform RECEIVED_DATE=to_date(CAST(RECEIVED_DATE AS STRING), 'yyyyMMdd') as RECEIVED_DATE
	Rule types
	Simple rule
	Freeform SQL

	Simple rule
	Example #1
	Example #2

	Freeform SQL
	Individual statement
	Join statements
	Rule types
	Syntax
	 Collibra DQ ArchitectureArchitecture DiagramCollibra DQ ArchitectureHigh-Level Diagram Connect to data sources.Build the DQ scan algorithm and submit the job.Execute the Spark job.Write the DQ results in the Metastore.Browse the results of the DQ Scan with the management console.Collibra DQ Hadoop Deployment Diagram Collibra DQ Kubernetes Deployment DiagramFor Kubernetes deployments of Collibra DQ should use Auto Scaling and Spot instances to further increase efficiency and reduce cost.Collibra DQ Standalone The image above depicts owl-web, owl-core, Postgres and orient all deployed on the same server. This can be an edge node of a Hadoop cluster or a server that has access to run Spark-submit jobs to the Hadoop cluster. This server could also have JDBC access to other DB engines interested in being quality scanned by Collibra Data Quality & Observability. Looking at this depiction from left to right the client uses their browser to connect to Collibra DQ's Web Application running on the default port 9000. The Collibra DQ Web Application communicates with the metastore.. The Web Application can run a local DQ check, or the Data script can be launched from the CLI natively. The DQ check launches a job using Collibra DQ’s built in Spark Local DQ Engine. Depending on the options supplied to the DQ check command, the Collibra DQ can scan a file or database with JDBC connectivity.Collibra DQ Distributed The image above depicts owl-web and owl-core deployed on different servers. In this example Owl-web is NOT deployed on the edge node. Owl-core is installed on the edge node and writes DQ check results back to the metastore that the DQ Web App points to. In this scenario, the metastore and the web-app run on the same host. The other change is that the DQ check distributes the work on top of a Hadoop cluster to leverage Spark and use the parallel processing that comes with the Hadoop engine.ERDPlease note there are over 110 tables in the underlying Postgres database and many are for application settings.System RequirementsThe following pages include the system requirements for installing Collibra Data Quality.Supported Operating Systems Only 64-bit Linux operating systems are supported.Standalone operating systemsRed Hat Enterprise Linux 7.xCentOS 7.xContainer operating systemRed Hat Universal Base Image 8 Micro (ubi8-micro)Hardware SizingHardware Sizing (Standalone Install)Small Tier - 16 Core, 128G RAM (r5.4xlarge / E16s v3) ComponentRAMCoresWeb2g2Postgres2g2Spark100g10Overhead10g2Medium Tier - 32 Core, 256G RAM (r5.8xlarge / E32s v3) ComponentRAMCoresWeb2g2Postgres2g2Spark250g26Overhead10g2Large Tier - 64 Core, 512G RAM (r5.16xlarge / E64s v3) ComponentRAMCoresWeb4g3Postgres4g3Spark486g54Overhead18g4Estimates Sizing should allow headroom and based on peak concurrency and peak volume requirements. If concurrency is not a requirement, you just need to size for peak volume (largest tables). Best practice to efficiently scan is to scope the job by selecting critical columns. See Performance Tuning for more information.Bytes per CellRowsColumnsGigabytesGigabytes for Spark (3x)161,000,000.00250.41.21610,000,000.002541216100,000,000.002540120161,000,000.00500.82.41610,000,000.005082416100,000,000.005080240161,000,000.001001.64.81610,000,000.001001648161,000,000,000.001001600480016100,000,000.00100160480161,000,000.002003.29.61610,000,000.00200329616100,000,000.00200320960161,000,000,000.0020032009600Cluster If your program requires more horsepower or (Spark) workers than the example tiers above which is fairly common in Fortune 500 companies than you should consider the horizontal and ephemeral scale of a cluster. Common examples include Amazon EMR and Cloudera CDP. Collibra DQis built to scale up horizontally and can scale to hundreds of nodes.Minimum System RequirementsHardware based on roleStandalone, distributed, or fully-distributed.Please see Hardware Sizing for minimum resources for each component.Java versionOracle JDK version 11.0.xOracle JDK version 1.8.0_152.xOpen JDK version 1.8.0.xEncryptionJava Cryptography Extension (JCE) Unlimited Strength JurisdictionPostgres VersionCollibra Data Quality comes prepackaged with version 11.4 of Postgres.Version 9.6.5 and above is supported if wanting to use an external metastore.User PrivilegesInstallation is completed via tarball.You must be able to create directories, launch scripts, and start processes (Java processes).SUDO is not required.ULIMIT settings of 4096 or higher All owl services typically consume about 428 threads.During each DQ Job, about 400 additional threads are consumed.Thus 4096 threads can allow for about 9 concurrent DQ Jobs (on a standalone install). If more are needed, plan accordingly.Planning the installationIt is always best to consult the Collibra DQ team for more information about what options make the most sense for your environment.Determine how you plan to install Collibra DQ (standalone or distributed), as shown in the Architecture Diagram.Plan your infrastructure, scale, and HA.Validate your system prerequisites.Obtain the packages from Collibra DQ.Installation Packages/Files (BOM)demoscripts.tar.gzlog4j*owlcheckowl-core-2.1.0-jar-with-dependencies.jarowl-webapp-2.1.0.jarowl-agent-2.1.0.jarsetup.showl-postgres.tar.gznotebooks.tar.gzowlmanage.shDefault Ports used by Collibra DQ5432 – Postgres9000 – Owl-webSupported Web BrowsersBrowserVersionGoogle Chrome (recommended)70.0.3538.102 or newerMozilla Firefox52.8.0 or newerSafari12.0.1 or newerBuild VersionsGenerally Available Build VersionsDefault Build = Spark 2.3.0Spark 2.4.5Spark 3.0.1HDP 3CDH5CDH6-NOLOGK8sDiagramsDQ Control to Compute to DataAs of March 2022, DQ Cloud is in private beta for select customers. General availability is expected in Q4 2022. Available compute plane options will start with Collibra Edge submitting jobs to Rancher K3s and Hadoop platforms (Cloudera, Dataproc, and EMR). Additional compute plane options will be added over time.Pushdown DQ Control to DataAs of Q3 2022, Steps is in private beta for select customers. Some features may be limited.Databricks to Data to DQ ControlRunning DQ jobs from Scala and Pyspark notebooks is generally available.
