
Output Module

Hitchhiker's Guide

Version 2022.08

i

The Hitchhiker’s Guide to the Output Module

Revision: 04 Aug 2022

You can find the most up-to-date technical documentation on our Developer portal at

https://developer.collibra.com/rest/output-module/

© 2022 Collibra. All Rights Reserved.

https://developer.collibra.com/rest/output-module/

Contents

ii

Contents ii

What's new 1

Introduction 2

Prerequisites 3

Terminology 3

The Output Module query language 5

Getting started 7

Add related entities to the tree 10

Specify an entity alias 13

Add a related entity more than once 15

Add filtering 20

Sort the results 28

Differentiate selected properties from properties required in a filter clause 32

Strip HTML from text results 34

Filtering operators 35

Boolean operators 42

Filter properties 45

Virtual properties 45

Clarify the relationship between two entities 46

Page the results 48

Map the results to a tabular format 50

Set an execution timeout 60

Structural validation of the query 63

API endpoints and query formats 66

Endpoints and formats 67

ViewConfig/TableViewConfig and formats 67

Single query and multi-query 67

Entities, properties and relations 69

Entity 69

Resource 69

Representation 70

Organization 72

Community 74

ParentCommunity 74

Domain 74

DomainType 75

ChildDomainTypes 75

RelationType 76

Relation 77

ComplexRelation 78

ComplexRelationType 79

ComplexRelationLegType 80

ComplexRelationAttributeType 80

Asset 81

SourceAsset 83

TargetAsset 84

SourceAssetType 84

TargetAssetType 84

AssetType 84

iii

ChildAssetTypes 86

Attribute 86

StringAttribute 87

ScriptAttribute 87

SingleValueListAttribute 87

MultiValueListAttribute 88

BooleanAttribute 88

NumericAttribute 88

DateTimeAttribute 89

DateAttribute 89

AttributeType 89

User 90

Email 95

Phone 95

InstantMessagingAccount 96

Website 96

Address 97

Group 97

Responsibility 98

Role 99

Status 99

WorkflowTaskInfo (deprecated) 99

Mapping 100

Tag 101

DataQualityRule (deprecated) 101

Scope 102

iv

Comment 102

ParentComment 103

DataType (deprecated) 103

AdvancedDataType (deprecated) 104

DataTypePattern (deprecated) 105

DataTypeMatch (deprecated) 105

BaseView (deprecated) 106

View (deprecated) 106

DiagramPicture (deprecated) 107

DiagramPictureSharingRule (deprecated) 107

AssignmentRule (deprecated) 108

v

1

What's new
l The Community and Domain entities are now extensions of Organization. (January
2022)

l The Output Module API uses the same terminology as the user interface. (Septem-
ber 2021)

l The guide now contains YAML examples.
l References to the deprecated REST API v1 were removed.
l The Timeout mechanism is described.
l The Result limit mechanism is described.
l The API endpoints are described.

Chapter 1

2

Introduction
The Output Module is a lightweight graph query engine exposed through the public API. It
allows different output formats, such as JSON, XML, Excel, and CSV. It also provides a
single API to query most of the Collibra entities, such as assets, communities, domains
and types, using SQL-like filtering capabilities. You can sort entities using any of the
available properties and page results and view permissions for authenticated users who
issue REST calls.

Chapter 2

3

Prerequisites
Before you begin using the query language used in the Output Module, you must
understand the Collibra API model and how to execute REST calls. This guide shows
examples that query the REST API but does not explain how to execute REST calls. Refer
to external online resources for tutorials and instructional resources.

Terminology
The Collibra API model was based on the Semantics of Business Vocabulary and Rules
(SBVR) standard. Over time, the user interface adopted a simpler terminology set that
aligns with Collibra concepts. Since version 2021.09 (5.7.10 for on-premisses), the Output
Module API uses the same terminology as the user interface while the legacy one is
deprecated.

The following table lists the renamed terminology:

Deprecated Current

Term Asset

ConceptType AssetType

ConceptTypeSpecializedConcepts ChildAssetTypes

Vocabulary Domain

VocabularyType DomainType

VocabularyTypeSpecializedConcepts ChildDomainTypes

Source SourceAsset

Chapter 3

Chapter 3

Deprecated Current

Target TargetAsset

BinaryFactType RelationType

HeadTerm SourceAssetType

TailTerm TargetAssetType

Member Responsibility

Tip Use only the new terminology.

4

5

The Output Module query language
The API model has a set of well-defined entities and relations that allow you to create a
single-rooted tree graph query and specify constraints that must exist for any of the
resulting nodes, such as results filtering.

For example, to query all assets of type Business Term and their respective domain and
community, specify the following tree graph:

Chapter 4

Chapter 4

Note
l The graph is a single-rooted tree graph.
l Multiple root nodes are not allowed.
l Each node has one parent.
l For each of the selected properties, you must specify a unique alias within the
graph query.

l Filtering is specified on the node you want to filter and can reference any
property of the current node of a child or grandchildren. The example above
shows assets filtered by their related AssetType name.

In this chapter

Getting started 7

Add related entities to the tree 10

Specify an entity alias 13

Add a related entity more than once 15

Add filtering 20

Sort the results 28

Differentiate selected properties from properties required in a filter clause 32

Strip HTML from text results 34

Filtering operators 35

Boolean operators 42

Filter properties 45

Virtual properties 45

Clarify the relationship between two entities 46

Page the results 48

Map the results to a tabular format 50

Set an execution timeout 60

Structural validation of the query 63

6

Getting started
The format of the query language is either JSON or YAML. For simplicity, this example
starts with a basic query and builds from there.

Select the Id and Name for all communities as a flat list. The object representing the query
is called ViewConfig, as it defines a particular view, which is a selection of the data. The
object containing the graph part of the query is called Resources.

The following example shows the Community entity along with its Id and Name properties.

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "name": "Communities", <---\
 "Id": { "name": "community id" }, ---- a
node can (or must) have a name. Thus the community own 'name'
property must be uppercased to avoid conflicts.
 "Name": { "name": "community name" } <---/
 }
 }
 }
}

YAML

ViewConfig:
 Resources:
 Community:
 name: "Communities" <---\
 Id: ---- a node can (or
must) have a name. Thus the community own 'name' property must
be uppercased to avoid
 name: "community id"
 Name: <---/
 name: "community name"

Chapter 4

7

Chapter 4

Note
l Entity and property keys are case insensitive, so Community and Id can be
written in any case.

l The other keys are case sensitive. For example, ViewConfig, Resources or
Namemust be written as shown.

l If a property is spelled out the same way as a reserved keyword, you must use
a different casing than the reserved key. For example, you use lowercase
name as the node name and capitalized Name as the community name.

Test the API
To test the API, use a REST client, such as the Postman plugin for Chrome. Many output
formats are available, but the JSON tree is the format that most resembles the query.

This example uses the following endpoint on the OutputView resource:

l {{domain}}/rest/2.0/outputModule/export/json

Use a POST call with the following body.

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "Id": {
 "name": "community id"
 },
 "Name": {
 "name": "community name"
 }
 }
 }
 }
}

8

YAML

ViewConfig:
 Resources:
 Community:
 Id:
 name: "community id"
 Name:
 name: "community name"

Note Remember to set the content type header.

JSON

'Content-Type': 'application/json'

YAML

'Content-Type': 'application/x-yaml'

The output is formatted as an array of communities.

{
"view": {

"Community0": [
{

"communityId": "c87f166e-041f-4bea-8ff7-c1ffbab2ceeb",
"communityName": "First Community"

},
{

"communityId": "86a745f5-7e87-4851-a107-a3a272ccea0b",
"communityName": "Second Community"

}
]

}
}

Chapter 4

9

Chapter 4

You can use the ViewConfig queries with the following endpoints:

l {{domain}}/rest/2.0/outputModule/export/{{xml | json}}

l {{domain}}/rest/2.0/outputModule/export/{{xml | json}}-file

l {{domain}}/rest/2.0/outputModule/export/{{xml | json}}-job

Add related entities to the tree
Use this query example to add the users that have been assigned a role at the community
level. To reach those entities, you must retrieve the Responsibility entities that
represent the assignments between a user, a role and one of the following resources:

l Asset
l Domain
l Community

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "Id": { "name": "community id" },
 "Name": { "name": "community name" },
 "Responsibility": {
 "User": {
 "Id": { "name": "user id" },
 "FirstName": { "name": "first name" },
 "LastName": { "name": "last name" }
 },
 "Role": {
 "Signifier": { "name": "role name" }
 }
 }
 }
 }
 }
}

10

YAML

ViewConfig:
 Resources:
 Community:
 Id:
 name: "community id"
 Name:
 name: "community name"
 Responsibility:
 User:
 Id:
 name: "user id"
 FirstName:
 name: "first name"
 LastName:
 name: "last name"
 Role:
 Signifier:
 name: "role name"

Navigating from one entity to another requires nesting the entities. For a complete list of
properties and relations for each entity, see Entities, properties and relations.

The following is an example of how the results is formatted.

{
"view": {

"Community0": [
{

"communityId": "c87f166e-041f-4bea-8ff7-c1ffbab2ceeb",
"communityName": "First Community"

},
{

"communityId": "12345678-0020-0000-0000-000000000000",
"communityName": "Second Community",
"Responsibility1": [

{
"User2": [

{
"userId": "00000000-0000-0000-0000-

000000900002",
"firstName": "Admin",

Chapter 4

11

Chapter 4

"lastName": "Istrator"
}

],
"Role3": [

{
"roleName": "Admin"

}
]

},
{

"User2": [
{

"userId": "00000000-0000-0000-0000-
000000900002",

"firstName": "Admin",
"lastName": "Istrator"

}
],
"Role3": [

{
"roleName": "Steward"

}
]

}
]

}
]

}
}

Note
l The ViewConfig result tree always uses arrays for related entities, even
when relations have a max cardinality of 1.

l Each responsibility has a maximum of one user and one role , even when
arrays return.

l The results tree uses a generated entity alias in the response. For example,
Community0, Responsibility1 or User2.

l To prevent duplicate names in the JSON keys, an index number is
concatenated to the entity name.

l The relationship from community to responsibility is optional. The query
engine recognizes optional and required relations between entities, which is
why First Community appears even when no users have roles.

12

Specify an entity alias
Auto-generated aliases in the response are not straightforward. For example,
Community0, Responsibility1 or User2. For this reason, you must specify an alias.

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "name": "community",
 "Id": { "name": "community id" },
 "Name": { "name": "community name" },
 "Responsibility": {
 "name": "responsibility",
 "User": {
 "name": "employee",
 "Id": { "name": "user id" },
 "FirstName": { "name": "first name" },
 "LastName": { "name": "last name" }
 },
 "Role": {
 "name": "role",
 "Signifier": { "name": "role name" }
 }
 }
 }
 }
 }
}

Chapter 4

13

Chapter 4

YAML

ViewConfig:
 Resources:
 Community:
 name: "community"
 Id:
 name: "community id"
 Name:
 name: "community name"
 Responsibility:
 name: "responsibility"
 User:
 name: "employee"
 Id:
 name: "user id"
 FirstName:
 name: "first name"
 LastName:
 name: "last name"
 Role:
 name: "role"
 Signifier:
 name: "role name"

The results should then parse like the example below.

{
"view": {

"community": [
{

"communityId": "c87f166e-041f-4bea-8ff7-c1ffbab2ceeb",
"communityName": "First Community"

},
{

"communityId": "12345678-0020-0000-0000-000000000000",
"communityName": "Second Community",
"responsibility": [

{
"employee": [

{
"userId": "00000000-0000-0000-0000-

000000900002",
"firstName": "Admin",
"lastName": "Istrator"

14

}
],
"role": [

{
"roleName": "Admin"

}
]

},
{

"employee": [
{

"userId": "00000000-0000-0000-0000-
000000900002",

"firstName": "Admin",
"lastName": "Istrator"

}
],
"role": [

{
"roleName": "Steward"

}
]

}
]

}
]

}
}

Add a related entity more than once
To understand what roles users have in communities, you must query the groups that are
linked through a responsibility.

To add another relation from community to responsibility, select the related groups.

This example shows the Id property of the two-responsibility nodes selected.

Chapter 4

15

Chapter 4

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "Id": { "name": "communityId" },
 "Name": { "name": "communityName" },
 "Responsibility": [

{
 "Id": { "name": "userResponsibilityId" },
 "User": {
 "Id": { "name": "userId" },
 "FirstName": { "name": "firstName" },
 "LastName": { "name": "lastName" }
 },
 "Role": {
 "Signifier": { "name": "userRoleName" }
 }
 },

{
 "Id": { "name": "groupResponsibilityId" },
 "Group": {
 "Id": { "name": "groupId" },
 "GroupName": { "name": "groupName" }
 },
 "Role": {
 "Signifier": { "name": "groupRoleName" }
 }
 }
]
 }
 }
 }
}

16

YAML

ViewConfig:
 Resources:
 Community:
 Id:
 name: "communityId"
 Name:
 name: "communityName"
 Responsibility:
 - Id:
 name: "userResponsibilityId"
 User:
 Id:
 name: "userId"
 FirstName:
 name: "firstName"
 LastName:
 name: "lastName"
 Role:
 Signifier:
 name: "userRoleName"
 - Id:
 name: "groupResponsibilityId"
 Group:
 Id:
 name: "groupId"
 GroupName:
 name: "groupName"
 Role:
 Signifier:
 name: "groupRoleName"

To add the same related entity twice under the same node, change the JSON object into
an array. In this case, the Responsibility JSON object became an array, and the
anonymous JSON objects composing the array are multiple responsibilities.

If you add the admin group to the second community, the results would be formatted
similar to the example below.

{
"view": {

"Community0": [

Chapter 4

17

Chapter 4

{
"communityId": "c87f166e-041f-4bea-8ff7-c1ffbab2ceeb",
"communityName": "First Community"

},
{

"communityId": "12345678-0020-0000-0000-000000000000",
"communityName": "Second Community",
"Responsibility1": [

{
"userResponsibilityId": "0ecb2fff-d5de-43d0-be60-

f7f201c10d41",
"User2": [

{
"userId": "00000000-0000-0000-0000-

000000900002",
"firstName": "Admin",
"lastName": "Istrator"

}
],
"Role3": [

{
"roleName": "Admin"

}
]

},
{

"userResponsibilityId": "42b9d114-2c0c-4e96-a1ce-
b645d5e92365",

"User2": [
{

"userId": "00000000-0000-0000-0000-
000000900002",

"firstName": "Admin",
"lastName": "Istrator"

}
],
"Role3": [

{
"roleName": "Steward"

}
]

},
{

"groupResponsibilityId": "5fc0cc5f-e30e-488c-94bc-
acdea171219d",

"User2": [
{}

],
"Role3": [

{

18

"roleName": "Admin"
}

]
}

],
"Responsibility4": [

{
"userResponsibilityId": "0ecb2fff-d5de-43d0-be60-

f7f201c10d41",
"Group5": [

{}
],
"Role6": [

{
"groupRoleName": "Admin"

}
]

},
{

"userResponsibilityId": "42b9d114-2c0c-4e96-a1ce-
b645d5e92365",

"Group5": [
{}

],
"Role6": [

{
"groupRoleName": "Steward"

}
]

},
{

"groupResponsibilityId": "5fc0cc5f-e30e-488c-94bc-
acdea171219d",

"Group5": [
{

"groupId": "4eb1f4a9-14a3-4539-8afc-
733925161179",

"groupName": "admin"
}

],
"Role6": [

{
"groupRoleName": "Admin"

}
]

}
]

}
]

}

Chapter 4

19

Chapter 4

}

Note In the example above, the userResponsibilityId and
groupResponsibilityId values contain three unique values in total: two related
to a user and one to a group. When no further filtering is requested, adding the
same entity twice means selecting the same thing twice. The result is one empty
user for the responsibility linked to the group and two empty groups for each
responsibility linked to a user.

Add filtering
To discard irrelevant responsibility results, use filtering.

20

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "Id": { "name": "communityId" },
 "Name": { "name": "communityName" },
 "Responsibility": [

{
 "Id": { "name": "userResponsibilityId" },
 "User": {
 "Id": { "name": "userId" },
 "FirstName": { "name": "firstName" },
 "LastName": { "name": "lastName" }
 },
 "Role": {
 "Signifier": { "name": "userRoleName" }
 },
 "Filter": { "Field": { "name": "userId", "operator":
"NOT_NULL" } }
 },

{
 "Id": { "name": "groupResponsibilityId" },
 "Group": {
 "Id": { "name": "groupId" },
 "GroupName": { "name": "groupName" }
 },
 "Role": {
 "Signifier": { "name": "groupRoleName" }
 },
 "Filter": { "Field": { "name": "groupId",
"operator": "NOT_NULL" } }
 }
]
 }
 }
 }
}

Chapter 4

21

Chapter 4

YAML

ViewConfig:
 Resources:
 Community:
 Id:
 name: "communityId"
 Name:
 name: "communityName"
 Responsibility:
 -
 Id:
 name: "userResponsibilityId"
 User:
 Id:
 name: "userId"
 FirstName:
 name: "firstName"
 LastName:
 name: "lastName"
 Role:
 Signifier:
 name: "userRoleName"
 Filter:
 Field:
 name: "userId"
 operator: "NOT_NULL"
 -
 Id:
 name: "groupResponsibilityId"
 Group:
 Id:
 name: "groupId"
 GroupName:
 name: "groupName"
 Role:
 Signifier:
 name: "groupRoleName"
 Filter:
 Field:
 name: "groupId"
 operator: "NOT_NULL"

Filter is a reserved key. The example above first includes a userId is not null" filtering
clause to show responsibilities with a related user by (More on available filters later in this

22

guide). Then, select the related responsibilities again, this time only keeping those with a
related group.

{
"view": {

"Community0": [
{

"communityId": "c87f166e-041f-4bea-8ff7-c1ffbab2ceeb",
"communityName": "First Community"

},
{

"communityId": "12345678-0020-0000-0000-000000000000",
"communityName": "Second Community",
"Responsibility1": [

{
"userResponsibilityId": "0ecb2fff-d5de-43d0-be60-

f7f201c10d41",
"User2": [

{
"userId": "00000000-0000-0000-0000-

000000900002",
"firstName": "Admin",
"lastName": "Istrator"

}
],
"Role3": [

{
"roleName": "Admin"

}
]

},
{

"userResponsibilityId": "42b9d114-2c0c-4e96-a1ce-
b645d5e92365",

"User2": [
{

"userId": "00000000-0000-0000-0000-
000000900002",

"firstName": "Admin",
"lastName": "Istrator"

}
],
"Role3": [

{
"roleName": "Steward"

}
]

}
],
"Responsibility4": [

Chapter 4

23

Chapter 4

{
"groupResponsibilityId": "5fc0cc5f-e30e-488c-94bc-

acdea171219d",
"Group5": [

{
"groupId": "4eb1f4a9-14a3-4539-8afc-

733925161179",
"groupName": "admin"

}
],
"Role6": [

{
"groupRoleName": "Admin"

}
]

}
]

}
]

}
}

Note In the result tree, Responsibility1 shows all related users and
Responsibility4 only contains the groups.

Filtering performance considerations
When a to-many relation is traversed in the query tree, performance is impacted because
a new query is made against the Collibra internal storage engine. In the above example,
the relation between the community and responsibility entities is of the to-many kind
because a community can have many related responsibilities. Depending on the shape
and amount of results, the performance penalty can range from completely irrelevant to a
sizeable chunk added to the overall query time.

Here is the optimal way to query.

24

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "Id": { "name": "communityId" },
 "Name": { "name": "communityName" },
 "Responsibility": {
 "Id": { "name": "responsibilityId" },
 "User": {
 "Id": { "name": "userId" },
 "FirstName": { "name": "firstName" },
 "LastName": { "name": "lastName" }
 },
 "Group": {
 "Id": { "name": "groupId" },
 "GroupName": { "name": "groupName" }
 },
 "Role": {
 "Signifier": { "name": "roleName" }
 }
 }
 }
 }
 }
}

Chapter 4

25

Chapter 4

YAML

ViewConfig:
 Resources:
 Community:
 Id:
 name: "communityId"
 Name:
 name: "communityName"
 Responsibility:
 Id:
 name: "ResponsibilityId"
 User:
 Id:
 name: "userId"
 FirstName:
 name: "firstName"
 LastName:
 name: "lastName"
 Group:
 Id:
 name: "groupId"
 GroupName:
 name: "groupName"
 Role:
 Signifier:
 name: "roleName"

The results should be formatted like the example below.

{
"view": {

"Community0": [
{

"communityId": "c87f166e-041f-4bea-8ff7-c1ffbab2ceeb",
"communityName": "First Community"

},
{

"communityId": "12345678-0020-0000-0000-000000000000",
"communityName": "Second Community",
"Responsibility1": [

{
"responsibilityId": "0ecb2fff-d5de-43d0-be60-

f7f201c10d41",
"User2": [

26

{
"userId": "00000000-0000-0000-0000-

000000900002",
"firstName": "Admin",
"lastName": "Istrator"

}
],
"Group3": [

{}
],
"Role4": [

{
"roleName": "Admin"

}
]

},
{

"responsibilityId": "42b9d114-2c0c-4e96-a1ce-
b645d5e92365",

"User2": [
{

"userId": "00000000-0000-0000-0000-
000000900002",

"firstName": "Admin",
"lastName": "Istrator"

}
],
"Group3": [

{}
],
"Role4": [

{
"roleName": "Steward"

}
]

},
{

"responsibilityId": "5fc0cc5f-e30e-488c-94bc-
acdea171219d",

"User2": [
{}

],
"Group3": [

{
"groupId": "4eb1f4a9-14a3-4539-8afc-

733925161179",
"groupName": "admin"

}
],
"Role4": [

Chapter 4

27

Chapter 4

{
"roleName": "Admin"

}
]

}
]

}
]

}
}

Sort the results
Use the Order clause to sort results. Just like filters, Order references one or more
declared fields on the entity to be sorted or one of its children, or grandchildren.

Use the ASC, which is the default, and DESC constants to request ordering in ascending or
descending order.

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "Id": { "name": "communityId" },
 "Name": { "name": "communityName" },
 "Order": [

{ "Field": { "name": "communityName", "order": "ASC" }
}
]
 }
 }
 }
}

28

YAML

ViewConfig:
 Resources:
 Community:
 Id:
 name: "communityId"
 Name:
 name: "communityName"
 Order:
 -
 Field:
 name: "communityName"
 order: "ASC"

The following example shows assets ordered by the name of a related entity.

JSON

{
 "ViewConfig": {
 "Resources": {
 "Asset": {
 "Id": { "name": "id" },
 "Signifier": { "name": "name" },
 "Relation": {
 "type": "SOURCE",
 "TargetAsset": {
 "Id": { "name": "targetRelatedAssetId" },
 "Signifier": { "name": "targetRelatedAsset" }
 }
 },
 "Order": [

{ "Field": { "name": "targetRelatedAsset", "order":
"ASC" } }
]
 }
 }
 }
}

Chapter 4

29

Chapter 4

YAML

ViewConfig:
 Resources:
 Asset:
 Id:
 name: "id"
 Signifier:
 name: "name"
 Relation:
 type: "SOURCE"
 TargetAsset:
 Id:
 name: "targetRelatedAssetId"
 Signifier:
 name: "targetRelatedAsset"
 Order:
 -
 Field:
 name: "targetRelatedAsset"
 order: "ASC"

The type property on the relation allows you to determine which relationship is used when
navigating from the parent asset to the relation. In the example above, there might be
more than one targetRelatedAsset for each source asset. The query engine orders the
related target assets first and uses the first value to order the parent assets. Similar to
filtering, the order clause only affects the entities on which it is set. In the example, the
targetRelatedAssets is not sorted. To sort, you must add another ordering clause on
the Relation entity.

You should not sort on the target asset node because ordering only makes sense in a
collection. If an asset is the source for many relations and the relation has one target
asset, you must sort the collection of relations, not the related target asset directly.

The following query example sorts both collections.

Note For simplicity, this query has no filtering. Executing filtering would return all
assets and all relations available in Collibra.

30

JSON

{
 "ViewConfig": {
 "Resources": {
 "Asset": {
 "Id": { "name": "id" },
 "Signifier": { "name": "name" },
 "Relation": {
 "type": "SOURCE",
 "TargetAsset": {
 "Id": { "name": "targetRelatedAssetId" },
 "Signifier": { "name": "targetRelatedAsset" }
 },
 "Order": [

{ "Field": { "name": "targetRelatedAsset", "order":
"ASC" } }
]
 },
 "Order": [

{ "Field": { "name": "targetRelatedAsset", "order":
"ASC" } }
]
 }
 }
 }
}

Chapter 4

31

Chapter 4

YAML

ViewConfig:
 Resources:
 Asset:
 Id:
 name: "id"
 Signifier:
 name: "name"
 Relation:
 type: "SOURCE"
 TargetAsset:
 Id:
 name: "targetRelatedAssetId"
 Signifier:
 name: "targetRelatedAsset"
 Order:
 -
 Field:
 name: "targetRelatedAsset"
 order: "ASC"
 Order:
 -
 Field:
 name: "targetRelatedAsset"
 order: "ASC"

Differentiate selected properties from
properties required in a filter clause
To find the most recently created users, query the CreatedOn property and add a filter that
uses the greater than operator. Adding the CreatedOn property to the tree also selects
that property.

In cases where you only want the user ID and first and last name, tell the query engine not
to return the CreatedOn property and use it in the filter.

Note CreatedOn is a date expressed as the number of milliseconds since
1/1/1970.

32

JSON

{
 "ViewConfig": {
 "Resources": {
 "User": {
 "Id": { "name": "userId" },
 "FirstName": { "name": "firstName" },
 "LastName": { "name": "lastName" },
 "CreatedOn": { "name": "createdOn", "hidden": true },
 "Filter": { "Field": { "name": "createdOn", "operator":
"GREATER", "value": "1440492290300" } }
 }
 }
 }
}

YAML

ViewConfig:
 Resources:
 User:
 Id:
 name: "userId"
 FirstName:
 name: "firstName"
 LastName:
 name: "lastName"
 CreatedOn:
 name: "createdOn"
 hidden: true
 Filter:
 Field:
 name: "createdOn"
 operator: "GREATER"
 value: "1440492290300"

Note Using hidden: true on a property removes that property from the results.
The default value is false.

Chapter 4

33

Chapter 4

{
"view": {

"User": [
{

"userId": "9546bbe9-7299-4a99-bfd2-
d97f8256c201",

"firstName": "Patrick",
"lastName": "Star"

},
{

"userId": "d9f3cc67-0db7-4aa5-a246-
e83a62ea5c62",

"firstName": "SpongeBob",
"lastName": "SquarePants"

}
]

}
}

Strip HTML from text results
Saved values from Collibra also includes HTML formatting tags. Although not visible to
users, the user interface uses the tags to format data. These tags are also included when
you query data and may look like garbage in Excel reports.

The example below shows how to strip out the HTML formatting tags, leaving only the
values.

JSON

{
 "ViewConfig": {
 "Resources": {
 "Community": {
 "Id": { "name": "communityId" },
 "Name": { "name": "communityName" },
 "Description": { "name": "communityDescription",
"stripHtml": true }
 }
 }
 }
}

34

YAML

ViewConfig:
 Resources:
 Community:
 Id:
 name: "communityId"
 Name:
 name: "communityName"
 Description:
 name: "communityDescription"
 stripHtml: true

Note Use stripHtml on any text field. When true, the returned value is stripped
from the HTML tags.

Filtering operators

Operator Reverse
Operator

Parameters Type com-
patibility

Description

EQUALS NOT_
EQUALS

1 Text, Number,
Boolean

Equal/not equal to the
value.

STARTS_
WITH

NOT_
STARTS_
WITH

1 Text The text starts/does
not start with char-
acters.

Chapter 4

35

Chapter 4

Operator Reverse
Operator

Parameters Type com-
patibility

Description

STARTS_
WITH_DIGIT

/ Optional Text The text starts with a
digit. The optional para-
meter is a pair of upper
and lower
boundaries separated
by a comma. For
example, "3, 8" means
any digit from 3 to 8 is
included.

ENDS_
WITH

NOT_ENDS_
WITH

1 Text The text ends/does not
end with characters.

INCLUDES NOT_
INCLUDES

1 Text The text contains/does
not contain the char-
acters.

LESS GREATER 1 Number The value is strictly
less than/greater than
the value.

LESS_OR_
EQUALS

GREATER_
OR_EQUALS

1 Number The value is less than
or equal to/greater than
or equal to the value.

BETWEEN / 2 Number The value is included
within the values.

NULL NOT_NULL None Text, Number,
Boolean

Absence/presence of
value.

IN NOT_IN Collection Text, Number,
Boolean

The value is in/not in
the set of values.

36

Operator Reverse
Operator

Parameters Type com-
patibility

Description

EXISTS NOT_
EXISTS

1 (optional) n/a See below.

CR_
FILTER_
DOMAIN

 / 1 n/a ComplexRelation

specific filter. Includes
only complex relations
with at least one
related asset in the
domain.

The following table shows samples for each operator.

Operator Example

EQUALS
{ "Field": { "name": "domainName", "operator":
"EQUALS", "value": "New Business Terms" } }

STARTS_
WITH { "Field": { "name": "domainName", "operator":

"STARTS_WITH", "value": "New" } }

STARTS_
WITH_DIGIT { "Field": { "name": "assetName", "operator":

"STARTS_WITH_DIGIT" } }

ENDS_WITH
{ "Field": { "name": "domainName", "operator":
"ENDS_WITH", "value": "Terms" } }

Chapter 4

37

Chapter 4

Operator Example

INCLUDES
{ "Field": { "name": "domainName", "operator":
"CONTAINS", "value": "Bus" } }

LESS
{ "Field": { "name": "lastModified", "operator":
"GREATER", "value": "1440492290300" } }

LESS_OR_
EQUALS { "Field": { "name": "lastModified", "operator":

"GREATER_OR_EQUALS", "value": "1440492290300" }
}

BETWEEN
{ "Field": { "name": "lastModified", "operator":
"BETWEEN", "values": ["1440492290300",
"1440493000000" } }

NULL
{ "Field": { "name": "description", "operator":
"NULL" } }

IN
{ "Field": { "name": "statusName", "operator":
"IN", "values": ["New", "In Review"] } }

EXISTS
{ "Field": { "target": "RelationSource", "oper-
ator": "EXISTS", "value": "00000000-0000-0000-
0000-000000007001", "name": "assetId" } }

38

Operator Example

CR_FILTER_
DOMAIN { "Field": { "operator": "CR_FILTER_DOMAIN",

"value": "00000000-0000-0000-0000-000000006013"
} }

EXISTS/NOT_EXISTS filter
In the context of a graph query, the EXISTS filter tests the existence of a relationship with
another entity. This is the only filter that is explicitly limited to filtering on an entity located
directly under the filtered node. To specify which relation should exist/not exist, the filter
has a target key.

You can also pass a parameter to the EXISTS filter. This parameter is used as a
secondary filtering element. To query the assets with an attribute of type Description,
use the EXISTS filter on the asset with target value Attribute and also the Id of the
Description type in the value key of the filter.

The table below lists the possible target values and the expected value type for optional
parameters.

Filtered
Entity

Target value Optional Para-
meter

Description

Community,
Domain,
Asset

Responsibility Role Id Filter resources
related/not related to a
responsibility. Optionally,
only responsibilities
related to the Role Id.

Asset Relation RelationType
Id

Filter assets that are/are
not the source or target of
a relation. Optionally, only
relations related to the
RelationType Id.

Chapter 4

39

Chapter 4

Filtered
Entity

Target value Optional Para-
meter

Description

Asset RelationSource RelationType
Id

Filter assets that are/are
not the "source " of a rela-
tion. Optionally, only rela-
tions related to the
RelationType Id.

Asset RelationTarget RelationType
Id

Filter assets that are/are
not " target" of a relation.
Optionally, only relations
related to the Rela-
tionType Id.

Asset Attribute AttributeType
Id

Filter assets that have/do
not have an attribute.
Optionally, only attributes
related to the Attrib-
uteType Id.

Asset StringAttribute AttributeType
Id

Filter assets that have/do
not have a StringAttribute.
Optionally, only StringAt-
tributes related to the
AttributeType Id.

Asset SingleValueListAttribute AttributeType
Id

Filter assets that have/do
not have a
SingleValueListAttribute.
Optionally, only
SingleValueListAttributes
related to the Attrib-
uteType Id.

40

Filtered
Entity

Target value Optional Para-
meter

Description

Asset MultiValueListAttribute AttributeType
Id

Filter assets that have/do
not have a
MultiValueListAttribute.
Optionally, only
MultiValueListAttribute
related to the Attrib-
uteType Id.

Asset BooleanAttribute AttributeType
Id

Filter assets that have/do
not have a BooleanAt-
tribute. Optionally, only
BooleanAttributes related
to the AttributeType Id.

Asset NumericAttribute AttributeType
Id

Filter assets that have/do
not have a Numer-
icAttribute. Optionally,
NumericAttributes related
to the AttributeType Id.

Asset DateTimeAttribute AttributeType
Id

Filter assets that have/do
not have a DateTimeAt-
tribute. Optionally, only
DateTimeAttributes
related to the Attrib-
uteType Id.

Note The EXISTS/NOT_EXISTS filters are exclusively for communities, domains
and assets.

Chapter 4

41

Chapter 4

Filtering in Hierarchy
When the EQUALS/NOT_EQUALS and IN/NOT_IN operators are used in conjunction with
an Id property of an asset, a RelationType or a Community can take an additional
descendants: true parameter. When true, the query engine will force an IN or NOT_IN
filter and add all Ids from the child assets, relation types or communities. This allows
selecting the following assets.

l All assets under a community, including the subcommunities.
l All assets that are of type "X" or one of its subtypes.

Boolean operators
You can combine the filtering operators using Boolean operators. Combining Boolean
operators results in a logical binary tree of possibilities. Because the binary tree is not easy
to read, the ViewConfig provides a way of specifying a Named Logical Array.

JSON

"Filter": {
 "AND": [

{ "Field": { "name": "domainId", "operator":
"EQUALS", "value": "02204077-1cd1-4c70-a7c4-4cd845194b81" } },

{ "Field": { "name": "assetId", "operator":
"EXISTS", "value": "00000000-0000-0000-0000-000000007001",
"target": "RelationSource" } },

{ "Field": { "name": "statusName", "operator": "IN",
"values": ["New", "In Review"] } }
]
 }

42

YAML

Filter:
 AND:
 -
 Field:
 name: "domainId"
 operator: "EQUALS"
 value: "02204077-1cd1-4c70-a7c4-4cd845194b81"
 -
 Field:
 name: "assetId"
 operator: "EXISTS"
 value: "00000000-0000-0000-0000-000000007001"
 target: "RelationSource"
 -
 Field:
 name: "statusName"
 operator: "IN"
 values:
 - "New"
 - "In Review"

Note Filtering elements bundled together in a named array, are logically combined
using the name of the array: either AND or OR. You can also nest these logical
arrays, allowing all possible Boolean combinations.

Chapter 4

43

Chapter 4

JSON

"Filter": {
 "AND": [

{
 "OR": [

{ "Field": { "name": "domainId", "operator": "EQUALS",
"value": "02204077-1cd1-4c70-a7c4-4cd845194b81" } },

{ "Field": { "name": "assetId", "operator": "EXISTS",
"value": "00000000-0000-0000-0000-000000007001", "target":
"RelationSource" } }
]
 },

{ "Field": { "name": "statusName", "operator": "IN",
"values": ["New", "In Review"] } }
]
}

YAML

Filter:
 AND:
 -
 OR:
 -
 Field:
 name: "domainId"
 operator: "EQUALS"
 value: "02204077-1cd1-4c70-a7c4-4cd845194b81"
 -
 Field:
 name: "assetId"
 operator: "EXISTS"
 value: "00000000-0000-0000-0000-000000007001"
 target: "RelationSource"
 -
 Field:
 name: "statusName"
 operator: "IN"
 values:
 - "New"
 - "In Review"

44

Filter properties
You can use filter shortcuts to reduce the amount of time required to write a JSON query.
For example, Relation has a typeId parameter that takes an Id and eliminates the
need to add a RelationType node with an Id property. These one-line filtering properties
are the most commonly used filters because they make the query a lot less verbose.

The following example shows filtering a StringAttribute on an AttributeType using
the labelId filtering property.

JSON

"StringAttribute": {
 "labelId": "00000000-0000-0000-0000-000000000202",
 "Id": { "name": "descriptionId" },
 "LongExpression": { "name": "description" }
}

YAML

StringAttribute:
 labelId: "00000000-0000-0000-0000-000000000202"
 Id:
 name: "descriptionId"
 LongExpression:
 name: "description"

Refer to Entities, properties and relations for the list of available filter properties for each
entity.

Virtual properties
Collibra does not store virtual properties. It calculates them at runtime and dynamically
evaluates the value of each property when the query executes. Virtual properties typically
support hierarchical queries that show if the resource has children. Some examples are
hasTaxonomyChildren and hasChildForRelation.

Chapter 4

45

Chapter 4

Clarify the relationship between two entities
When two entities are related in more than one way, nesting the entities inside each other
is not enough to determine which path to follow. For example, an asset can be either the
source or target of a relation or a user can be the creator or the lastModifier of a
resource. Depending on the entity, there are two possibilities:

l The name of the child entity is changed. For example,SourceAsset or Tar-
getAsset should be used under Relation instead of Asset. In this case, they act
and behave just like normal assets and exist for the sole purpose of clarifying the rela-
tionship followed.

l A special parameter called the Parent Relationship Selector is added to the
child entity. For example, Relation has a Type parameter with possible values of
SOURCE or TARGET. This parameter determines the relationship between the Rela-
tion and the parentAsset.