	 Collibra DQ AdminOverviewDashboard, Inventory, Connections, and Configuration are shortcut links to different operations within Collibra Data Quality & Observability.Dashboard Shows an overall number of DQ Checks scanned the MB’s, total jobs, total records scanned.Total number of data sets, including passing and failed jobs (quality fails), number of alerts, and number of rules.A list of messages on specific DQ Checks and what was found.Inventory All DQ Jobs ever executed including Run Date, Data Set, Command Line, Type, Query, and Connection.Connections Connect to a data source via the Admin Console.ConfigurationApply administrative override limits. For example, you can limit the amount of DataShapes recorded on a specific data set with the datashapelimit field.If a duplicate record is found have a 1 point (negative) score per record. Allows administrators to increase or decrease the impact of different DQ issues found.Display limits in order to improve performance of the UI.Audit TrailList all security related changes by user, action, description and timestamp in a searchable, sortable table.ConfigurationMulti-TenancyDivide and conquer your data quality.MultiTenancy allows a company the ability to instantiate different organizations within one entity. For example say your organization is called Acme and inside of Acme there are two divisions AcmeTraders and AcmeInsurance and each organization is not allowed to see one another's owlcheck results. You would simple segregate them into 2 different Tenants within the overarching Collibra DQ web application.Prerequisite(s)DNS entry for owl web server IP = example below we call it hub (existing for single tenant setup)DNS entry for multiTenantSchemaHub = example below we call it owlhub.hubPrerequisites For URL Based tenancy: tenant.hostA DNS entry for each tenantDNS entry for every tenant you want to create = example below we call it tenant1.hubEach record above points to the same IP address.SetupIn order to setup multi-tenancy follow these stepsIf this is an upgrade please make sure to follow the steps outlined in the Upgrading to latest VersionMake sure the web application has started up one time and you successfully logged into it with the default credentials.Then stop all the components using ./owlmanage.sh stopModify the owl-env.sh file to include these to new parameters export multiTenantSchemaHub=owlhub (this is a new schema that will get created on owlweb start, note the name of the TenantSchemaHub can be changed to the desired name at setup time)export MULTITENANTMODE=TRUE (this enabled multi-tenancy to be used).export URLBASEDMULTITENANTMODE=TRUE/FALSETRUE (default) means you are using the tenant name as a sub-domain (see prerequisites)FALSE means you will let owl manage tenants via sessions/tokensIf using agents as part of the operation of owl please be sure to modify the owl.properties file to include the following. spring.agent.datasource.url=jdbc:postgresql://cdh-edge-dan.us-east4-c.c.owl-hadoop-cdh.internal:5432/postgres**?currentSchema=owlhub** (matching the name of the schema set on step 3-1 above).jdbc:postgresql://cdh-edge-dan.us-east4-c.c.owl-hadoop-cdh.internal:5432/postgres**?currentSchema=owlhub** (matching the name of the schema set on step 3-1 above).Once the settings have been configured for multi-tenancy please start up the owlweb host first using ./owlmanage.sh start=owlweb. Once the web is up and you can hit the page please start up the agents using ./owlmanage.sh start=owlagent.In order to use multi-tenancy in URLBASEDMULTITENANTMODE=TRUE you'll have to make sure we have DNS entries to the tenant endpoints, otherwise click the tenant management link from the login page. Example: If I have a DNS alias named hub. I should be able to point me browser at hub:9002 (or your respective owlweb port) to get to the main Multi-Tenant login page as depicted belowThis is where DNS alias come into place. Assuming we left the owlhub as the multiTenantSchemaHub name we hit the drop down and select owlhub and click the arrow it will place owlhub.hub into the url. This means there also has to be a DNS Alias name for your selected multiTenantSchemaHub name. NOTE: Username and password for tenant management is mtadmin / mtadmin123Now that you logged into the Tenant Management screen using the hub DNS alias we can create our first tenant. In this example below I'm going to create a tenant named tenant1. First click the + Add Tenant button in the top right part of the screen.Click Save. Your tenant shows up in the list and now you can click the login button as shown below.Clicking the Login button will redirect your browser to the tenant1.hub:9002 url (DNS entry needs to be in place for tenant1 as shown below).Enter the admin username and password that you created for the tenant1 (refer to figure 3 about) and login to the tenant as the admin.While logged in as a tenant admin the last step is to go to the Admin Console and click on Sync Schema this will generate the tables under the tenant called tenant1.At this point you are ready to start administrating your tenant1 as you did with the owl web application in the past.Supplemental: Adding and Editing a TenantIn many cases it may make sense to have isolated environments to check data quality. This need could be driven by a number of factors including data access rights, organization and business models, reporting needs, and/or other security requirements.Regardless of the need,Collibra DQ will support dynamically creating tenants via our Collibra DQ Hub Management portal as part of the Collibra DQ Web Application. That's it, there is nothing else to install, simply enable Multi-Tenant mode in the application configuration properties and you are on your way.Once enabled you will have a tenant selection screen prior to login where you can