The following example shows the query going two levels deep.

46

JSON

{
 "ViewConfig": {
 "Resources": {
 "Asset": {
 "Id": { "name": "id" },
 "Signifier": { "name": "name" },
 "Relation": {
 "type": "SOURCE",
 "TargetAsset": {
 "Id": { "name": "relatedAssetLevelOneId" },
 "Signifier": { "name": "relatedAssetLevelOne" },
 "Relation": {
 "type": "TARGET",
 "SourceAsset": {
 "Id": { "name": "relatedAssetLevelTwoId" },
 "Signifier": { "name": "relatedAssetLevelTwo" }
 }
 }
 }
 }
 }
 }
 }
}

Chapter 4

47

Chapter 4

YAML

ViewConfig:
 Resources:
 Asset:
 Id:
 name: "id"
 Signifier:
 name: "name"
 Relation:
 type: "SOURCE"
 TargetAsset:
 Id:
 name: "relatedAssetLevelOneId"
 Signifier:
 name: "relatedAssetLevelOne"
 Relation:
 type: "TARGET"
 SourceAsset:
 Id:
 name: "relatedAssetLevelTwoId"
 Signifier:
 name: "relatedAssetLevelTwo"

These special parameters and custom entity names only exist for a fraction of the
available entities. For a complete list, see Entities, properties and relations.

Note To reduce the number of assets returned, the query example above is not
filtered. Filtering would return a large amount of data and impact performance.

Page the results
The Output Module also supports paging the results for the root node of the query. You
can specify an offset and a length parameter to limit the results to a subset of the complete
list.

48

JSON key Default
value

Description

displayStart 0 The offset in the list of results. This offset is a zero-based
index value.

displayLength -1 The maximum total number of results to return. A neg-
ative value means unlimited.

maxCountLimit -1 The maximum count value. A count of all records can
lead to performance problems. When paging, you can
limit the max count to this value. Passing 0 means no
count is done.

JSON

{
 "ViewConfig": {
 "displayStart": 10,
 "displayLength": 5,
 "maxCountLimit": 10000,
 "Resources": {
 "Community": {
 "Id": { "name": "communityId" },
 "Name": { "name": "communityName" },
 "Description": { "name": "communityDescription" },
 "Order": [{ "Field": { "name": "communityName",
"order": "ASC" } }]
 }
 }
 }
}

Chapter 4

49

Chapter 4

YAML

ViewConfig:
 displayStart: 10
 displayLength: 5
 maxCountLimit: 10000
 Resources:
 Community:
 Id:
 name: "communityId"
 Name:
 name: "communityName"
 Description:
 name: "communityDescription"
 Order:
 -
 Field:
 name: "communityName"
 order: "ASC"

The example query above selects page 3 of all communities, with five results per page.

Note
l Paged results should always be sorted, otherwise the results might seem
inconsistent from page to page.

l The paged results list is recalculated upon each request.
l All entities that have been added or removed will appear/disappear from the
list, modifying the indexes of the elements in the results list.

l The Collibra Console allows limiting the number of results returned by queries.
The values range from 10 000 to 100 000. If enabled, and the limit is set, then:

o The default displayLength value (-1) is overwritten by the limit set
through the console.

o If the displayLength set in the ViewConfig/TableViewConfig is
larger than the limit value set in the Collibra Console, an exception is
thrown.

Map the results to a tabular format
The Output Module supports a tabular output format and uses a different kind of
ViewConfig, called TableViewConfig. TableViewConfig has a Columnsmapping

50

section that assigns each selected field to a column. The previous examples use the
ViewConfig as input to the API to produce a JSON tree format.

The following example uses TableViewConfig. This is available under the same
{{domain}}/rest/2.0/outputModule/export/json endpoint, just using the
TableViewConfig as the JSON payload.

JSON

{
 "TableViewConfig": {
 "displayLength": 5,
 "displayStart": 10,
 "Resources": {
 "Community": {
 "Id": { "name": "communityId" },
 "Name": { "name": "communityName" },
 "Description": { "name": "communityDescription" }
 }
 },
 "Columns": [

{ "Column": { "fieldName": "communityId" } },
{ "Column": { "fieldName": "communityName" } },
{ "Column": { "fieldName": "communityDescription" } }

]
 }
}

Chapter 4

51

Chapter 4

YAML

TableViewConfig:
 displayLength: 5
 displayStart: 10
 Resources:
 Community:
 Id:
 name: "communityId"
 Name:
 name: "communityName"
 Description:
 name: "communityDescription"
 Columns:
 -
 Column:
 fieldName: "communityId"
 -
 Column:
 fieldName: "communityName"
 -
 Column:
 fieldName: "communityDescription"

When formatted, this query produces an array of rows, each containing the requested
columns.

{
"iTotalDisplayRecords": 48,
"iTotalRecords": 5,
"aaData": [

{
"communityId": "12345678-0006-0000-0000-

000000000000",
"communityName": "Simple Community 6",
"communityDescription": ""

},
{

"communityId": "12345678-0007-0000-0000-
000000000000",

"communityName": "Simple Community 7",
"communityDescription": ""

},
{

52

"communityId": "12345678-0008-0000-0000-
000000000000",

"communityName": "Simple Community 8",
"communityDescription": ""

},
{

"communityId": "12345678-0009-0000-0000-
000000000000",

"communityName": "Simple Community 9",
"communityDescription": ""

},
{

"communityId": "12345678-0010-0000-0000-
000000000000",

"communityName": "Simple Community 10",
"communityDescription": ""

}
]

}

Note Because the Columnsmapping determines what should be returned, setting
hidden: true on a property has no effect in a TableViewConfig.

In the following example, the "displayLength" value is set to 0. This query shows the
number of entities without retrieving actual results.

Note The JSON Data Table output contains the total number of available records in
Collibra for this query, which is iTotalDisplayRecords. It also contains the
number of records returned in this set, which is iTotalRecords.

{
"iTotalDisplayRecords": 48,
"iTotalRecords": 0,
"aaData": []

}

You can use the TableViewConfig queries with the following endpoints:

l {{domain}}/rest/2.0/outputModule/export/{{json | csv}}

l {{domain}}/rest/2.0/outputModule/export/{{json | csv | excel}}-

file

Chapter 4

53

Chapter 4

l {{domain}}/rest/2.0/outputModule/export/{{json | csv | excel}}-

job

Handling to-many results in a tabular format
You can select all assets from a domain together with their Note attributes. Each asset
may have multiple notes. When there are multiple notes, the most recent note should be
ordered at the top of the list.

The TableViewConfigmay look similar to the example below.

JSON

{
 "TableViewConfig": {
 "Resources": {
 "Asset": {
 "Id": { "name": "assetId" },
 "Signifier": { "name": "assetName" },
 "StringAttribute": {
 "LongExpression": { "name": "note" },
 "CreatedOn": { "name": "noteCreatedOn" },
 "Order": [{ "Field": { "name": "noteCreatedOn",
"order": "DESC" } }]
 },
 "Domain": {
 "Id": { "name": "domainId" }
 },
 "Filter": { "Field": { "name": "domainId", "operator":
"EQUALS", "value": "f342423f-54fd-4643-935b-adbd9e7f5e25" } },
 "Order": [{ "Field": { "name": "assetName" } }]
 }
 },
 "Columns": [

{ "Column": { "fieldName": "assetId" } },
{ "Column": { "fieldName": "assetName" } },
{ "Column": { "fieldName": "note" } }

]
 }
}

54

YAML

TableViewConfig:
 Resources:
 Asset:
 Id:
 name: "assetId"
 Signifier:
 name: "assetName"
 StringAttribute:
 LongExpression:
 name: "note"
 CreatedOn:
 name: "noteCreatedOn"
 Order:
 -
 Field:
 name: "noteCreatedOn"
 order: "DESC"
 Domain:
 Id:
 name: "domainId"
 Filter:
 Field:
 name: "domainId"
 operator: "EQUALS"
 value: "f342423f-54fd-4643-935b-adbd9e7f5e25"
 Order:
 -
 Field:
 name: "assetName"
 Columns:
 -
 Column:
 fieldName: "assetId"
 -
 Column:
 fieldName: "assetName"
 -
 Column:
 fieldName: "note"

Depending on the format requested, the results might be different. In Excel or CSV format,
each asset is duplicated on a new row for each note value.

Chapter 4

55

Chapter 4

This is similar to using SQL queries to join two tables with a one-to-many relationship.
Unlike SQL, if you select an asset with two notes and three responsibilities, the asset
would use three lines of the Excel table, not six, and the third row in the note column would
be empty.

JSON format, on the other hand, does not add duplicate rows to the results. Instead, it
returns the first note found and discards the other notes.

Example "First note" is missing for "Business Asset 1"

{
"iTotalDisplayRecords": 3,
"iTotalRecords": 3,
"aaData": [

{
"assetId": "c20d5b39-6c5d-411b-adcb-

82a1dd3851cc",
"assetName": "Business Term 1",
"note": "Second Note"

},
{

"assetId": "1a6a8f73-43b0-4a29-84c3-
baaa3467be70",

"assetName": "Business Term 2",
"note": "Single note on BT2"

},
{

"assetId": "7329349e-0631-41a7-a740-
738979d887c6",

"assetName": "Business Term 3",
"note": "Single Note on BT3"

}
]

}

For tabular formats that do not duplicate rows, you can add the Groupmapping construct
to the Columns section.

56

JSON

{
 "TableViewConfig": {
 "Resources": {
 "Asset": {
 "Id": { "name": "assetId" },
 "Signifier": { "name": "assetName" },
 "StringAttribute": {
 "LongExpression": { "name": "note" },
 "CreatedOn": { "name": "noteCreatedOn" },
 "Order": [{ "Field": { "name": "noteCreatedOn",
"order": "DESC" } }]
 },
 "Domain": {
 "Id": { "name": "domainId" }
 },
 "Filter": { "Field": { "name": "domainId", "operator":
"EQUALS", "value": "f342423f-54fd-4643-935b-adbd9e7f5e25" } },
 "Order": [{ "Field": { "name": "assetName" } }]
 }
 },
 "Columns": [

{ "Column": { "fieldName": "assetId" } },
{ "Column": { "fieldName": "assetName" } },
{

 "Group": {
 "name": "Notes",
 "Columns": [

{ "Column": { "fieldName": "note" } }
]
 }
 }
]
 }
}

Chapter 4

57

Chapter 4

YAML

TableViewConfig:
 Resources:
 Asset:
 Id:
 name: "assetId"
 Signifier:
 name: "assetName"
 StringAttribute:
 LongExpression:
 name: "note"
 CreatedOn:
 name: "noteCreatedOn"
 Order:
 -
 Field:
 name: "noteCreatedOn"
 order: "DESC"
 Domian:
 Id:
 name: "domainId"
 Filter:
 Field:
 name: "domainId"
 operator: "EQUALS"
 value: "f342423f-54fd-4643-935b-adbd9e7f5e25"
 Order:
 -
 Field:
 name: "assetName"
 Columns:
 -
 Column:
 fieldName: "assetId"
 -
 Column:
 fieldName: "assetName"
 -
 Group:
 name: "Notes"
 Columns:
 -
 Column:
 fieldName: "note"

58

A Groupmapping allows grouping multiple results for a single parent. A Groupmust
receive a user-defined name that will be used when formatting the results.

{
"iTotalDisplayRecords": 3,
"iTotalRecords": 3,
"aaData": [

{
"assetId": "c20d5b39-6c5d-411b-adcb-82a1dd3851cc",
"assetName": "Business Term 1",
"Notes": [

{
"note": "Second Note"

},
{

"note": "First note"
}

]
},
{

"assetId": "1a6a8f73-43b0-4a29-84c3-baaa3467be70",
"assetName": "Business Term 2",
"Notes": [

{
"note": "Single note on BT2"

}
]

},
{

"assetId": "7329349e-0631-41a7-a740-738979d887c6",
"assetName": "Business Term 3",
"Notes": [

{
"note": "Single Note on BT3"

}
]

}
]

}

Note
Here are some rules about Group:

l Groupmappings cannot be nested, a Group defined within a Group is not
supported.

l All columns within a group must be related to the same parent entity.

Chapter 4

59

Chapter 4

Set an execution timeout
Queries that run on complicated or large amounts of data may be slower than expected.
Usually, the best approach is to paginate the results. In cases where the complexity or
amount of data is unknown, a timeout can break up the execution. The Output Module can
timeout, not only on the execution logic level, but also break running database queries to
protect the database load from stress.

You can set a timeout for each ViewConfig and TableViewConfig execution on the
main config level. Defining it in the body of the query is optional.

If a timeout is not set in the ViewConfig or TableViewConfig, then a default value is
added. You can configure the default value in the Collibra console, the default setting is
eight hours.

Warning
l No single query may run longer than 24 hours, which is the maximum value.
l Pagination is recommended for queries that may run longer.
l Those values will significantly smaller in the next major release, so it would be
prudent to think about pagination.

l If the queryTimeout is more than 24 hours, the system will overwrite it with
the maximum 24-hour limit value.

l Important exceptions are the
{{domain}}/rest/2.0/outputModule/export/{{csv | excel}}-
job endpoints. Here, data is calculated in chunks, with the size of the chunk
defined in the Collibra Console. A separate query calculates each chunk and
the timeout value set in the TableViewConfig will be a timeout value
calculation for that chunk.

60

JSON key Minimum
value

Default value Maximum
value

Description

queryTimeout 1 minute 8 hours (con-
figurable)

24 hours Timeout in number of
seconds that
computation of the
output can last. No
decimal point allowed.
Negative values are
invalid. Zero means no
timeout. Positive
values will stop
execution and return
an error if the execution
takes longer than the
given number of
seconds.

Example of ViewConfig with a timeout set:

Chapter 4

61

Chapter 4

JSON

{
 "ViewConfig": {
 "queryTimeout": 5,
 "Resources": {
 "Domain": {
 "name": "d",
 "Name": {
 "name": "vocName"
 },
 "Asset": {
 "name": "t",
 "Signifier": {
 "name": "assetName"
 },
 "AssetType": {
 "name": "tt",
 "Name": {
 "name": "assetType"
 }
 }
 }
 }
 }
 }
}

62

YAML

ViewConfig:
 queryTimeout: 5
 Resources:
 Domain:
 name: "d"
 Name:
 name: "vocName"
 Asset:
 name: "t"
 Signifier:
 name: "assetName"
 AssetType:
 name: "tt"
 Name:
 name: "assetType"

After the timeout is reached, the REST request will receive a response with HTTP error
code 408. Instead of a results message, the body will contain a JSON with the error
description.

Structural validation of the query
Because writing ViewConfigs and TableViewConfigs is a tedious and error-prone
task, the following endpoints allow using the validationEnabled parameter.

l {{domain}}/rest/2.0/outputModule/export/{{xml | json | csv}}

l {{domain}}/rest/2.0/outputModule/export/{{xml | json | csv |

excel}}-file

l {{domain}}/rest/2.0/outputModule/export/{{xml | json | csv |

excel}}-job

This parameter, when set to true, enables validation of the input
ViewConfig/TableViewConfig. By default, the parameter value is set to false.

The example below shows a small typo in the filter. userID is used instead of userId.
When you make a POST request to

Chapter 4

63

Chapter 4

{{domain}}/rest/2.0/outputModule/export/json?validationEnabled=true,
the following body results.

JSON

{
 "ViewConfig": {
 "displayLength": 5,
 "Resources": {
 "Community": {
 "Id": { "name": "communityId" },
 "Name": { "name": "community" },
 "Responsibility": {
 "Id":{ "name": "responsibilityId"},
 "User": {
 "Id": { "name": "userId" },
 "FirstName": { "name": "userName" }
 }
 },
 "Filter": {"Field": {"name":"userID", "Operator":"NOT_
NULL"}}
 }
 }
 }
}

64

YAML

ViewConfig:
 displayLength: 5
 Resources:
 Community:
 Id:
 name: "communityId"
 Name:
 name: "community"
 Responsibility:
 Id:
 name: "responsibilityId"
 User:
 Id:
 name: "userId"
 FirstName:
 name: "userName"
 Filter:
 Field:
 name: "userID"
 Operator: "NOT_NULL"

The response will be similar to the example below.

{
"viewConflict": [

{
"type": "View Configuration Conflict",
"message": "Field 'userID' is unknown.",
"id": "7c723d33-dc8d-484b-90df-91e3364d771a"

}
]

}

Chapter 4

65

66

API endpoints and query formats
The available rest API endpoints URL are:

l {{domain}}/rest/2.0/outputModule/export/{{format}}

l {{domain}}/rest/2.0/outputModule/export/{{format}}-file

l {{domain}}/rest/2.0/outputModule/export/{{format}}-job

The available formats are XML, JSON, CSV and Excel.

In this chapter

Endpoints and formats 67

ViewConfig/TableViewConfig and formats 67

Single query and multi-query 67

Chapter 5

Chapter 5

Endpoints and formats

Endpoint CSV JSON CSV EXCEL

l {{domain}}/rest/2.0/outputModule/export/
{{format}}

YES YES YES NO

l {{domain}}/rest/2.0/outputModule/export/
{{format}}-file

YES YES YES YES

l {{domain}}/rest/2.0/outputModule/export/
{{format}}-job

YES YES YES YES

ViewConfig/TableViewConfig and formats

Format Supports ViewConfig Supports TableViewConfig

XML YES NO

JSON YES YES

CSV NO YES

EXCEL NO YES

Single query and multi-query
Multi-query endpoints have less chance to timeout because of execution time limits, and
thus can be used for larger exports.

Endpoint CSV JSON CSV EXCEL

{{domain}}/rest/2.0/outputModule/expor
t/{{format}}

SINGLE SINGLE SINGLE SINGLE

67

Endpoint CSV JSON CSV EXCEL

{{domain}}/rest/2.0/outputModule/expor
t/{{format}}-file

SINGLE SINGLE SINGLE SINGLE

{{domain}}/rest/2.0/outputModule/expor
t/{{format}}-job

SINGLE SINGLE MULTI MULTI

Chapter 5

68

69

Entities, properties and relations

Entity
Entity is the base abstract class of all other entities. An abstract entity cannot be
queried, thus Entity cannot be used in the query tree.

Properties

id Text (36) Universally unique identifier
(UUID).

Resource
Extends Entity

Resource is an abstract entity, which is the base class of most other entities. Most other
entities share the following properties and relations. An abstract entity cannot be
queried, thus Resource cannot be used in the query tree.

Properties

createdOn Number Creation date (# milliseconds since
1/1/1970).

createdOnTimestamp Number Creation date (# milliseconds since
1/1/1970).