chose any of your configured tenants or access the Owl Hub (with the TENANT_ADMIN role)After selecting the owlHub tenant, you will have the ability to manage each tenant, as well as create new tenants from the management console.All enabled tenants will be listed in the multi-tenant drop down menu. Access to tenants are handled by the administrator(s) within each tenant individually.Access to agents are also handled by the administrator(s) within each tenant individually.Each agent is visible and editable as an Admin from the UI.Time-Based Data RetentionSetting up Retention Based Data PurgeRetention based purge of data can be turned on to allow data to automatically be cleaned based on an organization's data retention policy.BenefitOnce enabled, what type of data is removed?data_preview (Drill-in records for rules, outliers, shapes, etc.)dataset_field (profiling stats)rule_breaks (Rule Exception records)dataset_scan (Job Ledger)SetupIn order to set up retention based data purge, three (3) environment variables need to be set up in the owl-env.sh configuration script. Note: a restart of the webapp is required for this configuration to take place.cleaner_retention_enabledTRUE or FALSE on whether this feature is enabledcleaner_retention_daysNumber of days to retain datacleaner_retention_fieldControls which field to use to select eligible data set runsPotential values updt_ts: consider the last time a data set run was updatedrun_id: consider the run id field of the data setConfigurationExample configuration in owl-env.shOrganization wants to purge data where the updt_ts is more than 1 year oldIn owl-env.sh, add the following linesexport cleaner_retention_enabled=TRUEexport cleaner_retention_days=365export cleaner_retention_field=updt_ts Config MapautoClean: falsecleaner_retention_days: 180cleaner_retention_field: updt_tscleaner_retention_enabled: trueDefaults for Auto Clean ProcessThis is a separate rolling purge that is distinct time-based retention. This is on by default and uses the predefined limits below. You will see audit records for this clean-up process in Audit History of the Admin Console.Separate from the time-based retention there is also a default auto clean mechanism that actively purges your old records. This is enabled by default and can be modified by use of the autoClean (AUTOCLEAN) boolean parameter.AUTOCLEAN=false or autoClean=false ### Depending whether this is part of owl-env.sh ### or the configMap of the web podThese are the defaults. The row count threshold is the global limit when this is triggered. This is based on the records in the data_preview table. The runs threshold and the dataset per row threshold are data set-level limits that require a data set to have at least 4 scans and at least 1000 rows.This is an example using the owl-env.sh file to control these settings.export AUTOCLEAN=trueexport DATASETS_PER_ROW=1000export RUNS_THRESHOLD=4export ROW_COUNT_THRESHOLD=200000For example (using the settings above):When data_preivew table has 200k rows Look for data sets with 1000+ rows in data_prevew table And have at least 4 scans Then delete the oldest scan for those data setsAuto clean and time-based retention run on a routine thread that triggers while the web application is running. It looks for clean-up candidates every few minutes when AUTOCLEAN=true or cleaner_retention_enabled=TRUE.Set up SMTPSimple Mail Transport Protocol, or SMTP, is an internet standard for email transmission. Collibra DQ allows you to configure a single SMTP server to send alerts to the attention of the data set owner in case a specific condition is met, such as: Data Quality Score is below a specific threshold.Row Count is below a specific threshold.If a rule is triggered.StepsIn the Admin Console, click Alerts.In the Configuration section, enter the required information:OptionDescriptionSMTP HostThe name or the IP address of the SMTP server.SMTP PortThe port used by the SMTP server.SMTP UsernameThe username or the account that is configured on the SMTP server for use.SMTP PasswordThe password of the SMTP server username or account.(Default) To EmailThe sender email address.Reply EmailThe reply-to email address.Save your changes.See screenshot below for example of configuration.When completed, click the Add button.Once the information has been populated and added, the grey box above the form will get populated with the content supplied. If the data ever has to be changed clicking the Alerts icon will repopulate the form in order to be modified and re added.Now that configuration of the SMTP Email Server has been completed let’s create an alert and see that the alert triggers an email. In this example, we will use the dist_example dataset that we ran earlier from the demo.sh script.In the above screen shot we:Searched for the “dist_example” datasetProvided an alert named “score_lt_90”Provided a condition that we know will be met “score < 90”Provided who the recipient of this alert should be mailed to in this sample “user2@owl.net”Custom Message = “score is below 90 for dist_exampe”Clicking the “Save” button will move the contents of the form above to the List of Alerts for this particular dataset.From the terminal on this install if you run the below command (which is just an extract out of the demo.sh file). We should see the alert get triggered./owlcheck -ds dist_example -rd 2018-10-07 -d , -f /opt/owl/bin/demos/distribution_change.csv -fq select * from dataset where d_date ='2018-10-07'At the end of this command we should see the “Alert was triggered” as shown in the screenshot below.And the recipient <valued.user@example.com> received the email.AdvancedAllow/Disallow Using the catalog feature from Wizard: BULK_CATALOG_ON = TRUE/FALSEPreset Wizard Config for showing views: DB_VIEWS_ON = TRUE/FALSEPreset Wizard Config for showing stats: DB_STATS_ON = TRUE/FALSESet File Search Path From Wizard: UPLOAD_PATH = <Path on Web Server>Set/Unset -p/-srcp masking in UI: MASK_P_FLAG = TRUE/FALSEAllow/Disallow Zeppelin Notebooks: ZEPPELIN_ENABLED = TRUE/FALSEAllow/Disallow Using the orient DB: ORIENT_ENABLED = TRUE/FALSEPendoThe Pendo integration is active by default. As of the 2022.06 release, all new customers receive a new license. Pendo is an analytics application embedded in Collibra that helps us analyze, develop, and improve our product. No sensitive information is ever collected, we only leverage high-level usage statistics to improve our offerings. If no modifications are made to the default settings, Pendo will not block or impair the intended functionality of Collibra Data Quality in any way.Pendo in a standalone environmentIf you install a standalone environment, modify the <install-dir>/config/owl-env.sh file by adding your license name export DQ_INTEGRATION_PENDO_ACCOUNTID=<your-license-name> For more information on Collibra's subprocessors, please review Collibra's Subprocessors page.UsageYou must have admin privileges to access usage metrics.The Usage page lets you analyze your monthly usage statistics from the Admin Console. Key monthly metrics tracked on the Usage page include:Total number of users.Total number of DQ Jobs run.Total number of rules applied.Total number of data sets.Total number of columns.Viewing the Usage pageTo view the Usage pageClick the gear icon and then click Admin Console.>> The Admin Console opens.Click the Usage tile.>> The Usage page opens.Analyze your usage statistics if they are available.License ManagementThis section shows you how to change your license information provisioned by Collibra.PrerequisitesYou have:Admin permissions.A license previously provisioned by Collibra.View and edit your licenseFrom the Admin panel, select License to open the License Management page. The table below shows the information available on this page.OptionDescriptionCan editKeyDisplays your current license key. Edit your license key by clicking into the field and updating the text. YesNameDisplays your current license name. Edit your license name by clicking into the field and updating the text. YesExpirationDisplays the expiration date of your license in a yyyy-mm-dd format. NoStatusDisplays the current status of your license as either Active or Expired. NoReactReact MUI will be on by default in a future release. You can toggle React MUI on or off, depending on your preference.Toggling React MUIHover over the Admin Console icon and select Settings.>> The Limit Settings page opens.At the top right of the Settings page, select App Config.>> The App Config page opens.Enter the required information.OptionDescriptionREACT_MUIEnter TRUE to turn the React MUI on for all available React pages. Enter FALSE to turn the React MUI off.UX_REACT_ONThis flag must be set to FalseClick Save.UX_REACT_ON must be set to False to ensure proper functionality of Collibra DQ. Instead, if you want to view pages in the React MUI layout, set the REACT_MUI to True.AuditBuilt-in auditing allows you to track usage and modifications across data set, security, and user levels.Dataset Audit TrailAvailable DataUserData SetSelected FeaturesrunIDAssignmentsCommentsTimestampSecurity Audit TrailAvailable DataUser profile updatesRole updatesReference table from metastoreData set deletion requestsJob schedule attemptsWhen administrators modify roles mapped to data sets or data sets mapped to roles, changes are documented automatically in the Audit Trail. The information in the entry log includesNew and original data sets added or removed during the modification.New and original roles added or removed during the modification.A timestamp of when the modification occurs.Type of modification.Username by which the modifications are made.User Audit TrailAvailable DataLogins: Successful / FailedPrivileged User AccessUser Actions / ActivitiesAccount ActionsSource IPTimestamps
	 Collibra DQ Security ConfigurationOverviewCollibra Data Quality offers multiple methods of user authentication, including a local user store and Active Directory or generic LDAP integration.Security can be configured to meet your needs. Advanced options to segment groups and roles are available. Additionally, options for SAML and SSO are available.You can control configurations at the Web (UI), Postgres, and Application layers depending on your security requirements. Encryption is available for data in-transit or at-rest.ConfigurationConfiguring Active Directory (AD/LDAP)PrerequisitesYou have Admin permissions (ROLE ADMIN) assigned to your User Profile.Configure Connectivity from Collibra Data Quality to Active DirectoryStepsFrom the Admin Console, click the AD Setup tile. >> The Active Directory Security Settings page opens.Check the AD Enabled checkbox.Enter the required information.SettingDescriptionAD EnabledAD is enabled when checked.LDAP EnabledLDAP is enabled when checked. In most cases, LDAP should be unchecked.Page SizeSet a value greater than 0 to control query page size. Since some LDAP providers do not support page sizing, this field can either be left blank or set to 0. HostThe hostname or URL of your LDAP or LDAPS server, for example, ldap://12.345.678.90PortThe port to connect to your LDAP or LDAPS server. The default ports are 389 for LDAP and 636 for LDAPS.Base PathThe value entered is the base domain information, for example, DC=,DC=.Group Search Path The value entered is the domain object path where the groups are located, for example, OU=OwlGroups,OU=Groups. A Group Search Path value should not include the value of the Base Path.After Group Search Path is configured, it is recommended that you restart the DQ Web App.DomainOptional. The domain name used to signify when non-local users log in. Only used for AD