Chapter 6

Chapter 6

createdBy Text Id of the user who created this
Resource.

lastModified Number Last modification date (#
milliseconds since 1/1/1970).

lastModifiedTimestamp Number Last modification date (# mil-
liseconds since 1/1/1970).

lastModifiedBy Text Id of the last user who modified this
resource.

system Boolean Is this resource reserved by the
system.

Relations

User Many-to-one l the user who created the
resource.

l the user who last modified the
resource.

l the user who created or last mod-
ified the resource. See User for
details on specifying which kind
of relationship is used.

Representation
Extends Resource

Representation is an abstract entity, which is the base class for Asset. All assets share
the following relationships. An abstract entity cannot be queried, thus Representation
cannot be used in the query tree.

Properties

70

/

Relations

Status Many-to-One The current status of the
representation.

Domain Many-to-One The domain containing the
representation.

AssetType Many-to-One The AssetType of
the representation.

Attribute One-to-Many The collection of attributes
in the representation.

StringAttribute One-to-Many The collection of
StringAttributes in the
representation.

ScriptAttribute One-to-Many The collection of
ScriptAttributes in the
representation.

SingleValueListAttribute One-to-Many The collection of
SingleValueListAttributes
in the representation.

MultiValueListAttribute One-to-Many The collection of
MultiValueListAttributes
in the representation.

BooleanAttribute One-to-Many The collection of
BooleanAttributes in the
representation.

Chapter 6

71

Chapter 6

NumericAttribute One-to-Many The collection of
NumericAttributes in the
representation.

DateTimeAttribute One-to-Many The collection of
DateTimeAttributes in the
representation.

DateAttribute One-to-Many The collection of
DateAttributes in the
representation.

Organization
Extends Resource

Represents the hierarchy of organizations available in Collibra.

Properties

name Text (255) The name of the organization.

description Text The description of the organization.

uri Text (255) The URI of the organization.

language Text(255) The name of the language used.

meta Boolean Indicates if the community is related to
the meta model, such as a hidden
organization.

hasNonMetaChildren Boolean Indicates if the organization contains
non-meta subcommunities or domains.

72

hasNonMetaChildCommunity Boolean Indicates if the organization contains
non-meta communities.

organizationType Text Indicates if the organization is a com-
munity ("C") or a domain ("D")

Relations

ParentCommunity Many-to-
One

The parent community of this
organization. Null for root
communities. Optional.

Community One-to-
Many

The collection of subcommunities.

Domain One-to-
Many

The collection of vocabularies contained
in the organization.

Responsibility One-to-
Many

The collection of responsibilities playing
a role in the organization.

SubCommunities One-to-
Many

The collection of domains contained in
the community.

Comment One-to-
Many

The collection of comments contained in
the community.

Asset One-to-
Many

The collection of assets contained in the
community.

DomainType One-to-
Many

The type of domain.

Mapping One-to-
Many

The collection of mappings cor-
responding to this domain.

Filtering Property

Chapter 6

73

Chapter 6

rootCommunity Boolean When true, the query engine adds a filter
retaining only root communities. Only
available when the community is also
root of the query tree.

Community
Extends Organization

Exact synonym of an organization but with default filtering on organizationType equal to
"C"

ParentCommunity
Extends Community

Exact synonym of a community. It can only be used as a child of the community to
disambiguate the relationship followed.

Domain
Extends Organization

Synonym of an organization but with default filtering on organizationType equal to "D"
and with overridden relation for Community

Relations

Community Many-to-One The parent community.

74

DomainType
Extends Resource

Each domain has a DomainType.

Properties

signifier Text (255) The name of the DomainType.

name Synonym for signifier.

description Text The description of the DomainType.

meta Boolean Indicates if the DomainType is related to the Col-
libra meta model.

Relations

Domain One-to-
Many

The collection of domain instances of the
DomainType.

DomainType Many-to-
One

The parent DomainType of the DomainType. Null
for root DomainTypes. Optional.

ChildDomainTypes One-to-
Many

The collection of DomainType children.

ChildDomainTypes
Extends DomainType

Collection of DomainType

Exact synonym of DomainType. Can only be used as a child of DomainType to dis-
ambiguate the relationship followed.

Chapter 6

75

Chapter 6

RelationType
Extends Resource

A RelationType defines a class of relationship between two AssetTypes, also called
AssetTypes.

Properties

role Text The label of the relation when followed
from head to tail.

corole Text The label of the reversed relation,
when followed from tail to head.

description Text The description of the RelationType.

Relations

Relation One-to-Many The collection of relation instances
with this RelationType.

SourceAssetType Many-to-One The AssetType that is head of the
RelationType. SourceAssetType is
a synonym of AssetType and clarifies
which path is followed from the
Relation entity to its child. In this
case, the child node is the head.

TargetAssetType Many-to-One The AssetType that is the tail of the
RelationType. TargetAssetType is
a synonym of AssetType and clarifies
which path is followed from
the Relation entity to its child. In this
case, the child node is the tail.

76

Parent Relationship Selector

type This parameter allows specifying which path should be followed
from the parent AssetType entity to the RelationType. The
possible values are either HEAD or TAIL, which tells whether the
parent AssetType is the head or the tail of the RelationType.
The default value is HEAD.

Relation
Extends Resource

A Relation links two Assets together.

Properties

startingDate Number The optional start date for this rela-
tion.

endingDate Number The optional end date for
this relation.

isGenerated Boolean True if this relation was gen-
erated.

Relations

RelationType Many-to-One The type of this relation.

SourceAsset Many-to-One The source asset of this relation.

TargetAsset Many-to-One The target asset of this relation.

Parent relationship selector. Only if the parent is a asset node or is of type inheriting
from an asset node.

Chapter 6

77

Chapter 6

type This parameter allows specifying which path should be followed from
the parent asset entity to this relation. The possible values are either
SOURCE or TARGET, which tells whether the parent asset is the source
or target of the relation. This parameter is mandatory because there is
no default value.

Filtering Property

typeId Allows filtering relations using the Id value of their related Rela-
tionType.

ComplexRelation

Extends Asset

A ComplexRelation is an anonymous asset, whose signifier, or name, has been gen-
erated.

Properties

/

Relations

ComplexRelationType Many-to-One The type of this complex rela-
tion.

Filtering Property

typeId Allows filtering ComplexRelations using the Id value of their
related ComplexRelationType.

Additional Parameters

78

separator The character to be used to separate related asset names in
an Excel or CSV export.

quote The character to be used to quote related asset names in an
Excel or CSV export.

ComplexRelationType
Extends AssetType

A ComplexRelationType determines the type of a ComplexRelation.

Properties

/

Relations

ComplexRelation OneToMany The collection of ComplexRelation
instances with the Com-
plexRelationType.

ComplexRelationLegType OneToMany The collection of Com-
plexRelationLegTypes linked to the
ComplexRelationType.

ComplexRelationAttributeType OneToMany The collection of Com-
plexRelationAttributeTypes

linked to the
ComplexRelationType.

Chapter 6

79

Chapter 6

ComplexRelationLegType
Extends Resource

A ComplexRelationLegType is a RelationType used in the context of a
ComplexRelationType. The SourceAssetType of those RelationTypes of the
ComplexRelationType. It can only be used as a child of ComplexRelationType.

Properties

min Number The minimum occurrences of
this RelationType in the Com-
plexRelationType.

max Number The maximum occurrences of
this RelationType in the Com-
plexRelationType.

legOrder Number Order of this Com-
plexRelationLegType in the
ComplexRelationType.

Relations

RelationType Many-to-One The RelationType of the Com-
plexRelationLegType.

ComplexRelationAttributeType
Extends Resource

A ComplexRelationAttributeType is an AttributeType used in the context of a
ComplexRelationType.

Can only be used as a child of ComplexRelationType.

80

Properties

min Number The minimum occurrences of this Attrib-
uteType in the ComplexRelationType.

max Number The maximum occurrences of this Attrib-
uteType in the ComplexRelationType.

readOnly Boolean Indicates if the attribute can be edited or
not.

attributeOrder Number Order of this Com-
plexRelationAttributeType in the
ComplexRelationType.

Relations

AttributeType Many-to-One The AttributeType of this Com-
plexRelationAttributeType.

Asset
Extends Representation

An Asset is the basic building block capturing information about the assets available in
Collibra.

Properties

signifier Text (2000) The full name of the asset.

displayName Text (2000) The display name of the asset.

articulationScore Number Result of the last calculation of the artic-
ulation score.

Chapter 6

81

Chapter 6

hasChildrenForRelation
(deprecated)

Boolean Virtual calculated property indicating if this
asset has children for the relation type
defined at the query level. This property
takes two additional parameters:

l the RelationType
l direction (role or co-role)

For example:

"HasChildrenForRelation": {
"name": "hasChildren",
"relationTypeId":

"00000000-0000-0000-0000-
000000007005",

"roleDirection": true
}

It can only be used if Asset is a root node
of the query. It is not inherited by nodes
extending the Asset node.

avgRating Number Average value of all ratings assigned to
the asset.

ratingsCount Number Number of all ratings signed to the asset.

class Text With other entities that extend the asset,
can be used to differentiate amongst the
various subclasses.

Relations

Relation One-to-Many The collection of relations this asset has.
See Relation for a mandatory type para-
meter.

82

Responsibility One-to-Many The collection of responsibilities this asset
has.

Mapping One-to-Many The related mappings.

Tag Many-to-Many The collection of tags associated with this
asset.

Filtering Property

rootOfRelation An array relation types/direction pairs. Root assets are not
the child of any of the relations.

For example:

"rootOfRelation": [
{

"relationTypeId": "00000000-0000-
0000-0000-000000007038",

"roleDirection": true
},
{

"relationTypeId": "00000000-0000-
0000-0000-000000007005",

"roleDirection": true
}

],

SourceAsset
Extends Asset

Exact synonym of Asset. It can only be used as a child of relation to disambiguate the
relationship followed.

Chapter 6

83

Chapter 6

TargetAsset
Extends Asset

Exact synonym of Asset. It can only be used as a child of a relation to disambiguate the
relationship followed.

SourceAssetType
Extends AssetType

Exact synonym of AssetType. It can only be used as a child of RelationType to dis-
ambiguate the relationship followed.

TargetAssetType
Extends AssetType

Exact synonym of AssetType.
Can only be used as a child of RelationType to disambiguate the relationship fol-
lowed.

AssetType
Extends Resource

A AssetType, also called AssetType, determines the type of asset, which is an Asset

Properties

signifier Text (255) The name of this AssetType.

84

name Synonym for signifier.

description Text The description of the AssetType.

meta Boolean Is the AssetType related to the Collibra meta
model.

color Text The color of the AssetType.

icon Text The icon of the AssetType.

acronym Text The acronym of the AssetType

symbolType Text Defines the icon or acronym used in Collibra.
Possible values are: ICON, ACRONYM and
NONE.

displayNameEnabled Boolean Indicates if the display name is enabled for all
assets of this AssetType.

ratingEnabled Boolean Are ratings enabled for all assets of this
AssetType.

Relations

Asset One-to-
Many

The collection of instances of this AssetType.

AssetType Many-to-
One

The parent AssetType of this AssetType.

ChildAssetTypes One-to-
Many

The collection of concept types that have this
AssetType as parent.

Chapter 6

85

Chapter 6

ChildAssetTypes
Extends AssetType

Collection of AssetType

Can only be used as a child of AssetType to disambiguate the relationship followed.

The ComplexRelationType, despite inheriting from AssetType, does not support
ChildAssetTypes node.

Attribute
Extends Resource

Attribute represents an attribute linked to a representation.

Properties

value Text The text value of this attribute.

class Text With other entities, extends attribute. You may use
the class qualifier to differentiate between the vari-
ous subclasses.

Relations

AttributeType Many-to-One The type of attribute.

Asset Many-to-One The asset to which the attribute belongs.

Filtering Property

labelId Allows filtering the attributes based on the Id of their related Attrib-
uteType.

86

StringAttribute
Extends Attribute

A StringAttribute is an attribute dedicated to text values.

Properties

longExpression Text The unbounded text value. Obsolete, but returns the
same content as Attribute:value.

ScriptAttribute
Extends Attribute

A ScriptAttribute is an attribute dedicated to script values.

Properties

script Text The script. Obsolete, but returns the same content as
Attribute:value.

SingleValueListAttribute
Extends Attribute

A SingleValueListAttribute is an attribute dedicated to storing a single value
selected from a list.

Chapter 6

87

Chapter 6

MultiValueListAttribute
Extends Attribute

A MultiValueListAttribute is an attribute dedicated to storing multiple values
selected from a list.

Properties

values Text The multiple values

BooleanAttribute
Extends Attribute

A BooleanAttribute is an attribute dedicated to Boolean values.

Properties

booleanValue Boolean The value

NumericAttribute
Extends Attribute

A NumericAttribute is an attribute dedicated to numeric values.

Properties

numericValue Number The stored number.

88

DateTimeAttribute
Extends Attribute

A DateTimeAttribute is an attribute dedicated to date values that also keep track of
time.

Properties

dateTime Number The date and time values expressed as the num-
ber of milliseconds since 1/1/1970.

DateAttribute
Extends Attribute

A DateAttribute is an attribute dedicated to date values.

Properties

date Number The date value expressed as the number of milliseconds
since 1/1/1970.

timestamp Number The date value expressed as the number of milliseconds
since 1/1/1970.

AttributeType
Extends Resource

The AttributeType determines the type of an attribute.

Properties

Chapter 6

89

Chapter 6

signifier Text(255) The name of the AttributeType.

name Synonym for signifier.

description Text The description of this AttributeType.

attributeKind Text(255) The AttributeType kind. The possible values are:
BOOLEAN, STRING, NUMERIC,DATE, DATE_TIME,
SINGLE_VALUE_LIST, MULTI_VALUE_LIST and
SCRIPT.

language Text(255) The name of the language used. The kind is SCRIPT.

isInteger Boolean Indicates if the AttributeType defines an integer or
decimal. If true, it defines an integer. If false, it defines a
decimal. The kind is NUMERIC.

allowedValues Text Comma separated list of values. The kind is SINGLE_
VALUE_LIST or MULTI_VALUE_LIST.

Relations

Attribute One-to-
Many

The collection of Attributes of this type

User
Extends Resource

Represents Collibra users. Any resource has a creation date and the last modification
date. Collibra also stores which user made each of these operations. The User entity is
related to all types as the creator and/or last modifier of the entity.

Properties

userName Text The user name.

90

firstName Text The first name.

lastName Text The last name.

fullName Text Virtual property containing the first
and last name together, which is
useful for filters.

gender Text The gender.

language Text The user language.

activated Boolean Indicates if the user is activated.

ldapUser Boolean Indicates if the user is a LDAP
User.

apiUser (deprecated) Boolean Indicates if this is an API user.

enabled Boolean Indicates if the user is enabled.

emailAddress Text The user's primary email address.

guest Boolean Indicates if this is a guest user.

Relations

Email Many-to-Many The collection of emails owned
by the user.

Phone Many-to-Many The collection of phone numbers
owned by the user.

InstantMessagingAccount Many-to-Many The collection of InstantMes-
sagingAccount accounts
owned by this user.

Chapter 6

91

Chapter 6

Website Many-to-Many The collection of websites
owned by the user.

Address Many-to-Many The collection of addresses
owned by the user.

Community One-to-Many The collection of communities cre-
ated or last modified by the user.

Domain One-to-Many The collection of vocabularies cre-
ated or last modified by the user.

DomainType One-to-Many The collection of DomainTypes
created or last modified by the
user.

RelationType One-to-Many The collection of RelationType
created or last modified by the
user.

Relation One-to-Many The collection of relations created
or last modified by the user.

ComplexRelation One-to-Many The collection of Com-
plexRelations created or last
modified by the user.

Asset One-to-Many The collection of assets created or
last modified by the user.

AssetType One-to-Many The collection of AssetTypes cre-
ated or last modified by the user.

Attribute One-to-Many The collection of attributes created
or last modified by the user.

92

StringAttribute One-to-Many The collection of StringAt-
tributes created or last modified
by the user.

ScriptAttribute One-to-Many The collection of ScriptAttributes
created or last modified by the
user.

SingleValueListAttribute One-to-Many The collection of
SingleValueListAttributes

created or last modified by the
user.

MultiValueListAttribute One-to-Many The collection of
MultiValueListAttributes

created or last modified by the
user.

BooleanAttribute One-to-Many The collection of BooleanAt-
tributes created or last modified
by the user.

NumericAttribute One-to-Many The collection of Numer-
icAttributes created or last
modified by the user.

DateTimeAttribute One-to-Many The collection of DateTimeAt-
tributes created or last modified
by the user.

DateAttribute One-to-Many The collection of DateAt-
tributes created or last modified
by the user.

AttributeType One-to-Many The collection of Attrib-
uteTypes created or last modified
by this user.

Chapter 6

93

Chapter 6

User One-to-Many The collection of users created or
last modified by this user.

Group Many-to-Many The collection of groups to
which this user belongs.

Responsibility One-to-Many The collection of responsibilities
linking this user to a role on an
asset, domain or community.

Role One-to-Many The collection or roles created or
last modified by this user.

Status One-to-Many The collection of statuses created
or last modified by the user.

WorkflowTaskInfo
(deprecated)

One-to-Many The collection of Work-
flowTaskInfos created or last
modified by the user.

Mapping One-to-Many The collection of mappings cre-
ated or last modified by the user.

Parent Relationship Selector

94

linkType This parameter allows specifying the path that should be
followed from the parent resource to a user. When the
parent resource is responsibility or group, linkType is
not used and the relationship defined for responsibility or
group is used. When a user is the parent node, linkType
determines the relationship with the child resources that
have a created or last modified kind of relationship. See
relations above. The possible values are CREATED,
MODIFIED, "CREATED_OR_MODIFIED or CREATED
ORMODIFIED. CREATED_OR_MODIFIED is the default
value, but can only be used when User is root of the query
tree. CREATED_OR_MODIFIED turns into a simple
CREATED when User is not the root of the query.

Email
Extends Resource

Email represents one of the user's email addresses. It can only be used as a child of the
user ser.

Properties

emailAddress Text The email address.

Phone
Extends Resource

Phone represents one of the user's phone numbers. It can only be used as a child of the
user.

Properties

Chapter 6

95

Chapter 6

phoneNumber Text The phone number.

phoneType Text The phone type: FAX, MOBILE, OTHER,
PAGER, PRIVATE and WORK.

InstantMessagingAccount
Extends Resource

InstantMessagingAccount represents one of the user's instant messaging account.
It can only be used as a child of the user.

Properties

account Text The account id

instantMessagingAccountType Text The instant messaging type:
AOL, GTALK, ICQ, JABBER,
LIVE_MESSENGER, SKYPE or
YAHOO_MESSENGER.

Website
Extends Resource

Website represents one of the user's websites. It can only be used as a child of the user.

Properties

url Text The URL of the website.

websiteType Text The type of website: FACEBOOK, LINKEDIN,
MYSPACE, TWITTER or WEBSITE.

96

Address
Extends Resource

Address represents one of the user's addresses. It can only be used as a child of the
user.