configurations.User Search BaseOptional. The base DN of where the LDAP users for Collibra DQare located, for example, CN=Users. This is the lowest level container (OU) of user objects. When set, it is used to narrow down user search at login. A User Search Base value should not include the value of the Base Path.In order to use User Search Base to properly sign in, it is required that you restart the DQ Web App.User Search FilterOptional. When set, this LDAP filter is used to locate users at login. This filter is based on your LDAP configurations.In order to use User Search Filter to properly sign in, it is required that you restart the DQ Web App.Group Search BaseOptional. The base DN where all the groups are located. Only used for LDAP configurations.Group Search FilterOptional. The LDAP filter used to narrow down group objects located under a base DN. Only used for LDAP configurations.Bind UserThe DN of an admin user that is used for authentication, for example, admin@collibra.com.Bind PasswordThe password of an admin user. Enter a Bind Password for the bind account.Click Save.Configuration / ENV settings within owl-env.sh Be sure to add the following script settings when configuring LDAP and Active Directory. This configuration occurs at start-up of the DQ web app. See Standalone Install for a complete list of the owl-env.sh scripts.OWL-ENV.SH ScriptsMeaningexport LDAP_GROUP_RESULT_DN_ATTRIBUTEThe attribute to the full path of the group object, for example, CN=OwlAppAdmin,OU=OwlGroups,OU=Groups,DC=owl, DC=com.Default is distinguishedname.export LDAP_GROUP_RESULT_NAME_ATTRIBUTEThe attribute to the simple name of the group, for example, OwlAppAdmin.Default is CN.export LDAP_GROUP_RESULT_CONTAINER_BASEProperty used in the scenario where the LDAP_GROUP_RESULT_DN_ATTRIBUTE does not return a value. In this case, the LDAP_GROUP_RESULT_NAME_ATTRIBUTE prepends to this value, which creates a fully qualified LDAP path. For example, OU=OwlGroups,OU=Groups,DC=owl,DC=com. Default is <null>.When binding to Active Directory, you do not need a special Bind User and Password. Collibra Data Quality only requires an admin user account with which to bind in order to run a read-only query on the groups. Collibra Data Quality uses AD credentials dynamically to understand what groups you want to map, but the credentials are never stored.See AD Group to Role Mapping to learn how to map an AD Group to a Collibra Data Quality role.AD Group to Role MappingWhen you map an AD Group to a Collibra Data Quality role, you grant all users from the selected AD Group role-based access to the selected Collibra Data Quality role outlined in the steps below. You can find additional information on creating custom application roles on the Role-Based Access Control page.Application properties set in owl-env.sh can be set to determine which LDAP properties correspond to LDAP query results. For group mapping, you need the full path (unique) and the display name.For example:LDAP_GROUP_RESULT_DN_ATTRIBUTE=distinguishednameLDAP_GROUP_RESULT_NAME_ATTRIBUTE=CNClick the Role Mapping tab.Select a role from the dropdown. Alternatively, you can add a new Collibra Data Quality Role to map the AD Group(s) you want to include by clicking the Add Role button.Click Load Groups. The list box on the left will populate with roles in the group you selected.Click a role from the list box on the left to move it to the selection box on the right. You can use the Filter field to filter the lists in either box.Click Save.Once you successfully map an AD Group to an AD Role, log out of Collibra Data Quality and log in again as a domain user.You must restart Collibra Data Quality by running ./owlmanage.sh restart_owlweb when toggling AD Enabled.When logging into the Collibra Data Quality web application, make sure to append the domain to the end of the username.Connection SecurityYou can select and map roles to your connection on the Connection Manager page. Any user with those mapped roles will then be able to see the connection in the UI.StepsTo select and map roles to your connection, follow these steps.Log in to the Collibra DQ instance and click the gear icon in the left navigation pane.Click Admin Console.In Quick Links, click the Security tile and toggle on DB Connection Security.Click Save.Click Admin Console again.Click DB Access.From the Connection Name column, select your connection.The Connection Manager displays the available roles.Click the role(s) you want to map to your connection from the left column, which moves the role(s) to the right column.You can toggle the roles to select and deselect them in the Connection Manager.When you have completed your selection, click Update.The role(s) you selected for the connection displays in the Roles column.Now, any user with those mapped roles will be able to see the connection in the UI.Data Set Security Settings SecurityTo configure Data Set Security settings, follow these steps.StepsLog into the Admin Console Page as an Administrator of Collibra Data Quality.Click the Gear icon in the left navigation pane.Click Admin Console.Click Security on the Quick Links page and toggle on Dataset Security.Click Save.Click the Gear icon in the left navigation pane.Click Admin Console.Click Datasets on the Quick Links page.Note all the Datasets from the demo script we launched at the beginning of this document have been added to ROLE_PUBLIC ROLE defined in Collibra Data Quality except the row_count Dataset. At this point, we already have the odemo@owl.com user created and mapped to the ROLE_PUBLIC ROLE which has access to those Datasets. Lets login as odemo@owl.com and try to access row_count DatasetStats page (for an understanding on how to access the DatasetStats page see the section entitled “Understanding the DQ DatasetStats Page” in this document…..doing so will result