Properties

street Text The street.

number Text The street number.

city Text The city.

postalCode Text The zip code.

state Text The state.

country Text The country.

addressType Text The address type: HOME or
WORK.

Group
Extends Resource

A group is a named collection of users.

Properties

groupName Text The name of the group.

Relations

Chapter 6

97

Chapter 6

User One-to-
Many

The users that are part of this group.

Responsibility One-to-
Many

The collection of responsibilities linking this group to a role
on an asset, domain or community.

Responsibility
Extends Resource

A responsibility links a user or group with a role on an asset, domain or community.
Mutually exclusive.

Properties

/

Relations

User Many-to-One The related user. Empty if linked
to a group.

Group Many-to-One The related group. Empty if
linked to a user.

Role Many-to-One The related role.

Asset Many-to-One The associated asset.

Domain Many-to-One The associated domain.

Community Many-to-One The associated community.

Filtering Property

98

roleId Allows filtering responsibilities using the Id property of the
related role.

Role
Extends Asset (deprecated)

The Role that a user plays. For example, Steward or Admin.

Status
Extends Resource

The status of an asset.

Properties

signifier Text(255) The name of the status.

description Text The status description.

Relations

Asset One-to-Many The assets of this status.

WorkflowTaskInfo (deprecated)
Extends Resource

WorkflowTaskInfo holds all information about an ongoing workflow task.

Properties

Chapter 6

99

Chapter 6

description Text The description of the task.

title Text The title of the task.

dueDate Number The due date of the task expressed as the num-
ber of milliseconds since 1/1/1970.

itemResourceId Text The related item Id.

itemResourceType Text The related resource type.

itemVerbalized Text The verbalized version of the related item.

taskType Text The type of task.

assignee Text The id of the assigned user.

candidateUsers Text The ids or candidate users.

domain Text The related domain Id.

community Text The related community Id.

status Text The status of the task.

Mapping
Extends Resource

A Mapping links an externally defined entity, such as an asset or domain, to one entity.

Properties

extSystemId Text The identifier of the external system.

extEntityId Text The external identifier of the entity.

100

extEntityUrl Text The external URL of the entity.

lastSyncDate Number The last synchronization date.

syncAction Text The last synchronization action: ADD,
UPDATE or REMOVE.

description Text Description of this mapping.

Relations

Asset Many-to-One The related asset.

Domain Many-to-One The related domain.

Tag
Extends Resource

A Tag allows categorizing assets by adding one or more labels.

Properties

name Text The name of the tag.

Relations

Asset Many-to-Many The related assets.

DataQualityRule (deprecated)
Extends Resource

A DataQualityRule describes the rules for the data quality of an asset.

Chapter 6

101

Chapter 6

Properties

name Text The name of the DataQualityRule.

description Text The description of the DataQualityRule.

Relations

Scope
Extends Resource

A Scope describes the scope of an assignment.

Properties

name Text The name of the scope.

description Text The description of the scope.

Relations

Comment
Extends Resource

Comment represents a single comment of a resource.

Properties

content String The content of this comment.

resourceType String A type of the resource to which this comment
belongs.

102

Relations

ParentComment Many-to-
One

The parent comment of this comment.

Comment One-to-
Many

List of subcomments of this comment

Asset One-to-
One

The asset to which this comment is linked.

Domain One-to-
One

The domain to which this comment is linked.

Community One-to-
One

The community to which this comment is linked.

Filtering property

rootComment Boolean When true, the query engine adds a filter retaining
only root comments.

ParentComment
Extends Resource

ParentComment can only be used as a child of a comment to disambiguate the
relationship followed.

DataType (deprecated)
Extends Entity

Chapter 6

103

Chapter 6

A DataType is a Catalog entity that characterizes a data element's data type.

Properties

name Text The name of the type: Date or SSN.

description Text Description of the type.

class Text The class of DataTypes: BASE and ADVANCED.

logicalDataType Text The corresponding logical data type used by the pro-
filing job. It is one of the base types.

Relations

DataTypeMatch One-to-
Many

The related DataTypeMatches holding a specific
percentage of match value for a Data Element
instance.

AdvancedDataType (deprecated)
Extends DataType

An AdvancedDataType is an extension of one of the base DataTypes, for example,
Text, Numeric or Date, that provides patterns that help the profiling job detect the Data
Type.

Properties

Relations

DataTypePattern One-to-Many The patterns associated
with this advanced data
type.

104

DataTypePattern (deprecated)
Extends Entity

A DataTypePattern contains a pattern associated with an AdvancedDataType.

Properties

value Text The pattern.

Relations

AdvancedDataType Many-to-One The related
AdvancedDataType.

DataTypeMatch (deprecated)
Extends Entity

A DataTypeMatch contains profiling results indicating the percentage of the actual data
behind a DataElement asset that matches a DataType.

Properties

percentage Double The matching percentage.

Relations

Asset Many-to-One The related Data Element.

DataType Many-to-One The matched DataType.

Chapter 6

105

Chapter 6

BaseView (deprecated)
Extends Resource

An abstract entity base class of View and DiagramPicture.

Properties

name Text The name of the baseView.

description Text The description of the baseView.

config Text The JSON config of the baseView.

originalView Text The Id of the originalView of this base view, meaning
the view from which this base view was created.

isDefault Boolean Indicates if this is a default baseView.

isPreferred Boolean Indicates if this a preferred pinned baseView

Relations

View (deprecated)
Extends BaseView

A view in Collibra.

Properties

Relations

106

DiagramPicture (deprecated)
Extends BaseView

A diagram illustration.

Properties

svg Text Text field containing an SVG
representation of the diagram picture.

Relations

View Many-to-
One

The view used to create ort take the
picture.

DiagramPictureSharingRule One-to-
Many

The sharing rules of the diagram picture.

AssignmentRule Many-to-
Many

The assignment rules of the diagram pic-
ture.

DiagramPictureSharingRule (deprecated)
Extends Resource

A DiagramPicture sharing rule. A diagram picture can be shared with a user, group or
role.

Properties

Relations

Role Many-to-One The role linked to this rule.

Chapter 6

107

Chapter 6

Group Many-to-One The group linked to this
rule.

User Many-to-One The user linked to this rule.

AssignmentRule (deprecated)
Extends Resource

An assignment rule, only exposed to the graph query engine to show the asset linked to
a DiagramPicture.

Properties

Relations

Asset Many-to-One The asset linked to this rule.

108

	 ContentsContents What's new Introduction Prerequisites Terminology The Output Module query language Getting started Add related entities to the tree Specify an entity alias Add a related entity more than once Add filtering Sort the results Differentiate selected properties from properties required in a filter clause Strip HTML from text results Filtering operators Boolean operators Filter properties Virtual properties Clarify the relationship between two entities Page the results Map the results to a tabular format Set an execution timeout Structural validation of the query API endpoints and query formats Endpoints and formats ViewConfig/TableViewConfig and formats Single query and multi-query Entities, properties and relations Entity Resource Representation Organization Community ParentCommunity Domain DomainType ChildDomainTypes RelationType Relation ComplexRelation ComplexRelationType ComplexRelationLegType ComplexRelationAttributeType Asset SourceAsset TargetAsset SourceAssetType TargetAssetType AssetType ChildAssetTypes Attribute StringAttribute ScriptAttribute SingleValueListAttribute MultiValueListAttribute BooleanAttribute NumericAttribute DateTimeAttribute DateAttribute AttributeType User Email Phone InstantMessagingAccount Website Address Group Responsibility Role Status WorkflowTaskInfo (deprecated) Mapping Tag DataQualityRule (deprecated) Scope Comment ParentComment DataType (deprecated) AdvancedDataType (deprecated) DataTypePattern (deprecated) DataTypeMatch (deprecated) BaseView (deprecated) View (deprecated) DiagramPicture (deprecated) DiagramPictureSharingRule (deprecated) AssignmentRule (deprecated)
	 What's newThe Community and Domain entities are now extensions of Organization. (January 2022)The Output Module API uses the same terminology as the user interface. (September 2021)The guide now contains YAML examples.References to the deprecated REST API v1 were removed.The Timeout mechanism is described.The Result limit mechanism is described.The API endpoints are described.
	 IntroductionThe Output Module is a lightweight graph query engine exposed through the public API. It allows different output formats, such as JSON, XML, Excel, and CSV. It also provides a single API to query most of the Collibra entities, such as assets, communities, domains and types, using SQL-like filtering capabilities. You can sort entities using any of the available properties and page results and view permissions for authenticated users who issue REST calls.
	 PrerequisitesBefore you begin using the query language used in the Output Module, you must understand the Collibra API model and how to execute REST calls. This guide shows examples that query the REST API but does not explain how to execute REST calls. Refer to external online resources for tutorials and instructional resources.TerminologyThe Collibra API model was based on the Semantics of Business Vocabulary and Rules (SBVR) standard. Over time, the user interface adopted a simpler terminology set that aligns with Collibra concepts. Since version 2021.09 (5.7.10 for on-premisses), the Output Module API uses the same terminology as the user interface while the legacy one is deprecated.The following table lists the renamed terminology:DeprecatedCurrentTermAssetConceptTypeAssetTypeConceptTypeSpecializedConceptsChildAssetTypesVocabularyDomainVocabularyTypeDomainTypeVocabularyTypeSpecializedConceptsChildDomainTypesSource SourceAsset TargetTargetAssetBinaryFactTypeRelationTypeHeadTermSourceAssetTypeTailTermTargetAssetTypeMemberResponsibilityUse only the new terminology.
	Terminology

	 The Output Module query languageThe API model has a set of well-defined entities and relations that allow you to create a single-rooted tree graph query and specify constraints that must exist for any of the resulting nodes, such as results filtering.For example, to query all assets of type Business Term and their respective domain and community, specify the following tree graph:The graph is a single-rooted tree graph.Multiple root nodes are not allowed.Each node has one parent.For each of the selected properties, you must specify a unique alias within the graph query.Filtering is specified on the node you want to filter and can reference any property of the current node of a child or grandchildren. The example above shows assets filtered by their related AssetType name.In this chapterGetting started Add related entities to the tree Specify an entity alias Add a related entity more than once Add filtering Sort the results Differentiate selected properties from properties required in a filter clause Strip HTML from text results Filtering operators Boolean operators Filter properties Virtual properties Clarify the relationship between two entities Page the results Map the results to a tabular format Set an execution timeout Structural validation of the query Getting startedThe format of the query language is either JSON or YAML. For simplicity, this example starts with a basic query and builds from there.Select the Id and Name for all communities as a flat list. The object representing the query is called ViewConfig, as it defines a particular view, which is a selection of the data. The object containing the graph part of the query is called Resources.The following example shows the Community entity along with its Id and Name properties.JSONYAMLJSON{ ViewConfig: { Resources: { Community: { name: Communities, <---\ Id: { name: community id }, ---- a node can (or must) have a name. Thus the community own 'name' property must be uppercased to avoid conflicts. Name: { name: community name } <---/ } } }}YAML---ViewConfig: Resources: Community: name: Communities <---\ Id: ---- a node can (or must) have a name. Thus the community own 'name' property must be uppercased to avoid name: community id Name: <---/ name: community nameEntity and property keys are case insensitive, so Community and Id can be written in any case.The other keys are case sensitive. For example, ViewConfig, Resources or Name must be written as shown.If a property is spelled out the same way as a reserved keyword, you must use a different casing than the reserved key. For example, you use lowercase name as the node name and capitalized Name as the community name.Test the APITo test the API, use a REST client, such as the Postman plugin for Chrome. Many output formats are available, but the JSON tree is the format that most resembles the query.This example uses the following endpoint on the OutputView resource:{{domain}}/rest/2.0/outputModule/export/jsonUse a POST call with the following body.JSONYAMLJSON{ ViewConfig: { Resources: { Community: { Id: { name: community id }, Name: { name: community name } } } }}YAML---ViewConfig: Resources: Community: Id: name: community id Name: name: community nameRemember to set the content type header.JSONYAMLJSON'Content-Type': 'application/json'YAML'Content-Type': 'application/x-yaml'The output is formatted as an array of communities.{ view: { Community0: [{ communityId: c87f166e-041f-4bea-8ff7-c1ffbab2ceeb, communityName: First Community }, { communityId: 86a745f5-7e87-4851-a107-a3a272ccea0b, communityName: Second Community }] } }You can use the ViewConfig queries with the following endpoints:{{domain}}/rest/2.0/outputModule/export/{{xml | json}}{{domain}}/rest/2.0/outputModule/export/{{xml | json}}-file{{domain}}/rest/2.0/outputModule/export/{{xml | json}}-jobAdd related entities to the treeUse this query example to add the users that have been assigned a role at the community level. To reach those entities, you must retrieve the Responsibility entities that represent the assignments between a user, a role and one of the following resources:AssetDomainCommunityJSONYAMLJSON{ ViewConfig: { Resources: { Community: { Id: { name: community id }, Name: { name: community name }, Responsibility: { User: { Id: { name: user id }, FirstName: { name: first name }, LastName: { name: last name } }, Role: { Signifier: { name: role name } } } } } }}YAML---ViewConfig: Resources: Community: Id: name: community id Name: name: community name Responsibility: User: Id: name: user id FirstName: name: first name LastName: name: last name Role: Signifier: name: role nameNavigating from one entity to another requires nesting the entities. For a complete list of properties and relations for each entity, see Entities, properties and relations.The following is an example of how the results is formatted.{ view: { Community0: [{ communityId: c87f166e-041f-4bea-8ff7-c1ffbab2ceeb, communityName: First Community }, { communityId: 12345678-0020-0000-0000-000000000000, communityName: Second Community, Responsibility1: [{ User2: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], Role3: [{ roleName: Admin }] }, { User2: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], Role3: [{ roleName: Steward }] }] }] } }The ViewConfig result tree always uses arrays for related entities, even when relations have a max cardinality of 1.Each responsibility has a maximum of one user and one role , even when arrays return.The results tree uses a generated entity alias in the response. For example, Community0, Responsibility1 or User2.To prevent duplicate names in the JSON keys, an index number is concatenated to the entity name.The relationship from community to responsibility is optional. The query engine recognizes optional and required relations between entities, which is why First Community appears even when no users have roles.Specify an entity aliasAuto-generated aliases in the response are not straightforward. For example, Community0, Responsibility1 or User2. For this reason, you must specify an alias.JSONYAMLJSON{ ViewConfig: { Resources: { Community: { name: community, Id: { name: community id }, Name: { name: community name }, Responsibility: { name: responsibility, User: { name: employee, Id: { name: user id }, FirstName: { name: first name }, LastName: { name: last name } }, Role: { name: role, Signifier: { name: role name } } } } } }}YAML---ViewConfig: Resources: Community: name: community Id: name: community id Name: name: community name Responsibility: name: responsibility User: name: employee Id: name: user id FirstName: name: first name LastName: name: last name Role: name: role Signifier: name: role nameThe results should then parse like the example below.{ view: { community: [{ communityId: c87f166e-041f-4bea-8ff7-c1ffbab2ceeb, communityName: First Community }, { communityId: 12345678-0020-0000-0000-000000000000, communityName: Second Community, responsibility: [{ employee: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], role: [{ roleName: Admin }] }, { employee: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], role: [{ roleName: Steward }] }] }] } }Add a related entity more than onceTo understand what roles users have in communities, you must query the groups that are linked through a responsibility.To add another relation from community to responsibility, select the related groups.This example shows the Id property of the two-responsibility nodes selected.JSONYAMLJSON{ ViewConfig: { Resources: { Community: { Id: { name: communityId }, Name: { name: communityName }, Responsibility: [{ Id: { name: userResponsibilityId }, User: { Id: { name: userId }, FirstName: { name: firstName }, LastName: { name: lastName } }, Role: { Signifier: { name: userRoleName } } }, { Id: { name: groupResponsibilityId }, Group: { Id: { name: groupId }, GroupName: { name: groupName } }, Role: { Signifier: { name: groupRoleName } } }] } } }}YAML---ViewConfig: Resources: Community: Id: name: communityId Name: name: communityName Responsibility: - Id: name: userResponsibilityId User: Id: name: userId FirstName: name: firstName LastName: name: lastName Role: Signifier: name: userRoleName - Id: name: groupResponsibilityId Group: Id: name: groupId GroupName: name: groupName Role: Signifier: name: groupRoleNameTo add the same related entity twice under the same node, change the JSON object into an array. In this case, the Responsibility JSON object became an array, and the anonymous JSON objects composing the array are multiple responsibilities.If you add the admin group to the second community, the results would be formatted similar to the example below.{ view: { Community0: [{ communityId: c87f166e-041f-4bea-8ff7-c1ffbab2ceeb, communityName: First Community }, { communityId: 12345678-0020-0000-0000-000000000000, communityName: Second Community, Responsibility1: [{ userResponsibilityId: 0ecb2fff-d5de-43d0-be60-f7f201c10d41, User2: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], Role3: [{ roleName: Admin }] }, { userResponsibilityId: 42b9d114-2c0c-4e96-a1ce-b645d5e92365, User2: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], Role3: [{ roleName: Steward }] }, { groupResponsibilityId: 5fc0cc5f-e30e-488c-94bc-acdea171219d, User2: [{}], Role3: [{ roleName: Admin }] }], Responsibility4: [{ userResponsibilityId: 0ecb2fff-d5de-43d0-be60-f7f201c10d41, Group5: [{}], Role6: [{ groupRoleName: Admin }] }, { userResponsibilityId: 42b9d114-2c0c-4e96-a1ce-b645d5e92365, Group5: [{}], Role6: [{ groupRoleName: Steward }] }, { groupResponsibilityId: 5fc0cc5f-e30e-488c-94bc-acdea171219d, Group5: [{ groupId: 4eb1f4a9-14a3-4539-8afc-733925161179, groupName: admin }], Role6: [{ groupRoleName: Admin }] }] }] } }In the example above, the userResponsibilityId and groupResponsibilityId values contain three unique values in total: two related to a user and one to a group. When no further filtering is requested, adding the same entity twice means selecting the same thing twice. The result is one empty user for the responsibility linked to the group and two empty groups for each responsibility linked to a user.Add filteringTo discard irrelevant responsibility results, use filtering.JSONYAMLJSON{ ViewConfig: { Resources: { Community: { Id: { name: communityId }, Name: { name: communityName }, Responsibility: [{ Id: { name: userResponsibilityId }, User: { Id: { name: userId }, FirstName: { name: firstName }, LastName: { name: lastName } }, Role: { Signifier: { name: userRoleName } }, Filter: { Field: { name: userId, operator: NOT_NULL } } }, { Id: { name: groupResponsibilityId }, Group: { Id: { name: groupId }, GroupName: { name: groupName } }, Role: { Signifier: { name: groupRoleName } }, Filter: { Field: { name: groupId, operator: NOT_NULL } } }] } } }}YAML---ViewConfig: Resources: Community: Id: name: communityId Name: name: communityName Responsibility: - Id: name: userResponsibilityId User: Id: name: userId FirstName: name: firstName LastName: name: lastName Role: Signifier: name: userRoleName Filter: Field: name: userId operator: NOT_NULL - Id: name: groupResponsibilityId Group: Id: name: groupId GroupName: name: groupName Role: Signifier: name: groupRoleName Filter: Field: name: groupId operator: NOT_NULLFilter is a reserved key. The example above first includes a userId is not null filtering clause to show responsibilities with a related user by (More on available filters later in this guide). Then, select the related responsibilities again, this time only keeping those with a related group.{ view: { Community0: [{ communityId: c87f166e-041f-4bea-8ff7-c1ffbab2ceeb, communityName: First Community }, { communityId: 12345678-0020-0000-0000-000000000000, communityName: Second Community, Responsibility1: [{ userResponsibilityId: 0ecb2fff-d5de-43d0-be60-f7f201c10d41, User2: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], Role3: [{ roleName: Admin }] }, { userResponsibilityId: 42b9d114-2c0c-4e96-a1ce-b645d5e92365, User2: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], Role3: [{ roleName: Steward }] }], Responsibility4: [{ groupResponsibilityId: 5fc0cc5f-e30e-488c-94bc-acdea171219d, Group5: [{ groupId: 4eb1f4a9-14a3-4539-8afc-733925161179, groupName: admin }], Role6: [{ groupRoleName: Admin }] }] }] } }In the result tree, Responsibility1 shows all related users and Responsibility4 only contains the groups.Filtering performance considerationsWhen a to-many relation is traversed in the query tree, performance is impacted because a new query is made against the Collibra internal storage engine. In the above example, the relation between the community and responsibility entities is of the to-many kind because a community can have many related responsibilities. Depending on the shape and amount of results, the performance penalty can range from completely irrelevant to a sizeable chunk added to the overall query time.Here is the optimal way to query.JSONYAMLJSON{ ViewConfig: { Resources: { Community: { Id: { name: communityId }, Name: { name: communityName }, Responsibility: { Id: { name: responsibilityId }, User: { Id: { name: userId }, FirstName: { name: firstName }, LastName: { name: lastName } }, Group: { Id: { name: groupId }, GroupName: { name: groupName } }, Role: { Signifier: { name: roleName } } } } } }}YAML---ViewConfig: Resources: Community: Id: name: communityId Name: name: communityName Responsibility: Id: name: ResponsibilityId User: Id: name: userId FirstName: name: firstName LastName: name: lastName Group: Id: name: groupId GroupName: name: groupName Role: Signifier: name: roleNameThe results should be formatted like the example below.{ view: { Community0: [{ communityId: c87f166e-041f-4bea-8ff7-c1ffbab2ceeb, communityName: First Community }, { communityId: 12345678-0020-0000-0000-000000000000, communityName: Second Community, Responsibility1: [{ responsibilityId: 0ecb2fff-d5de-43d0-be60-f7f201c10d41, User2: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], Group3: [{}], Role4: [{ roleName: Admin }] }, { responsibilityId: 42b9d114-2c0c-4e96-a1ce-b645d5e92365, User2: [{ userId: 00000000-0000-0000-0000-000000900002, firstName: Admin, lastName: Istrator }], Group3: [{}], Role4: [{ roleName: Steward }] }, { responsibilityId: 5fc0cc5f-e30e-488c-94bc-acdea171219d, User2: [{}], Group3: [{ groupId: 4eb1f4a9-14a3-4539-8afc-733925161179, groupName: admin }], Role4: [{ roleName: Admin }] }] }] } }Sort the resultsUse the Order clause to sort results. Just like filters, Order references one or more declared fields on the entity to be sorted or one of its children, or grandchildren.Use the ASC, which is the default, and DESC constants to request ordering in ascending or descending order.JSONYAMLJSON{ ViewConfig: { Resources: { Community: { Id: { name: communityId }, Name: { name: communityName }, Order: [{ Field: { name: communityName, order: ASC } }] } } }}YAML---ViewConfig: Resources: Community: Id: name: communityId Name: name: communityName Order: - Field: name: communityName order: ASCThe following example shows assets ordered by the name of a related entity.JSONYAMLJSON{ ViewConfig: { Resources: { Asset: { Id: { name: id }, Signifier: { name: name }, Relation: { type: SOURCE, TargetAsset: { Id: { name: targetRelatedAssetId }, Signifier: { name: targetRelatedAsset } } }, Order: [{ Field: { name: targetRelatedAsset, order: ASC } }] } } }}YAML---ViewConfig: Resources: Asset: Id: name: id Signifier: name: name Relation: type: SOURCE TargetAsset: Id: name: targetRelatedAssetId Signifier: name: targetRelatedAsset Order: - Field: name: targetRelatedAsset order: ASCThe type property on the relation allows you to determine which relationship is used when navigating from the parent asset to the relation. In the example above, there might be more than one targetRelatedAsset for each source asset. The query engine orders the related target assets first and uses the first value to order the parent assets. Similar to filtering, the order clause only affects the entities on which it is set. In the example, the targetRelatedAssets is not sorted. To sort, you must add another ordering clause on the Relation entity.You should not sort on the target asset node because ordering only makes sense in a collection. If an asset is the source for many relations and the relation has one target asset, you must sort the collection of relations, not the related target asset directly.The following query example sorts both collections. For simplicity, this query has no filtering. Executing filtering would return all assets and all relations available in Collibra.JSONYAMLJSON{ ViewConfig: { Resources: { Asset: { Id: { name: id }, Signifier: { name: name }, Relation: { type: SOURCE, TargetAsset: { Id: { name: targetRelatedAssetId }, Signifier: { name: targetRelatedAsset } }, Order: [{ Field: { name: targetRelatedAsset, order: ASC } }] }, Order: [{ Field: { name: targetRelatedAsset, order: ASC } }] } } }}YAML---ViewConfig: Resources: Asset: Id: name: id Signifier: name: name Relation: type: SOURCE TargetAsset: Id: name: targetRelatedAssetId Signifier: name: targetRelatedAsset Order: - Field: name: targetRelatedAsset order: ASC Order: - Field: name: targetRelatedAsset order: ASCDifferentiate selected properties from properties required in a filter clauseTo find the most recently created users, query the CreatedOn property and add a filter that uses the greater than operator. Adding the CreatedOn property to the tree also selects that property.In cases where you only want the user ID and first and last name, tell the query engine not to return the CreatedOn property and use it in the filter.CreatedOn is a date expressed as the number of milliseconds since 1/1/1970.JSONYAMLJSON{ ViewConfig: { Resources: { User: { Id: { name: userId }, FirstName: { name: firstName }, LastName: { name: lastName }, CreatedOn: { name: createdOn, hidden: true }, Filter: { Field: { name: createdOn, operator: GREATER, value: 1440492290300 } } } } }}YAML---ViewConfig: Resources: User: Id: name: userId FirstName: name: firstName LastName: name: lastName CreatedOn: name: createdOn hidden: true Filter: Field: name: createdOn operator: GREATER value: 1440492290300Using hidden: true on a property removes that property from the results. The default value is false.{ view: { User: [{ userId: 9546bbe9-7299-4a99-bfd2-d97f8256c201, firstName: Patrick, lastName: Star }, { userId: d9f3cc67-0db7-4aa5-a246-e83a62ea5c62, firstName: SpongeBob, lastName: SquarePants }] } }Strip HTML from text resultsSaved values from Collibra also includes HTML formatting tags. Although not visible to users, the user interface uses the tags to format data. These tags are also included when you query data and may look like garbage in Excel reports.The example below shows how to strip out the HTML formatting tags, leaving only the values.JSONYAMLJSON{ ViewConfig: { Resources: { Community: { Id: { name: communityId }, Name: { name: communityName }, Description: { name: communityDescription, stripHtml: true } } } }}YAML---ViewConfig: Resources: Community: Id: name: communityId Name: name: communityName Description: name: communityDescription stripHtml: trueUse stripHtml on any text field. When true, the returned value is stripped from the HTML tags.Filtering operatorsOperatorReverse OperatorParametersType compatibilityDescriptionEQUALSNOT_EQUALS1Text, Number, BooleanEqual/not equal to the value.STARTS_WITHNOT_STARTS_WITH1TextThe text starts/does not start with characters.STARTS_WITH_DIGIT/OptionalTextThe text starts with a digit. The optional parameter is a pair of upper and lower boundaries separated by a comma. For example, 3, 8 means any digit from 3 to 8 is included.ENDS_WITHNOT_ENDS_WITH1TextThe text ends/does not end with characters.INCLUDESNOT_INCLUDES1TextThe text contains/does not contain the characters.LESSGREATER1NumberThe value is strictly less than/greater than the value.LESS_OR_EQUALSGREATER_OR_EQUALS1NumberThe value is less than or equal to/greater than or equal to the value.BETWEEN/2NumberThe value is included within the values.NULLNOT_NULLNoneText, Number, BooleanAbsence/presence of value.INNOT_INCollectionText, Number, BooleanThe value is in/not in the set of values.EXISTSNOT_EXISTS1 (optional)n/aSee below.CR_FILTER_DOMAIN /1n/aComplexRelation specific filter. Includes only complex relations with at least one related asset in the domain.The following table shows samples for each operator. OperatorExampleEQUALS{ Field: { name: domainName, operator: EQUALS, value: New Business Terms } }STARTS_WITH{ Field: { name: domainName, operator: STARTS_WITH, value: New } }STARTS_WITH_DIGIT{ Field: { name: assetName, operator: STARTS_WITH_DIGIT } }ENDS_WITH{ Field: { name: domainName, operator: ENDS_WITH, value: Terms } }INCLUDES{ Field: { name: domainName, operator: CONTAINS, value: Bus } }LESS{ Field: { name: lastModified, operator: GREATER, value: 1440492290300 } }LESS_OR_EQUALS{ Field: { name: lastModified, operator: GREATER_OR_EQUALS, value: 1440492290300 } }BETWEEN{ Field: { name: lastModified, operator: BETWEEN, values: [1440492290300, 1440493000000 } }NULL{ Field: { name: description, operator: NULL } }IN{ Field: { name: statusName, operator: IN, values: [New, In Review] } }EXISTS{ Field: { target: RelationSource, operator: EXISTS, value: 00000000-0000-0000-0000-000000007001, name: assetId } }CR_FILTER_DOMAIN{ Field: { operator: CR_FILTER_DOMAIN, value: 00000000-0000-0000-0000-000000006013 } }EXISTS/NOT_EXISTS filterIn the context of a graph query, the EXISTS filter tests the existence of a relationship with another entity. This is the only filter that is explicitly limited to filtering on an entity located directly under the filtered node. To specify which relation should exist/not exist, the filter has a target key.You can also pass a parameter to the EXISTS filter. This parameter is used as a secondary filtering element. To query the assets with an attribute of type Description, use the EXISTS filter on the asset with target value Attribute and also the Id of the Description type in the value key of the filter.The table below lists the possible target values and the expected value type for optional parameters.Filtered EntityTarget valueOptional ParameterDescriptionCommunity, Domain, AssetResponsibilityRole IdFilter resources related/not related to a responsibility. Optionally, only responsibilities related to the Role Id.AssetRelationRelationType IdFilter assets that are/are not the source or target of a relation. Optionally, only relations related to the RelationType Id.AssetRelationSourceRelationType IdFilter assets that are/are not the source of a relation. Optionally, only relations related to the RelationType Id.AssetRelationTargetRelationType IdFilter assets that are/are not target of a relation. Optionally, only relations related to the RelationType Id.AssetAttributeAttributeType IdFilter assets that have/do not have an attribute. Optionally, only attributes related to the AttributeType Id.AssetStringAttributeAttributeType IdFilter assets that have/do not have a StringAttribute. Optionally, only StringAttributes related to the AttributeType Id.AssetSingleValueListAttributeAttributeType IdFilter assets that have/do not have a SingleValueListAttribute. Optionally, only SingleValueListAttributes related to the AttributeType Id.AssetMultiValueListAttributeAttributeType IdFilter assets that have/do not have a MultiValueListAttribute. Optionally, only MultiValueListAttribute related to the AttributeType Id.AssetBooleanAttributeAttributeType IdFilter assets that have/do not have a BooleanAttribute. Optionally, only BooleanAttributes related to the AttributeType Id.AssetNumericAttributeAttributeType IdFilter assets that have/do not have a NumericAttribute. Optionally, NumericAttributes related to the AttributeType Id.AssetDateTimeAttributeAttributeType IdFilter assets that have/do not have a DateTimeAttribute. Optionally, only DateTimeAttributes related to the AttributeType Id.The EXISTS/NOT_EXISTS filters are exclusively for communities, domains and assets.Filtering in HierarchyWhen the EQUALS/NOT_EQUALS and IN/NOT_IN operators are used in conjunction with an Id property of an asset, a RelationType or a Community can take an additional descendants: true parameter. When true, the query engine will force an IN or NOT_IN filter and add all Ids from the child assets, relation types or communities. This allows selecting the following assets.All assets under a community, including the subcommunities.All assets that are of type X or one of its subtypes.Boolean operatorsYou can combine the filtering operators using Boolean operators. Combining Boolean operators results in a logical binary tree of possibilities. Because the binary tree is not easy to read, the ViewConfig provides a way of specifying a Named Logical Array.JSONYAMLJSONFilter: { AND: [{ Field: { name: domainId, operator: EQUALS, value: 02204077-1cd1-4c70-a7c4-4cd845194b81 } }, { Field: { name: assetId, operator: EXISTS, value: 00000000-0000-0000-0000-000000007001, target: RelationSource } }, { Field: { name: statusName, operator: IN, values: [New, In Review] } }] }YAMLFilter: AND: - Field: name: domainId operator: EQUALS value: 02204077-1cd1-4c70-a7c4-4cd845194b81 - Field: name: assetId operator: EXISTS value: 00000000-0000-0000-0000-000000007001 target: RelationSource - Field: name: statusName operator: IN values: - New - In ReviewFiltering elements bundled together in a named array, are logically combined using the name of the array: either AND or OR. You can also nest these logical arrays, allowing all possible Boolean combinations.JSONYAMLJSONFilter: { AND: [{ OR: [{ Field: { name: domainId, operator: EQUALS, value: 02204077-1cd1-4c70-a7c4-4cd845194b81 } }, { Field: { name: assetId, operator: EXISTS, value: 00000000-0000-0000-0000-000000007001, target: RelationSource } }] }, { Field: { name: statusName, operator: IN, values: [New, In Review] } }]}YAMLFilter: AND: - OR: - Field: name: domainId operator: EQUALS value: 02204077-1cd1-4c70-a7c4-4cd845194b81 - Field: name: assetId operator: EXISTS value: 00000000-0000-0000-0000-000000007001 target: RelationSource - Field: name: statusName operator: IN values: - New - In ReviewFilter propertiesYou can use filter shortcuts to reduce the amount of time required to write a JSON query. For example, Relation has a typeId parameter that takes an Id and eliminates the need to add a RelationType node with an Id property. These one-line filtering properties are the most commonly used filters because they make the query a lot less verbose.The following example shows filtering a StringAttribute on an AttributeType using the labelId filtering property.JSONYAMLJSONStringAttribute: { labelId: 00000000-0000-0000-0000-000000000202, Id: { name: descriptionId }, LongExpression: { name: description }}YAMLStringAttribute: labelId: 00000000-0000-0000-0000-000000000202 Id: name: descriptionId LongExpression: name: descriptionRefer to Entities, properties and relations for the list of available filter properties for each entity.Virtual propertiesCollibra does not store virtual properties. It calculates them at runtime and dynamically evaluates the value of each property when the query executes. Virtual properties typically support hierarchical queries that show if the resource has children. Some examples are hasTaxonomyChildren and hasChildForRelation.Clarify the relationship between two entitiesWhen two entities are related in more than one way, nesting the entities inside each other is not enough to determine which path to follow. For example, an asset can be either the source or target of a relation or a user can be the creator or the lastModifier of a resource. Depending on the entity, there are two possibilities:The name of the child entity is changed. For example,SourceAsset or TargetAsset should be used under Relation instead of Asset. In this case, they act and behave just like normal assets and exist for the sole purpose of clarifying the relationship followed.A special parameter called the Parent Relationship Selector is added to the child entity. For example, Relation has a Type parameter with possible values of SOURCE or TARGET. This parameter determines the relationship between the Relation and the parentAsset.The following example shows the query going two levels deep.JSONYAMLJSON{ ViewConfig: { Resources: { Asset: { Id: { name: id }, Signifier: { name: name }, Relation: { type: SOURCE, TargetAsset: { Id: { name: relatedAssetLevelOneId }, Signifier: { name: relatedAssetLevelOne }, Relation: { type: TARGET, SourceAsset: { Id: { name: relatedAssetLevelTwoId }, Signifier: { name: relatedAssetLevelTwo } } } } } } } }}YAML---ViewConfig: Resources: Asset: Id: name: id Signifier: name: name Relation: type: SOURCE TargetAsset: Id: name: relatedAssetLevelOneId Signifier: name: relatedAssetLevelOne Relation: type: TARGET SourceAsset: Id: name: relatedAssetLevelTwoId Signifier: name: relatedAssetLevelTwoThese special parameters and custom entity names only exist for a fraction of the available entities. For a complete list, see Entities, properties and relations.To reduce the number of assets returned, the query example above is not filtered. Filtering would return a large amount of data and impact performance.Page the results The Output Module also supports paging the results for the root node of the query. You can specify an offset and a length parameter to limit the results to a subset of the complete list.JSON keyDefault valueDescriptiondisplayStart0The offset in the list of results. This offset is a zero-based index value.displayLength-1The maximum total number of results to return. A negative value means unlimited.maxCountLimit-1The maximum count value. A count of all records can lead to performance problems. When paging, you can limit the max count to this value. Passing 0 means no count is done.JSONYAMLJSON{ ViewConfig: { displayStart: 10, displayLength: 5, maxCountLimit: 10000, Resources: { Community: { Id: { name: communityId }, Name: { name: communityName }, Description: { name: communityDescription }, Order: [{ Field: { name: communityName, order: ASC } }] } } }}YAML---ViewConfig: displayStart: 10 displayLength: 5 maxCountLimit: 10000 Resources: Community: Id: name: communityId Name: name: communityName Description: name: communityDescription Order: - Field: name: communityName order: ASCThe example query above selects page 3 of all communities, with five results per page.Paged results should always be sorted, otherwise the results might seem inconsistent from page to page.The paged results list is recalculated upon each request.All entities that have been added or removed will appear/disappear from the list, modifying the indexes of the elements in the results list.The Collibra Console allows limiting the number of results returned by queries. The values range from 10 000 to 100 000. If enabled, and the limit is set, then:The default displayLength value (-1) is overwritten by the limit set through the console.If the displayLength set in the ViewConfig/TableViewConfig is larger than the limit value set in the Collibra Console, an exception is thrown.Map the results to a tabular formatThe Output Module supports a tabular output format and uses a different kind of ViewConfig, called TableViewConfig. TableViewConfig has a Columns mapping section that assigns each selected field to a column. The previous examples use the ViewConfig as input to the API to produce a JSON tree format.The following example uses TableViewConfig. This is available under the same {{domain}}/rest/2.0/outputModule/export/json endpoint, just using the TableViewConfig as the JSON payload.JSONYAMLJSON{ TableViewConfig: { displayLength: 5, displayStart: 10, Resources: { Community: { Id: { name: communityId }, Name: { name: communityName }, Description: { name: communityDescription } } }, Columns: [{ Column: { fieldName: communityId } }, { Column: { fieldName: communityName } }, { Column: { fieldName: communityDescription } }] }}YAML---TableViewConfig: displayLength: 5 displayStart: 10 Resources: Community: Id: name: communityId Name: name: communityName Description: name: communityDescription Columns: - Column: fieldName: communityId - Column: fieldName: communityName - Column: fieldName: communityDescriptionWhen formatted, this query produces an array of rows, each containing the requested columns.{ iTotalDisplayRecords: 48, iTotalRecords: 5, aaData: [{ communityId: 12345678-0006-0000-0000-000000000000, communityName: Simple Community 6, communityDescription: }, { communityId: 12345678-0007-0000-0000-000000000000, communityName: Simple Community 7, communityDescription: }, { communityId: 12345678-0008-0000-0000-000000000000, communityName: Simple Community 8, communityDescription: }, { communityId: 12345678-0009-0000-0000-000000000000, communityName: Simple Community 9, communityDescription: }, { communityId: 12345678-0010-0000-0000-000000000000, communityName: Simple Community 10, communityDescription: }] }Because the Columns mapping determines what should be returned, setting hidden: true on a property has no effect in a TableViewConfig.In the following example, the displayLength value is set to 0. This query shows the number of entities without retrieving actual results.The JSON Data Table output contains the total number of available records in Collibra for this query, which is iTotalDisplayRecords. It also contains the number of records returned in this set, which is iTotalRecords.{ iTotalDisplayRecords: 48, iTotalRecords: 0, aaData: [] }You can use the TableViewConfig queries with the following endpoints:{{domain}}/rest/2.0/outputModule/export/{{json | csv}}{{domain}}/rest/2.0/outputModule/export/{{json | csv | excel}}-file{{domain}}/rest/2.0/outputModule/export/{{json | csv | excel}}-jobHandling to-many results in a tabular formatYou can select all assets from a domain together with their Note attributes. Each asset may have multiple notes. When there are multiple notes, the most recent note should be ordered at the top of the list.The TableViewConfig may look similar to the example below.JSONYAMLJSON{ TableViewConfig: { Resources: { Asset: { Id: { name: assetId }, Signifier: { name: assetName }, StringAttribute: { LongExpression: { name: note }, CreatedOn: { name: noteCreatedOn }, Order: [{ Field: { name: noteCreatedOn, order: DESC } }] }, Domain: { Id: { name: domainId } }, Filter: { Field: { name: domainId, operator: EQUALS, value: f342423f-54fd-4643-935b-adbd9e7f5e25 } }, Order: [{ Field: { name: assetName } }] } }, Columns: [{ Column: { fieldName: assetId } }, { Column: { fieldName: assetName } }, { Column: { fieldName: note } }] }}YAML---TableViewConfig: Resources: Asset: Id: name: assetId Signifier: name: assetName StringAttribute: LongExpression: name: note CreatedOn: name: noteCreatedOn Order: - Field: name: noteCreatedOn order: DESC Domain: Id: name: domainId Filter: Field: name: domainId operator: EQUALS value: f342423f-54fd-4643-935b-adbd9e7f5e25 Order: - Field: name: assetName Columns: - Column: fieldName: assetId - Column: fieldName: assetName - Column: fieldName: noteDepending on the format requested, the results might be different. In Excel or CSV format, each asset is duplicated on a new row for each note value.This is similar to using SQL queries to join two tables with a one-to-many relationship. Unlike SQL, if you select an asset with two notes and three responsibilities, the asset would use three lines of the Excel table, not six, and the third row in the note column would be empty. JSON format, on the other hand, does not add duplicate rows to the results. Instead, it returns the first note found and discards the other notes.First note is missing for Business Asset 1 { iTotalDisplayRecords: 3, iTotalRecords: 3, aaData: [{ assetId: c20d5b39-6c5d-411b-adcb-82a1dd3851cc, assetName: Business Term 1, note: Second Note }, { assetId: 1a6a8f73-43b0-4a29-84c3-baaa3467be70, assetName: Business Term 2, note: Single note on BT2 }, { assetId: 7329349e-0631-41a7-a740-738979d887c6, assetName: Business Term 3, note: Single Note on BT3 }] }For tabular formats that do not duplicate rows, you can add the Group mapping construct to the Columns section.JSONYAMLJSON{ TableViewConfig: { Resources: { Asset: { Id: { name: assetId }, Signifier: { name: assetName }, StringAttribute: { LongExpression: { name: note }, CreatedOn: { name: noteCreatedOn }, Order: [{ Field: { name: noteCreatedOn, order: DESC } }] }, Domain: { Id: { name: domainId } }, Filter: { Field: { name: domainId, operator: EQUALS, value: f342423f-54fd-4643-935b-adbd9e7f5e25 } }, Order: [{ Field: { name: assetName } }] } }, Columns: [{ Column: { fieldName: assetId } }, { Column: { fieldName: assetName } }, { Group: { name: Notes, Columns: [{ Column: { fieldName: note } }] } }] }}YAML---TableViewConfig: Resources: Asset: Id: name: assetId Signifier: name: assetName StringAttribute: LongExpression: name: note CreatedOn: name: noteCreatedOn Order: - Field: name: noteCreatedOn order: DESC Domian: Id: name: domainId Filter: Field: name: domainId operator: EQUALS value: f342423f-54fd-4643-935b-adbd9e7f5e25 Order: - Field: name: assetName Columns: - Column: fieldName: assetId - Column: fieldName: assetName - Group: name: Notes Columns: - Column: fieldName: noteA Group mapping allows grouping multiple results for a single parent. A Group must receive a user-defined name that will be used when formatting the results.{ iTotalDisplayRecords: 3, iTotalRecords: 3, aaData: [{ assetId: c20d5b39-6c5d-411b-adcb-82a1dd3851cc, assetName: Business Term 1, Notes: [{ note: Second Note }, { note: First note }] }, { assetId: 1a6a8f73-43b0-4a29-84c3-baaa3467be70, assetName: Business Term 2, Notes: [{ note: Single note on BT2 }] }, { assetId: 7329349e-0631-41a7-a740-738979d887c6, assetName: Business Term 3, Notes: [{ note: Single Note on BT3 }] }] }Here are some rules about Group:Group mappings cannot be nested, a Group defined within a Group is not supported.All columns within a group must be related to the same parent entity.Set an execution timeoutQueries that run on complicated or large amounts of data may be slower than expected. Usually, the best approach is to paginate the results. In cases where the complexity or amount of data is unknown, a timeout can break up the execution. The Output Module can timeout, not only on the execution logic level, but also break running database queries to protect the database load from stress.You can set a timeout for each ViewConfig and TableViewConfig execution on the main config level. Defining it in the body of the query is optional.If a timeout is not set in the ViewConfig or TableViewConfig, then a default value is added. You can configure the default value in the Collibra console, the default setting is eight hours. No single query may run longer than 24 hours, which is the maximum value.Pagination is recommended for queries that may run longer. Those values will significantly smaller in the next major release, so it would be prudent to think about pagination.If the queryTimeout is more than 24 hours, the system will overwrite it with the maximum 24-hour limit value.Important exceptions are the {{domain}}/rest/2.0/outputModule/export/{{csv | excel}}-job endpoints. Here, data is calculated in chunks, with the size of the chunk defined in the Collibra Console. A separate query calculates each chunk and the timeout value set in the TableViewConfig will be a timeout value calculation for that chunk. JSON keyMinimum valueDefault valueMaximum valueDescriptionqueryTimeout1 minute8 hours (configurable)24 hoursTimeout in number of seconds that computation of the output can last. No decimal point allowed. Negative values are invalid. Zero means no timeout. Positive values will stop execution and return an error if the execution takes longer than the given number of seconds.Example of ViewConfig with a timeout set:JSONYAMLJSON{ ViewConfig: { queryTimeout: 5, Resources: { Domain: { name: d, Name: { name: vocName }, Asset: { name: t, Signifier: { name: assetName }, AssetType: { name: tt, Name: { name: assetType } } } } } }}YAML---ViewConfig: queryTimeout: 5 Resources: Domain: name: d Name: name: vocName Asset: name: t Signifier: name: assetName AssetType: name: tt Name: name: assetTypeAfter the timeout is reached, the REST request will receive a response with HTTP error code 408. Instead of a results message, the body will contain a JSON with the error description.Structural validation of the queryBecause writing ViewConfigs and TableViewConfigs is a tedious and error-prone task, the following endpoints allow using the validationEnabled parameter.{{domain}}/rest/2.0/outputModule/export/{{xml | json | csv}}{{domain}}/rest/2.0/outputModule/export/{{xml | json | csv | excel}}-file{{domain}}/rest/2.0/outputModule/export/{{xml | json | csv | excel}}-jobThis parameter, when set to true, enables validation of the input ViewConfig/TableViewConfig. By default, the parameter value is set to false.The example below shows a small typo in the filter. userID is used instead of userId. When you make a POST request to {{domain}}/rest/2.0/outputModule/export/json?validationEnabled=true, the following body results.JSONYAMLJSON{ ViewConfig: { displayLength: 5, Resources: { Community: { Id: { name: communityId }, Name: { name: community }, Responsibility: { Id:{ name: responsibilityId}, User: { Id: { name: userId }, FirstName: { name: userName } } }, Filter: {Field: {name:userID, Operator:NOT_NULL}} } } }}YAML---ViewConfig: displayLength: 5 Resources: Community: Id: name: communityId Name: name: community Responsibility: Id: name: responsibilityId User: Id: name: userId FirstName: name: userName Filter: Field: name: userID Operator: NOT_NULLThe response will be similar to the example below.{ viewConflict: [{ type: View Configuration Conflict, message: Field 'userID' is unknown., id: 7c723d33-dc8d-484b-90df-91e3364d771a }] }
	Getting started
	Add related entities to the tree
	Specify an entity alias
	Add a related entity more than once
	Add filtering
	Sort the results
	Differentiate selected properties from properties required in a filter clause
	Strip HTML from text results
	Filtering operators
	Boolean operators
	Filter properties
	Virtual properties
	Clarify the relationship between two entities
	Page the results
	Map the results to a tabular format
	Set an execution timeout
	Structural validation of the query