in the error message below.However, the other DatasetStats that are part of the PUBLIC_ROLE as odemo@owl.com is a member of that ROLE.The last thing to notice is that, as the user odemo@owl.com cannot access the Admin pages the AD Group odemo is a part of the ADMIN_ROLE.ACL SecurityWhen ACL is enabled/disabled, an administrator can configure the following options in the Dataset Security pane to limit usage/permissions on data sets:Data_Preview role limit (role that can view source data)Dataset_train role limit (role that can train data sets)Dataset_rules role limit (role that can add / edit / delete rules) This configuration is tied to data sets and not connections or jobs. Data Set MaskingAdd column level masking for sensitive data in a data set.Masking from the UIAfter an DQ check runs, you can perform column level masking from the findings page if you have ROLE_ADMIN or ROLE_DATASET_MANAGER assigned to your user.Masking updates will take effect for all existing and future runs of the selected dataset. ROLE_ADMIN and ROLE_DATASET_MANAGER also have the ability to unmask.Local User Store AuthenticationLocal user store authentication is enabled by default, and the Collibra Data Quality & Observabilityships with a default user with admin privileges. If you should need to toggle this mechanism on/off you can find the setting by navigating to the Admin Console and clicking on the Security icon. The setting labeled Local User Store Enabled when checked will allow your company to create and administer users stored in Collibra Data Quality's internal database user store. Toggling this feature requires a restart of the web application.Adding Local UsersUsers can request access to the application from the login page by clicking the register link beneath the Sign in button.Application administrators can also create user accounts by navigating to the Admin Console and clicking on the Users icon. In either case, simply fill out the account form and a user record will be created. The user account at this stage will not have access to the application until an application administrator grants that user access to an owl role or multiple roles.Granting Local User Roles Application administrators can manage user accounts and role access by navigating to the Admin Console and clicking on the Users Icon. On that page locate the user you would like to modify and click on their username in the table of users. This will load a pop-up window that allows you to modify the user account including Enabled/Disabled as well as the roles they belong to. Click on the Roles tab to begin granting roles to the selected user. The available roles established will be listed on the left, click a role from the left-hand side to apply that role to the user. You can also add all roles by clicking the double arrow icon above the list. When you are satisfied with the role listings on the right-hand side for that user, click the Update button. There will be more on creating custom application roles in the RBAC Section of this document.Role Based Access Control (RBAC)The image below depicts Collibra Data Quality's security architecture.Whether leveraging a Local User Store, Active Directory, or using the out of the box user accounts that come with Collibra Data Quality & Observability via LDIF, security stays the same. An admin can create many ROLEs. A user, whether local user, LDIF user, or AD user can be part of one or many roles. And a ROLE maps to a data set within Collibra Data Quality.When dataset security is enabled and you want to access a dataset, or want to see, add, or remove an existing business unit for a dataset, you must have a role that is attached to that dataset.For datasets, when dataset security and default dataset owner access is enabled, a user with a role attached to a dataset or the dataset owner can:Add - User with no dataset access (with no role attached to any existing dataset) can still create a dataset. After creating it, this user (who is the default dataset owner) can see the dataset, profile, and business units, and add and remove business units to their (owned) dataset.Retrieve/See - User can retrieve/see datasets, based on dataset access.Edit - User can edit datasets, based on dataset access.Remove - User can remove datasets, based on dataset access.For business units, when dataset security and default dataset owner access is enabled, a user can:Retrieve/See - User can retrieve/see business units, based on dataset access.Edit - User can edit business units, based on dataset access.Remove - User can remove business units, based on dataset access.You must be an admin to create a business unit, which can then be added to a dataset.A unique feature within Collibra DQ is the fact that we do not store information about external user accounts. This avoids the need to sync external users from an external user store such as AD to Collibra DQ. Instead, Collibra DQ will map the external group to an internal role. From here the ROLE can be mapped to the different functionality within Collibra DQ whether they are Admins / Users / and have access to different datasets and future functionality. The other benefit is that if a specific userid within the external user store is terminated, when the user is purged from the external user store such as AD they will immediately not have access to Collibra DQ’s web application. This is because when the user logs into Collibra DQ’s web application that is backed by AD their login will interrogate AD to authenticate the user account. See logical flow below for how the group to role mappings work.RBAC UsagesCollibra DQ supports RBAC configuration with both core roles and custom roles. The following table shows the core roles of Collibra DQ's RBAC configuration:RoleAccess DescriptionROLE ADMINAllows you to modify any access, config