	 API endpoints and query formats The available rest API endpoints URL are: {{domain}}/rest/2.0/outputModule/export/{{format}}{{domain}}/rest/2.0/outputModule/export/{{format}}-file{{domain}}/rest/2.0/outputModule/export/{{format}}-jobThe available formats are XML, JSON, CSV and Excel.In this chapterEndpoints and formats ViewConfig/TableViewConfig and formats Single query and multi-query Endpoints and formatsEndpointCSVJSONCSVEXCEL{{domain}}/rest/2.0/outputModule/export/{{format}}YESYESYESNO{{domain}}/rest/2.0/outputModule/export/{{format}}-fileYESYESYESYES{{domain}}/rest/2.0/outputModule/export/{{format}}-jobYESYESYESYESViewConfig/TableViewConfig and formatsFormatSupports ViewConfigSupports TableViewConfigXMLYESNOJSONYESYESCSVNOYESEXCELNOYESSingle query and multi-queryMulti-query endpoints have less chance to timeout because of execution time limits, and thus can be used for larger exports.EndpointCSVJSONCSVEXCEL{{domain}}/rest/2.0/outputModule/export/{{format}}SINGLESINGLESINGLESINGLE{{domain}}/rest/2.0/outputModule/export/{{format}}-fileSINGLESINGLESINGLESINGLE{{domain}}/rest/2.0/outputModule/export/{{format}}-jobSINGLESINGLEMULTIMULTI
	Endpoints and formats
	ViewConfig/TableViewConfig and formats
	Single query and multi-query

	 Entities, properties and relations Entity Entity is the base abstract class of all other entities. An abstract entity cannot be queried, thus Entity cannot be used in the query tree.PropertiesidText (36)Universally unique identifier (UUID).ResourceExtends Entity Resource is an abstract entity, which is the base class of most other entities. Most other entities share the following properties and relations. An abstract entity cannot be queried, thus Resource cannot be used in the query tree.PropertiescreatedOnNumberCreation date (# milliseconds since 1/1/1970).createdOnTimestampNumberCreation date (# milliseconds since 1/1/1970).createdByTextId of the user who created this Resource.lastModifiedNumberLast modification date (# milliseconds since 1/1/1970).lastModifiedTimestampNumberLast modification date (# milliseconds since 1/1/1970).lastModifiedByTextId of the last user who modified this resource.systemBooleanIs this resource reserved by the system.RelationsUserMany-to-onethe user who created the resource.the user who last modified the resource.the user who created or last modified the resource. See User for details on specifying which kind of relationship is used. Representation Extends ResourceRepresentation is an abstract entity, which is the base class for Asset. All assets share the following relationships. An abstract entity cannot be queried, thus Representation cannot be used in the query tree.Properties/RelationsStatusMany-to-OneThe current status of the representation.DomainMany-to-OneThe domain containing the representation.AssetTypeMany-to-OneThe AssetType of the representation.AttributeOne-to-ManyThe collection of attributes in the representation.StringAttributeOne-to-ManyThe collection of StringAttributes in the representation.ScriptAttributeOne-to-ManyThe collection of ScriptAttributes in the representation.SingleValueListAttributeOne-to-ManyThe collection of SingleValueListAttributes in the representation.MultiValueListAttributeOne-to-ManyThe collection of MultiValueListAttributes in the representation.BooleanAttributeOne-to-ManyThe collection of BooleanAttributes in the representation.NumericAttributeOne-to-ManyThe collection of NumericAttributes in the representation.DateTimeAttributeOne-to-ManyThe collection of DateTimeAttributes in the representation.DateAttributeOne-to-ManyThe collection of DateAttributes in the representation. Organization Extends Resource Represents the hierarchy of organizations available in Collibra.PropertiesnameText (255)The name of the organization.descriptionTextThe description of the organization.uriText (255)The URI of the organization.languageText(255)The name of the language used.metaBooleanIndicates if the community is related to the meta model, such as a hidden organization.hasNonMetaChildrenBooleanIndicates if the organization contains non-meta subcommunities or domains.hasNonMetaChildCommunityBooleanIndicates if the organization contains non-meta communities.organizationTypeTextIndicates if the organization is a community (C) or a domain (D) RelationsParentCommunityMany-to-OneThe parent community of this organization. Null for root communities. Optional.CommunityOne-to-ManyThe collection of subcommunities.DomainOne-to-ManyThe collection of vocabularies contained in the organization.ResponsibilityOne-to-ManyThe collection of responsibilities playing a role in the organization.SubCommunitiesOne-to-ManyThe collection of domains contained in the community. CommentOne-to-ManyThe collection of comments contained in the community. AssetOne-to-ManyThe collection of assets contained in the community. DomainTypeOne-to-ManyThe type of domain. MappingOne-to-ManyThe collection of mappings corresponding to this domain. Filtering PropertyrootCommunityBooleanWhen true, the query engine adds a filter retaining only root communities. Only available when the community is also root of the query tree.CommunityExtends OrganizationExact synonym of an organization but with default filtering on organizationType equal to C ParentCommunityExtends CommunityExact synonym of a community. It can only be used as a child of the community to disambiguate the relationship followed. Domain Extends OrganizationSynonym of an organization but with default filtering on organizationType equal to D and with overridden relation for Community RelationsCommunityMany-to-OneThe parent community. DomainType Extends ResourceEach domain has a DomainType.PropertiessignifierText (255)The name of the DomainType.nameSynonym for signifier.descriptionTextThe description of the DomainType.metaBooleanIndicates if the DomainType is related to the Collibra meta model.RelationsDomainOne-to-ManyThe collection of domain instances of the DomainType.DomainTypeMany-to-OneThe parent DomainType of the DomainType. Null for root DomainTypes. Optional.ChildDomainTypesOne-to-ManyThe collection of DomainType children. ChildDomainTypes Extends DomainTypeCollection of DomainTypeExact synonym of DomainType. Can only be used as a child of DomainType to disambiguate the relationship followed. RelationType Extends ResourceA RelationType defines a class of relationship between two AssetTypes, also called AssetTypes.PropertiesroleTextThe label of the relation when followed from head to tail.coroleTextThe label of the reversed relation, when followed from tail to head.descriptionTextThe description of the RelationType.RelationsRelationOne-to-ManyThe collection of relation instances with this RelationType.SourceAssetTypeMany-to-OneThe AssetType that is head of the RelationType. SourceAssetType is a synonym of AssetType and clarifies which path is followed from the Relation entity to its child. In this case, the child node is the head.TargetAssetTypeMany-to-OneThe AssetType that is the tail of the RelationType. TargetAssetType is a synonym of AssetType and clarifies which path is followed from the Relation entity to its child. In this case, the child node is the tail.Parent Relationship SelectortypeThis parameter allows specifying which path should be followed from the parent AssetType entity to the RelationType. The possible values are either HEAD or TAIL, which tells whether the parent AssetType is the head or the tail of the RelationType. The default value is HEAD. Relation Extends Resource A Relation links two Assets together.PropertiesstartingDateNumberThe optional start date for this relation.endingDateNumberThe optional end date for this relation.isGeneratedBooleanTrue if this relation was generated.RelationsRelationTypeMany-to-OneThe type of this relation.SourceAssetMany-to-OneThe source asset of this relation.TargetAssetMany-to-OneThe target asset of this relation.Parent relationship selector. Only if the parent is a asset node or is of type inheriting from an asset node. typeThis parameter allows specifying which path should be followed from the parent asset entity to this relation. The possible values are either SOURCE or TARGET, which tells whether the parent asset is the source or target of the relation. This parameter is mandatory because there is no default value.Filtering PropertytypeIdAllows filtering relations using the Id value of their related RelationType. ComplexRelationExtends AssetA ComplexRelation is an anonymous asset, whose signifier, or name, has been generated.Properties/RelationsComplexRelationTypeMany-to-OneThe type of this complex relation.Filtering Property typeIdAllows filtering ComplexRelations using the Id value of their related ComplexRelationType.Additional ParametersseparatorThe character to be used to separate related asset names in an Excel or CSV export.quoteThe character to be used to quote related asset names in an Excel or CSV export. ComplexRelationType Extends AssetType A ComplexRelationType determines the type of a ComplexRelation.Properties/RelationsComplexRelationOneToManyThe collection of ComplexRelation instances with the ComplexRelationType.ComplexRelationLegTypeOneToManyThe collection of ComplexRelationLegTypes linked to the ComplexRelationType.ComplexRelationAttributeTypeOneToManyThe collection of ComplexRelationAttributeTypes linked to the ComplexRelationType. ComplexRelationLegType Extends ResourceA ComplexRelationLegType is a RelationType used in the context of a ComplexRelationType. The SourceAssetType of those RelationTypes of the ComplexRelationType. It can only be used as a child of ComplexRelationType.PropertiesminNumberThe minimum occurrences of this RelationType in the ComplexRelationType.maxNumberThe maximum occurrences of this RelationType in the ComplexRelationType.legOrderNumberOrder of this ComplexRelationLegType in the ComplexRelationType.RelationsRelationTypeMany-to-OneThe RelationType of the ComplexRelationLegType. ComplexRelationAttributeType Extends Resource A ComplexRelationAttributeType is an AttributeType used in the context of a ComplexRelationType.Can only be used as a child of ComplexRelationType.PropertiesminNumberThe minimum occurrences of this AttributeType in the ComplexRelationType.maxNumberThe maximum occurrences of this AttributeType in the ComplexRelationType.readOnly BooleanIndicates if the attribute can be edited or not.attributeOrderNumberOrder of this ComplexRelationAttributeType in the ComplexRelationType.RelationsAttributeTypeMany-to-OneThe AttributeType of this ComplexRelationAttributeType. Asset Extends RepresentationAn Asset is the basic building block capturing information about the assets available in Collibra.PropertiessignifierText (2000)The full name of the asset.displayNameText (2000)The display name of the asset.articulationScoreNumberResult of the last calculation of the articulation score.hasChildrenForRelation (deprecated)BooleanVirtual calculated property indicating if this asset has children for the relation type defined at the query level. This property takes two additional parameters:the RelationTypedirection (role or co-role)For example:HasChildrenForRelation: { name: hasChildren, relationTypeId: 00000000-0000-0000-0000-000000007005, roleDirection: true} It can only be used if Asset is a root node of the query. It is not inherited by nodes extending the Asset node.avgRatingNumber Average value of all ratings assigned to the asset.ratingsCountNumber Number of all ratings signed to the asset.classTextWith other entities that extend the asset, can be used to differentiate amongst the various subclasses.RelationsRelationOne-to-ManyThe collection of relations this asset has. See Relation for a mandatory type parameter.ResponsibilityOne-to-ManyThe collection of responsibilities this asset has.MappingOne-to-ManyThe related mappings.TagMany-to-ManyThe collection of tags associated with this asset.Filtering PropertyrootOfRelationAn array relation types/direction pairs. Root assets are not the child of any of the relations.For example:rootOfRelation: [{ relationTypeId: 00000000-0000-0000-0000-000000007038, roleDirection: true }, { relationTypeId: 00000000-0000-0000-0000-000000007005, roleDirection: true }], SourceAsset Extends AssetExact synonym of Asset. It can only be used as a child of relation to disambiguate the relationship followed. TargetAsset Extends AssetExact synonym of Asset. It can only be used as a child of a relation to disambiguate the relationship followed. SourceAssetType Extends AssetType Exact synonym of AssetType. It can only be used as a child of RelationType to disambiguate the relationship followed. TargetAssetType Extends AssetTypeExact synonym of AssetType. Can only be used as a child of RelationType to disambiguate the relationship followed. AssetType Extends ResourceA AssetType, also called AssetType, determines the type of asset, which is an AssetPropertiessignifierText (255)The name of this AssetType.nameSynonym for signifier.descriptionTextThe description of the AssetType.metaBooleanIs the AssetType related to the Collibra meta model.colorTextThe color of the AssetType.iconTextThe icon of the AssetType.acronymTextThe acronym of the AssetTypesymbolTypeTextDefines the icon or acronym used in Collibra. Possible values are: ICON, ACRONYM and NONE. displayNameEnabledBooleanIndicates if the display name is enabled for all assets of this AssetType.ratingEnabledBooleanAre ratings enabled for all assets of this AssetType.RelationsAssetOne-to-ManyThe collection of instances of this AssetType.AssetTypeMany-to-OneThe parent AssetType of this AssetType.ChildAssetTypesOne-to-ManyThe collection of concept types that have this AssetType as parent. ChildAssetTypes Extends AssetTypeCollection of AssetType Can only be used as a child of AssetType to disambiguate the relationship followed.The ComplexRelationType, despite inheriting from AssetType, does not support ChildAssetTypes node. Attribute Extends Resource Attribute represents an attribute linked to a representation.PropertiesvalueTextThe text value of this attribute.classTextWith other entities, extends attribute. You may use the class qualifier to differentiate between the various subclasses.RelationsAttributeTypeMany-to-OneThe type of attribute.AssetMany-to-OneThe asset to which the attribute belongs.Filtering PropertylabelIdAllows filtering the attributes based on the Id of their related AttributeType. StringAttribute Extends Attribute A StringAttribute is an attribute dedicated to text values.PropertieslongExpressionTextThe unbounded text value. Obsolete, but returns the same content as Attribute:value. ScriptAttribute Extends Attribute A ScriptAttribute is an attribute dedicated to script values.PropertiesscriptTextThe script. Obsolete, but returns the same content as Attribute:value. SingleValueListAttribute Extends Attribute A SingleValueListAttribute is an attribute dedicated to storing a single value selected from a list. MultiValueListAttribute Extends Attribute A MultiValueListAttribute is an attribute dedicated to storing multiple values selected from a list.PropertiesvaluesTextThe multiple values BooleanAttribute Extends Attribute A BooleanAttribute is an attribute dedicated to Boolean values.PropertiesbooleanValueBooleanThe value NumericAttribute Extends Attribute A NumericAttribute is an attribute dedicated to numeric values.PropertiesnumericValueNumberThe stored number. DateTimeAttribute Extends Attribute A DateTimeAttribute is an attribute dedicated to date values that also keep track of time.PropertiesdateTimeNumberThe date and time values expressed as the number of milliseconds since 1/1/1970. DateAttribute Extends Attribute A DateAttribute is an attribute dedicated to date values.PropertiesdateNumberThe date value expressed as the number of milliseconds since 1/1/1970.timestampNumberThe date value expressed as the number of milliseconds since 1/1/1970. AttributeType Extends Resource The AttributeType determines the type of an attribute.PropertiessignifierText(255)The name of the AttributeType.nameSynonym for signifier.descriptionTextThe description of this AttributeType.attributeKindText(255)The AttributeType kind. The possible values are: BOOLEAN, STRING, NUMERIC,DATE, DATE_TIME, SINGLE_VALUE_LIST, MULTI_VALUE_LIST and SCRIPT.languageText(255)The name of the language used. The kind is SCRIPT.isIntegerBooleanIndicates if the AttributeType defines an integer or decimal. If true, it defines an integer. If false, it defines a decimal. The kind is NUMERIC.allowedValuesTextComma separated list of values. The kind is SINGLE_VALUE_LIST or MULTI_VALUE_LIST.RelationsAttributeOne-to-ManyThe collection of Attributes of this type User Extends Resource Represents Collibra users. Any resource has a creation date and the last modification date. Collibra also stores which user made each of these operations. The User entity is related to all types as the creator and/or last modifier of the entity.PropertiesuserNameTextThe user name.firstNameTextThe first name.lastNameTextThe last name.fullNameTextVirtual property containing the first and last name together, which is useful for filters.genderTextThe gender.languageTextThe user language.activatedBooleanIndicates if the user is activated.ldapUserBooleanIndicates if the user is a LDAP User.apiUser (deprecated)BooleanIndicates if this is an API user.enabledBooleanIndicates if the user is enabled.emailAddressTextThe user's primary email address.guestBooleanIndicates if this is a guest user. RelationsEmailMany-to-ManyThe collection of emails owned by the user.PhoneMany-to-ManyThe collection of phone numbers owned by the user.InstantMessagingAccountMany-to-ManyThe collection of InstantMessagingAccount accounts owned by this user.WebsiteMany-to-ManyThe collection of websites owned by the user.AddressMany-to-ManyThe collection of addresses owned by the user.CommunityOne-to-ManyThe collection of communities created or last modified by the user.DomainOne-to-ManyThe collection of vocabularies created or last modified by the user.DomainTypeOne-to-ManyThe collection of DomainTypes created or last modified by the user.RelationTypeOne-to-ManyThe collection of RelationType created or last modified by the user.RelationOne-to-ManyThe collection of relations created or last modified by the user.ComplexRelationOne-to-ManyThe collection of ComplexRelations created or last modified by the user.AssetOne-to-ManyThe collection of assets created or last modified by the user.AssetTypeOne-to-ManyThe collection of AssetTypes created or last modified by the user.AttributeOne-to-ManyThe collection of attributes created or last modified by the user.StringAttributeOne-to-ManyThe collection of StringAttributes created or last modified by the user.ScriptAttributeOne-to-ManyThe collection of ScriptAttributes created or last modified by the user.SingleValueListAttributeOne-to-ManyThe collection of SingleValueListAttributes created or last modified by the user.MultiValueListAttributeOne-to-ManyThe collection of MultiValueListAttributes created or last modified by the user.BooleanAttributeOne-to-ManyThe collection of BooleanAttributes created or last modified by the user.NumericAttributeOne-to-ManyThe collection of NumericAttributes created or last modified by the user.DateTimeAttributeOne-to-ManyThe collection of DateTimeAttributes created or last modified by the user.DateAttributeOne-to-ManyThe collection of DateAttributes created or last modified by the user.AttributeTypeOne-to-ManyThe collection of AttributeTypes created or last modified by this user.UserOne-to-ManyThe collection of users created or last modified by this user.GroupMany-to-ManyThe collection of groups to which this user belongs.ResponsibilityOne-to-ManyThe collection of responsibilities linking this user to a role on an asset, domain or community.RoleOne-to-ManyThe collection or roles created or last modified by this user.StatusOne-to-ManyThe collection of statuses created or last modified by the user.WorkflowTaskInfo (deprecated)One-to-ManyThe collection of WorkflowTaskInfos created or last modified by the user.MappingOne-to-ManyThe collection of mappings created or last modified by the user.Parent Relationship SelectorlinkTypeThis parameter allows specifying the path that should be followed from the parent resource to a user. When the parent resource is responsibility or group, linkType is not used and the relationship defined for responsibility or group is used. When a user is the parent node, linkType determines the relationship with the child resources that have a created or last modified kind of relationship. See relations above. The possible values are CREATED, MODIFIED, CREATED_OR_MODIFIED or CREATED OR MODIFIED. CREATED_OR_MODIFIED is the default value, but can only be used when User is root of the query tree. CREATED_OR_MODIFIED turns into a simple CREATED when User is not the root of the query. Email Extends Resource Email represents one of the user's email addresses. It can only be used as a child of the user ser.PropertiesemailAddressTextThe email address. Phone Extends Resource Phone represents one of the user's phone numbers. It can only be used as a child of the user.PropertiesphoneNumberTextThe phone number.phoneTypeTextThe phone type: FAX, MOBILE, OTHER, PAGER, PRIVATE and WORK. InstantMessagingAccount Extends Resource InstantMessagingAccount represents one of the user's instant messaging account. It can only be used as a child of the user.PropertiesaccountTextThe account idinstantMessagingAccountTypeTextThe instant messaging type: AOL, GTALK, ICQ, JABBER, LIVE_MESSENGER, SKYPE or YAHOO_MESSENGER. Website Extends Resource Website represents one of the user's websites. It can only be used as a child of the user.PropertiesurlTextThe URL of the website.websiteTypeTextThe type of website: FACEBOOK, LINKEDIN, MYSPACE, TWITTER or WEBSITE. Address Extends Resource Address represents one of the user's addresses. It can only be used as a child of the user.PropertiesstreetTextThe street.numberTextThe street number.cityTextThe city.postalCodeTextThe zip code.stateTextThe state.countryTextThe country.addressTypeTextThe address type: HOME or WORK. Group Extends Resource A group is a named collection of users.PropertiesgroupNameTextThe name of the group.RelationsUserOne-to-ManyThe users that are part of this group.ResponsibilityOne-to-ManyThe collection of responsibilities linking this group to a role on an asset, domain or community. Responsibility Extends ResourceA responsibility links a user or group with a role on an asset, domain or community. Mutually exclusive.Properties/RelationsUserMany-to-OneThe related user. Empty if linked to a group.GroupMany-to-OneThe related group. Empty if linked to a user.RoleMany-to-OneThe related role.AssetMany-to-OneThe associated asset.DomainMany-to-OneThe associated domain.CommunityMany-to-OneThe associated community.Filtering PropertyroleIdAllows filtering responsibilities using the Id property of the related role. Role Extends Asset (deprecated)The Role that a user plays. For example, Steward or Admin. Status Extends Resource The status of an asset.PropertiessignifierText(255)The name of the status.descriptionTextThe status description.RelationsAssetOne-to-ManyThe assets of this status. WorkflowTaskInfo (deprecated) Extends Resource WorkflowTaskInfo holds all information about an ongoing workflow task.PropertiesdescriptionTextThe description of the task.titleTextThe title of the task.dueDateNumberThe due date of the task expressed as the number of milliseconds since 1/1/1970.itemResourceIdTextThe related item Id.itemResourceTypeTextThe related resource type.itemVerbalizedTextThe verbalized version of the related item.taskTypeTextThe type of task.assigneeTextThe id of the assigned user.candidateUsersTextThe ids or candidate users.domainTextThe related domain Id.communityTextThe related community Id.statusTextThe status of the task. Mapping Extends ResourceA Mapping links an externally defined entity, such as an asset or domain, to one entity.PropertiesextSystemIdTextThe identifier of the external system.extEntityIdTextThe external identifier of the entity.extEntityUrlTextThe external URL of the entity.lastSyncDateNumberThe last synchronization date.syncActionTextThe last synchronization action: ADD, UPDATE or REMOVE.descriptionTextDescription of this mapping.RelationsAssetMany-to-OneThe related asset.DomainMany-to-OneThe related domain. Tag Extends Resource A Tag allows categorizing assets by adding one or more labels.PropertiesnameTextThe name of the tag.RelationsAssetMany-to-ManyThe related assets. DataQualityRule (deprecated) Extends Resource A DataQualityRule describes the rules for the data quality of an asset.PropertiesnameTextThe name of the DataQualityRule.descriptionTextThe description of the DataQualityRule.Relations Scope Extends Resource A Scope describes the scope of an assignment.PropertiesnameTextThe name of the scope.descriptionTextThe description of the scope.Relations Comment Extends Resource Comment represents a single comment of a resource. PropertiescontentStringThe content of this comment.resourceTypeStringA type of the resource to which this comment belongs.RelationsParentCommentMany-to-One The parent comment of this comment.CommentOne-to-ManyList of subcomments of this commentAssetOne-to-OneThe asset to which this comment is linked.DomainOne-to-OneThe domain to which this comment is linked.CommunityOne-to-OneThe community to which this comment is linked.Filtering property rootCommentBooleanWhen true, the query engine adds a filter retaining only root comments. ParentComment Extends Resource ParentComment can only be used as a child of a comment to disambiguate the relationship followed. DataType (deprecated) Extends Entity A DataType is a Catalog entity that characterizes a data element's data type.PropertiesnameTextThe name of the type: Date or SSN.descriptionTextDescription of the type.classTextThe class of DataTypes: BASE and ADVANCED.logicalDataTypeTextThe corresponding logical data type used by the profiling job. It is one of the base types.RelationsDataTypeMatchOne-to-ManyThe related DataTypeMatches holding a specific percentage of match value for a Data Element instance. AdvancedDataType (deprecated) Extends DataType An AdvancedDataType is an extension of one of the base DataTypes, for example, Text, Numeric or Date, that provides patterns that help the profiling job detect the Data Type.PropertiesRelationsDataTypePatternOne-to-ManyThe patterns associated with this advanced data type. DataTypePattern (deprecated)Extends EntityA DataTypePattern contains a pattern associated with an AdvancedDataType.PropertiesvalueTextThe pattern.RelationsAdvancedDataTypeMany-to-OneThe related AdvancedDataType. DataTypeMatch (deprecated) Extends Entity A DataTypeMatch contains profiling results indicating the percentage of the actual data behind a DataElement asset that matches a DataType.PropertiespercentageDoubleThe matching percentage.RelationsAssetMany-to-OneThe related Data Element.DataTypeMany-to-OneThe matched DataType.BaseView (deprecated) Extends Resource An abstract entity base class of View and DiagramPicture.PropertiesnameTextThe name of the baseView.descriptionTextThe description of the baseView.configTextThe JSON config of the baseView.originalViewTextThe Id of the originalView of this base view, meaning the view from which this base view was created.isDefaultBooleanIndicates if this is a default baseView.isPreferredBooleanIndicates if this a preferred pinned baseViewRelationsView (deprecated)Extends BaseViewA view in Collibra.PropertiesRelationsDiagramPicture (deprecated)Extends BaseViewA diagram illustration.PropertiessvgTextText field containing an SVG representation of the diagram picture.RelationsViewMany-to-OneThe view used to create ort take the picture.DiagramPictureSharingRuleOne-to-ManyThe sharing rules of the diagram picture.AssignmentRuleMany-to-ManyThe assignment rules of the diagram picture. DiagramPictureSharingRule (deprecated) Extends Resource A DiagramPicture sharing rule. A diagram picture can be shared with a user, group or role.PropertiesRelationsRoleMany-to-OneThe role linked to this rule.GroupMany-to-OneThe group linked to this rule.UserMany-to-OneThe user linked to this rule. AssignmentRule (deprecated) Extends Resource An assignment rule, only exposed to the graph query engine to show the asset linked to a DiagramPicture.PropertiesRelationsAssetMany-to-OneThe asset linked to this rule.
	Entity
	Resource
	Representation
	Organization
	Community
	ParentCommunity
	Domain
	DomainType
	ChildDomainTypes
	RelationType
	Relation
	ComplexRelation
	ComplexRelationType
	ComplexRelationLegType
	ComplexRelationAttributeType
	Asset
	SourceAsset
	TargetAsset
	SourceAssetType
	TargetAssetType
	AssetType
	ChildAssetTypes
	Attribute
	StringAttribute
	ScriptAttribute
	SingleValueListAttribute
	MultiValueListAttribute
	BooleanAttribute
	NumericAttribute
	DateTimeAttribute
	DateAttribute
	AttributeType
	User
	Email
	Phone
	InstantMessagingAccount
	Website
	Address
	Group
	Responsibility
	Role
	Status
	WorkflowTaskInfo (deprecated)
	Mapping
	Tag
	DataQualityRule (deprecated)
	Scope
	Comment
	ParentComment
	DataType (deprecated)
	AdvancedDataType (deprecated)
	DataTypePattern (deprecated)
	DataTypeMatch (deprecated)
	BaseView (deprecated)
	View (deprecated)
	DiagramPicture (deprecated)
	DiagramPictureSharingRule (deprecated)
	AssignmentRule (deprecated)