settings, connections, and role delegation.ROLE DATA GOVERNANCE MANAGERAllows you to manage (create / update / delete) Business Units and Data Concepts.ROLE USER MANAGERAllows you to create or modify users and add users to roles.ROLE OWL ROLE MANAGERAllows you to create roles and edit role mappings to users, AD groups, and datasets.ROLE CONNECTION MANAGERAllows you to add, edit, and delete connections.ROLE DATASET MANAGERAllows you to create or modify datasets to roles and mask dataset columns.ROLE OWL CHECKThis is the only role that can run DQ scans when DQ Job Security is enabled.ROLE DATA PREVIEWThis is the only role that can view source data if Data_Preview security is enabled.ROLE DATASET TRAINThis is the only role that can train datasets if Dataset_Train security is enabled.ROLE DATASET RULESThis is the only role that can add / edit / delete rules if Dataset_Rules security is enabled.ROLE VIEW DATAControls which users can access the DQ SQL editor to run the SQL against the database.ROLE PUBLICPublic: Access to scorecards, no dataset access when dataset security is enabled.ROLE USERDo not use.ROLE SETUPDo not use.Custom roles can be added via the Role Management page by navigating to the Admin Console and clicking on the Roles Icon. Custom roles can also be added 'on the fly' during the Active Directory Role Mapping step.It is these custom roles that will determine the users that have access to data sets (including profile/rules/data preview/scoring), and database connectionsAdditional information regarding setting up Dataset and Connection security can be found in those documents respectively.SAML AuthenticationYou can integrate Collibra DQ with an existing SAML solution and have your application act as a service provider. Once you set up the environment variables, you can access and configure SAML security settings as an administrator in the SAML Setup section of the Admin Console.Set the SAML authentication propertiesBefore configuring SAML authentication, you must add the following required properties to your configurationStandalone installationAdd the properties as environment variables to your owl-env.sh file located in <installation_directory>/owl/config/.Prefix all properties with the export statement.Restart the web app. {% endtab %}Cloud native installationAdd the properties as environment variables to your owl-web ConfigMap.Recycle the pod.Required propertiesPropertyDescriptionSAML_ENABLEDWhether Collibra DQ uses SAML.If set to false, users sign in with a username and password.If set to true, SAML handles the authentication request.SAML_ENTITY_IDThe name of the application for the identity provider, for example Collibra DQ.It is an immutable unique identifier of the service provider for the identity provider (IDP).Please see CORS_ALLOWED_ORIGINS in the Optional properties section below if you have SAML configured in DQ, or if the app sits behind a load balancer.Optional properties: generalYou can further configure your SAML setup with the following optional properties.PropertyDescriptionCORS_ALLOWED_ORIGINSAllows cross-origin requests between DQ and SAML. Replace {IDP-BASE-URL} with the value of the actual IdP URL. For example, https://ping.auth.com/ Replace with the value of the actual DQ Base URL. For example, https://dq-env.com.SAML_ENTITY_BASEURLThe base URL that is provided in the service provider metadata.Set this property when you use DNS.SAML_LB_EXISTSWhether the application needs to configure a load balancer.You generally need this setting only when the Load Balancer is set for SSL Termination.The default value is false.If set to true, you must also provide a value for SAML_LB_SERVER_NAME.SAML_METADATA_USE_URLWhether Collibra DQ uses an URL or a file for the identity provider metadata.The default value is true.If set to false, the file must be accessible to the owl-web and the path provided in the Meta-Data URL field of the Meta Data Configurations section under Admin Console --> SAML Setup --> Connection.SAML_ROLES_PROP_NAMEThe attribute in which the identity provider stores the role of the user authenticating in the SAML response.The default value is memberOf.SAML_GRANT_ALL_PUBLICWhether any user authenticated by the identity provider is allowed to login the Collibra DQ application.The default value is true.SAML_USER_NAME_PROPThe name of the attribute in the SAML response that contains the username of the user who is authenticating.SAML_TENANT_PROP_NAMEIf using multi-tenant mode, the variable in which the identity provider stores the tenant name of the user authenticating in the SAML response.The app will attempt to use the RelayState parameter to identify the tenant and then fall back on this property.SAML_KEYSTORE_FILEThe path to the keystore for SSL validation.The store should contain the keypair of the identity provider for SSL verification.SAML_KEYSTORE_PASSThe password for the keystore provided in SAML_KEYSTORE_FILE.SAML_KEYSTORE_ALIASThe alias of the keypair (private and public) in the keystore used for SSL verification.SAML_MAX_AUTH_AGEThe number of seconds that an IdP authentication is accepted by the application. If the IdP authentication occurred outside this time range, the application considers the value too old to trust and the authentication is not accepted.The default is 14400 seconds (4 hours). While CORS is still an optional configuration, it is required if you have SAML configured in DQ, or if you have DQ behind a load balancer. CORS is also enforced for multi-tenancy.Optional Properties: MetadataWhen SAML_METADATA_USE_URL is set to true (default), the following additional properties are available.PropertyDescriptionSAML_METADATA_TRUST_CHECKWhether to enable Collibra DQ to do trust verification of the identity provider.The default value is false.SAML_METADATA_REQUIRE_SIGNATUREWhether Collibra DQ signs authentication requests to the identity provider.The default value is false.SAML_INCLUDE_DISCOVERY_EXTENSIONWhether to enable Collibra DQ to indicate in the SAML metadata that it’s able to consume responses from an IDP Discovery Service.The default value is false.Optional Properties: Load BalancerWhen SAML_LB_EXISTS is set to true, the following additional properties are available.PropertyDescriptionSAML_LB_INCLUDE_PORT_IN_REQUESTWhether to include the port number in the request.The default value is false.SAML_LB_PORTThe port number of the load balancer.The default value is 443.SAML_LB_SCHEMEThe protocol of the load balancer.The default value is https.SAML_LB_SERVER_NAMEThe server or DNS name.Usually, the same as SAML_ENTITY_BASEURL without specifying the protocol, for example without https://.This property is required and has no default.SAML_LB_CONTEXT_PATHAny path that may be defined on the load balancer.Example#enable SAML & show the SAML SSO option on the login page SAML_ENABLED=true #set SSL communication properties for SAML SAML_KEYSTORE_FILE=/keystore.p12 SAML_KEYSTORE_PASS=**** SAML_KEYSTORE_ALIAS=**** #in multi-tenant mode set the name of the IDP variable to hold the tenat name SAML_TENANT_PROP_NAME=tenant #set the name of the IDP variable to hold the user roles in the response SAML_ROLES_PROP_NAME=memberOf #allow login if authenticated to the IDP SAML_GRANT_ALL_PUBLIC=true #set the EntityId of the application to be supplied to the IDP SAML_ENTITY_ID=OwlOneLogin #optinally set a property that contains the username in the response SAML_USER_NAME_PROP= #optionally use a file for the IDP metadata vs a URL (default is true) SAML_METADATA_USE_URL=false #optional security settings to SAML_METADATA_TRUST_CHECK=false SAML_METADATA_REQUIRE_SIGNATURE=false SAML_INCLUDE_DISCOVERY_EXTENSION=falseDownload service provider metadata for the IDPOnce you have enabled and configured SAML authentication, you can download the service provider metadata that is required by your identity provider from https://<your_dq_environment_url>/saml/metadata.Enable the SAML sign in optionWhen you are ready with your IDP settings, add the final configuration settings in the Admin Console:Sign in as an existing administrator with a username and password to the tenant you want to configure.In the Admin Console, click SAML Setup.In the Connection tab, select the SAML Enabled checkbox.In the Meta Data Configurations section, click +Add.Enter the required information.OptionDescriptionMeta-Data URLThe URL of the identity provider metadata XML file or the location of the downloaded XML file, depending on how you configured the SAML_METADATA_USE_URL property.Meta-Data LabelThe name for this specific configuration.IDP URLThe URL of the Collibra DQ application that is provisioned by the identity provider.Click Save. Once you complete this setup, restart your application and sign in using the SAML SSO option. SAML SSO authentication via the /v3/auth/signin API is not supported.Multi-tenancy support through SAML RelayStateAs of Collibra DQ version 2021.11, in a multi-tenant environment, you can help route SSO to the proper tenant with the SAML provided RelayState property.When set, the property is sent to the IDP and then returned to the consumer service, such as /saml/SSO. The application checks that value to ensure the correct tenant is set up.You can set the RelayState property in the in the SAML Setup section of the Admin Console.Securing PasswordsSecurity is of the utmost importance for Collibra DQ and our customers. To avoid sending plain text passwords when you run DQ Jobs from the command line, you can encrypt passwords instead. To encrypt your password, execute the following command:owlmanage.sh encrypt=passwordThe output password should look similar to the following example:Q+Ri1S+ljpG+fDefXLY4/vXtUosspAoLYou can use this password in any DQ Job from the command line where you would normally use a plain text password. The following is an example of a DQ Job with an encrypted password instead of a plain text password:./owlcheck -q SELECT id, browser->'$.name' browser FROM events -c jdbc:mysql://54.212.36.218:2212/test -u owl -p Q+Ri1S+ljpG+fDefXLY4/vXtUosspAoL -driver com.mysql.cj.jdbc.Driver -lib /opt/owl/drivers/mysql8 -ds jsonremotemysql -rd 2022-07-25 If you run a DQ Job from within the DQ Web UI, it automatically encrypts your password, eliminating the need to manually encrypt it. For added security, all passwords are masked in the logs and plain text passwords are never stored.SSL Setup (HTTPS)By Default Collibra DQ has plain HTTP enabled for testing. When you are ready to enable SSL for the web application you can set the following environment variables in owl-env.sh to enable HTTPS.The settings listed at the bottom of this page will disable un-secure HTTP, enable secure HTTPS, and allow you to point to your certificate key store + credentials. *A restart of the web-application is required.Before starting please have an accessible key store.export SERVER_SSL_KEY_STORE: <path to your key store>You can call Collibra DQ's built in 256-bit encryption for the SERVER_SSL_KEY_PASS value from the bin directory: ./owlmanage.sh encrypt=<sensitive plain text string>Use the response value instead of the plain text value to secure your password.export SERVER_SSL_KEY_PASS:<secure result from owl encryption script>export SERVER_HTTP_ENABLED:falseexport SERVER_HTTPS_ENABLED:trueexport SERVER_REQUIRE_SSL:true ####START KEYSTORE SETTINGS####export SERVER_SSL_KEY_TYPE:PKCS12#SET PATH TO KEYSTOREexport SERVER_SSL_KEY_STORE:KeystorePathHereexport SERVER_SSL_KEY_PASS:*******export SERVER_SSL_KEY_ALIAS:keystoreAliasNameHereThe most common SSL types are JKS and PKCS12Don't forget to restart the web application from the bin directory: ./owlmanage.sh restart=owlweb
	 Collibra DQ Legal

